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Chapter 1

First Passage Problems in Biology

T. Chou∗ and M. R. D’Orsogna†

Applications of stochastic models in biological settings are discussed and
reviewed in the context of first passage problems. These applications
arise across a wide range of length and time scales. Within models that
are effectively Markovian, we review canonical examples of first pas-
sage problems spanning applications to molecular dissociation and self-
assembly, molecular search, transcription and translation, cellular mu-
tation and disease, and organismic evolution and population dynamics.
After an initial technical overview, we survey representative applications
and their corresponding models. Various approximation methods and
the distinction between single particle and multiple particle exit times
are discussed. Finally, potentially new applications and approaches are
presented.

1. Introduction & Mathematical Preliminaries1

First passage problems arise in many “toy” models for physical systems2

and yield insight into different classes of stochastic models.1 Similar first3

passage problems also frequently arise in biological contexts, including4

biomolecular processes, cellular function, and population dynamics. The5

probability distribution P (X, t) of a random process X(t) may obey a dis-6

crete master equation or a Fokker-Planck or Smoluchowski equation for7

continuous variables. Other equivalent approaches such as direct analysis8

of corresponding stochastic differential equations (SDEs) for the random9

variable or analysis of a branching process2,3 describing evolution of the10

probability generating function are also often employed. If the system does11

not harbour long-lived metastable configurations, simple mean-field or clo-12

sure methods that approximate correlations can be used to analytically find13

expected trajectories ⟨X(t)⟩ = ⨋ XP (X, t)dX that are often in qualitative14
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agreement with exact results or trajectories derived from approximate, de-15

terministic models. Within biology, moments of the random variables and16

first passage times are quantities of interest for which theoretical estimates17

are desired. First passage problems can be most simply described as finding18

the distribution of times according to which a random process first exceeds19

a prescribed threshold or reaches a specified configuration, as described in20

Fig. 1. While expectations of moments the random variable are often qual-21

itatively captured by using straightforward approximation methods, other22

observable quantities such as first passage times may not be.23

Fig. 1. Trajectories of a random variable X(t) illustrating typical first passage prob-
lems. (a) The deterministic or expected trajectory ⟨X(t)⟩ (solid black curve) crosses the
specified threshold X∗ = 0.2 at a specific time T ≈ 1.6; however, when fluctuations are ex-
plicitly included, the random variable X(t) can cross X = 0.2 at different times T ≈ 1.45
and T ≈ 1.7, as shown by the red and blue trajectories, respectively. (b) The distribution
of first passage times to X = 0.2. (c) Trajectories corresponding to a birth-death process
with carrying-capacity (see Eq. 43 in Section 5). In the deterministic model, X = 10
(the carrying-capacity in this example) is a stable fixed point while X = 0 is an unstable
one. With an initial condition X(0) > 0, the deterministic model never becomes extinct
(X∗ = 0), but in a stochastic model a random (possibly very rare) fluctuation can ex-
tinguish the system. The distribution of first extinction times is schematically shown in
(d).

For example, consider the trajectories depicted in Fig. 1. Some de-24
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terministic trajectories ⟨X(t)⟩ cross a threshold value at a unique time T25

(Fig. 1(a)), which then can be a qualitatively good estimate of the first26

passage time for the full stochastic process. However, in other cases, the27

deterministic trajectory never crosses a predefined threshold or “absorbing”28

level. As shown in Fig. 1(b), other dynamics may lead to an expected de-29

terministic trajectory that never reaches a specified threshold, and T = ∞.30

This is illustrated in Fig. 1(b) where X(t) never reaches the threshold value31

X) = 0. However, in a stochastic model, fluctuations can bring X(t) to the32

absorbing value X∗ = 0 in finite time, signalling extinction of the process.33

For such cases, there is a clear divergence between the exit times predicted34

from a deterministic model (T = ∞) and that predicted from a stochastic35

one (T < ∞).36

To be concrete, first consider a discrete Markov process can be described37

by the “forward” master equation38

∂Pki

∂t
=MkjPji, (1)

where Pki is the matrix of probabilities that the system is in configuration39

k at time t, given that the system started in state i at t = 0. The transition40

matrix composed of transition rates that take state j to state k is de-41

fined by Mkj . Note that k, j indexes all accessible configurations (N is the42

total number of configurations), including absorbing ones A from which43

probability density cannot re-emerge. Transition rates out of configura-44

tions A are defined to be zero while global probability conservation requires45

∑N
k=1 Mkj = 1TM = 0. Probability that enters configurationsA will accumu-46

late, and eventually, the survival probability defined as Si(t) ≡ ∑k∉A Pki(t)47

will vanish as t → ∞. Since the first passage time distribution can be de-48

rived from Si(t), it is convenient to consider the adjoint equation that is49

also obeyed by Pki(t) if the transition matrix Mkj is time-independent:50

∂Pki

∂t
= PkjMji. (2)

This “backward” equation does not operate on the final configurations k51

so one can perform the sum ∑k∉A to find an equation for the survival52

probability53

dSi(t)
dt

= Sj(t)Mji ≡ −Ji(t), (3)
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along with the initial condition Sk(t = 0) = 1 for k ∉ A and “boundary54

condition” Sk(t) = 0 for k ∈ A. The survival probability Si(t) defines the55

probability that the system has not reached any absorbing configuration up56

to time t, given that it started in configuration i at t = 0. The last equality57

in Eq. 3 is simply the time-dependent probability flux into the absorbing58

states given that the system started in configuration i. This definition can59

be easily seen by considering the lifetime distribution function which is a60

sum over the absorbed states: Fi(t) ≡ ∑k∈A Pki(t). By definition, we find61

the equation ∂tFi = FjMji ≡ Ji(t). Using Fj ≡ 1 − Sj , and the fact that62

1TM = 0, we arrive at the last equality in Eq. 3. Equation 3 is also a63

statement that the probability of survival against entering an absorbing64

configuration decreases in time according to the probability flux into the65

absorbing states.66

From the lifetime distribution Fi(t), one can find the probability that67

the system reached any absorbing configuration between time t and t + dt68

as Fi(t + dt) − Fi(t) = Si(t) − Si(t + dt). Hence, the first passage time69

distribution can be found from70

wi(t)dt ≡ dFi(t)
dt

dt = −dSi(t)
dt

dt, (4)

yielding all moments n of the first passage time71

⟨T n
i ⟩ = ∫

∞

0
wi(t)tndt. (5)

Upon using integration by parts for n = 1, the mean is simply ⟨Ti⟩ =72

∫ ∞0 Si(t)dt. Integrating Eq. 3 directly, we find an explicit equation for73

the moments of the first passage time into an absorbing state74

⟨T n
j ⟩Mji = −n⟨T n−1

i ⟩, (6)

where ⟨T 0
j ⟩ ≡ 1. The distribution or the moments of first exit times for a75

random walker to hit either one or two ends of a discrete one-dimensional76

lattice has been previously studied using equations 4 or 6.4,577

A very commonly used approximation to Eq. 3 (see Sections 2 and 3)78

is to assume79

dSi(t)
dt

≈ −JAi (t)Si(t), (7)
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which is motivated by a mass-action argument of the decay of probability80

of being in the initial surviving state i. However, the RHS of the exact81

relationship in Eq. 3 contains the transition matrix Mji which mixes states82

i with j. Since the approximation in Eq. 7 does not resolve the different83

surviving states, Eq. 7 is exact only when there is a single surviving state i84

that directly transitions into A with some waiting time distribution defined85

by JAi (t) ≡ Ji(t∣A). Another limit where Eq. 7 is accurate is if the system86

mixes quickly among all surviving states before being absorbed. In this case,87

the single surviving state i is a lumped average over all the microscopic88

states j, and first passage can be thought of as slow degradation of this89

distributed state. Equation 7 and the associated assumptions have been90

widely used in practice, particularly to describe bond rupturing in dynamic91

force spectroscopy of biomolecules (see Section 2)92

Another common representation of stochastic processes that is useful for93

modeling biophysical systems is based on continuous variables. This “La-94

grangian” representation is particularly useful for tracking stochastically-95

moving, identifiable particles. Starting from Eq. 1, a continuum formulation96

can be heuristically developed by assuming that each configuration is con-97

nected to only a few others. In this case, indices can be chosen such that98

the transition matrix is banded. For example, a particle at position i on a99

one-dimensional lattice is allowed to jump only to neighboring positions i±1100

with probability proportional to an infinitesimal increment of time. If the101

indices label lattice site positions, the transition matrix will be tridiagonal.102

Furthermore, if the transition rates vary slowly from site to site, and the103

system size N is large, we can take a continuum limit where the position of104

a particle y = i/N and the tridiagonal transition matrix represents a stencil105

of a differentiation operator.106

Upon defining P ({yj}, t∣{xj},0) as the probability that all particles j107

are located between yj and yj + dyj at time t given that they were at108

positions {xj} at t = 0, one can Taylor-expand a discrete master equa-109

tion in a “diffusion approximation” to find the governing Fokker-Planck or110

Smoluchowski equation111

∂P ({yj}, t∣{xj},0)
∂t

= ∑N
k=1∇k ⋅ (VkP ) +∑N

k=1∇2
k(D({yk})P )

≡ LP ({yj}, t∣{xj},0),
where the gradient ∇k is taken with respect to the coordinates of the112

kth particle, and N here is the total number of particles. The density113
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P ({yj}, t∣{xj},0) also obeys the the so-called Backward Kolmogorov Equa-114

tion (BKE) which is simply115

∂tP ({yj}, t∣{xj},0) = L†P ({yj}, t∣{xj},0), (8)

where L† = ∑N
k Vk ⋅ ∇k + ∑N

k=1D({xj})∇2
k is the operator adjoint of L.116

Since L† operates on the initial positions xj , Eq. 8 can be integrated117

over coordinates yj within the domain, excluding the absorbing surfaces.118

The resulting equation for the survival probability analogous to Eq. 3 is119

∂tS({xj}; t) = L†S({xj}; t), with S({xj}; t = 0) = 1 for all xj ≠ ∂ΩA, and120

S(∀xj = ∂ΩA; t) = 0. From this survival probability, all moments of the121

first times any particle hits an absorbing boundary ∂ΩA can be derived.122

Namely, in analogy with Eq. 6, the mean hitting time obeys123

L†⟨T n({xj})⟩ = −n⟨T n−1({xj}). (9)

Both the discrete and continuum stochastic formulations are commonly124

applied to physical systems; however, care should be exercised in using125

a continuum description as an approximation for a discrete system where126

first passage times are sought. Although the continuum diffusion approxi-127

mation is typically accurate in describing probability densities of large-sized128

discrete systems, it may provide a poor approximation to the first passage129

times to a discrete configuration. Indeed, using a birth-death process with130

carrying-capacity (see Section 5), Doering, Sagsyan, and Sander6 show that131

the effective potential of a discrete system and its corresponding continuum132

diffusion approximation differ, leading to different mean first population ex-133

tinction times. The discrepancy is small only when the convective term in134

the Fokker-Planck equation is small across all relevant population levels.135

Thus, depending on the application, continuum diffusion approximations136

and their numerical discretization should be applied judiciously when first137

passage times are being analyzed.138

The first passage problems defined above assume that one is interested139

in the distribution of times of the systems arriving at any absorbing config-140

uration. However, there may well be states which are physically absorbing141

(into which probability flux enters irreversibly) but that are not relevant142

to the biological process. For example, one may be interested in the times143

it takes for a diffusing protein to first reach a certain target site (see Sec-144

tion 3 below), the protein may degrade before reaching it. Since decay is145

irreversible, the system reaches an “unintended” absorbing state through146
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degradation of the protein. If one assumes A to be only the biologically-147

relevant absorbing configurations, the corresponding survival probability148

Si(t) does not vanish in the t → ∞ limit because there are other “irrel-149

evant” absorbing states that soak up some of the probability. In other150

words, the integrated probability flux JAi (t) into relevant absorbing states151

A, ∫ ∞0 JAi (t)dt < 1 if there are other physical absorbing states competing152

for probability. Also note that since Si(t → ∞) > 0, the mean first pas-153

sage time ⟨Ti⟩ = ∫ ∞0 Si(t)dt = ∞. All moments also diverge. Provided a154

measurable fraction of trajectories reach the irrelevant absorbing state, the155

mean time to arrive at the relevant absorbing state diverges because these156

“wasted” trajectories will never reach the relevant states.157

A more relevant measure in cases with “interfering” absorbing states158

is the distribution of first arrival times conditioned on arriving at the rel-159

evant absorbing configurations. In other words, restrict ourselves to the160

arrival time statistics of only those trajectories that are not absorbed161

by the irrelevant states. Since each trajectory of the system is indepen-162

dent of each other, the conditioning is a simple statement of Bayes rule:163

JAi (t) = Ji(t∣A) ×Prob(exiting throughA), where JAi (t) is the probability164

flux into A, and Ji(t∣A) is the probability flux of annihilation counting165

those trajectories that annihilate through the relevant absorbing states A.166

Since the probability of exiting through A is ∫ ∞0 JAi (t)dt, the conditional167

first passage time distribution is168

Ji(t∣A)dt ≡ wi(t∣A)dt = JAi (t)dt
∫ ∞0 JAi (t′)dt′ . (10)

Analogous expressions for the continuum representation (Eq. 8) can be169

found provided the suitable continuum expression for the probability flux170

is used. As a simple example, consider a single Brownian particle with171

diffusivity D one dimension with absorbing boundaries at x = ±1. The172

probability flux through the ends are173

∓D∂P (y, t∣x,0)
∂y

∣
y=±1

≡ Jx(t∣ ± 1). (11)

The first passage time distributions sampled over only those trajectories174

that exit, say, y = +1 is thus175

wx(t∣ + 1)dt = Jx(t∣ + 1)
∫ ∞0 Jx(t′∣ + 1)dt′ , (12)
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Fig. 2. Left: Free energy potential U(ξ) as a function of an effective, one-dimensional
bond coordinate ξ. Once the coordinate reaches ξ∗, the bond is irreversibly broken. If an
external force F is applied, the effective potentials changes to U(ξ) − Fξ, which change
the barrier height to bond rupturing, as well as the maximum bond length ξ∗. Right:
The rupture force distribution for various loading rates. From.9

which can be explicitly calculated given the solution to the diffusion equa-176

tion (Eq. 8) for P (y, t∣x,0).177

The mathematical approaches presented above, along with many ex-178

tensions, have been used to model a diverse set of first passage problems179

arising in biological systems. In the following sections, we survey some ap-180

plications of such first passage problems, spanning length scales that range181

from the molecular, to the cellular, to that of populations.182

2. Molecular dissociation and self-assembly183

The times over which molecules dissociate and associate play important184

role in chemical biology. For example, ligand-receptor complexes have finite185

lifetimes that are important determinants of whether signalling is initiated.186

The immune response is also initiated by antibody-antigen engagement.7187

Cell-substrate and cell-cell adhesion are also mediated by molecules such188

as glycoproteins.8189

The classic description of bond rupture is Arrhenius’ formula kd =190

k0e
−U(ξ∗) for the rate of thermal escape over a free energy barrier U(ξ∗)191

(all energies are measured in units of kBT ), as schematically shown in192

Fig. 2(a). One generalization to this problem is to extend the analysis to193

time-dependent bond potentials which are experimentally realized by apply-194

ing a time-dependent pulling force on the bond, as illustrated in Fig. 2(a).195

In a typical dynamic force spectroscopy (DFS) experiment, the force on the196
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bond is typically linearly ramped up until it ruptures. The applied force197

at the instant of rupture is recorded and the distribution of rupture forces198

sampled. Fig. 2(b) illustrates the frequency of observed forces F ∗ at the199

instant of rupture, for six different loading rates. Since the applied force is200

F (t) = γt, the force F ∗ at the moment of rupture also specifies the time at201

rupture T = F ∗/γ, where γ is the experimentally controlled force loading202

rate. Therefore, in the force ramping ensemble, DFS reduces to an analysis203

of a first passage problem with a time-dependent potential.204

Nearly all approaches to this problem have included the pulling into a205

time-dependent free energy barrier U(ξ, t), giving rise to a time-dependent206

dissociation rate kd(t). Furthermore, the mean-field assumption Ṡ(t) ≈207

−kd(t)S(t) is typically used. As it stands, this rate equation does not pro-208

vide information about the bond other than the effective barrier height. In209

order to model finer effects of the bond energy profiles, shape properties210

need to be incorporated into the analysis. The simplest way to do this is211

to model how kd(t) depends on the shape of the bond energy, while still212

retaining the mean-field assumption (Eq. 7) for the survival probability. To213

do this, assume the bond potential contains a last barrier at bond coor-214

dinate ξ∗, beyond which the bond is irreversibly dissociated, as depicted215

in Fig. 2(a). To approximate the distribution of times for a bind to spon-216

taneously rupture, one needs to calculate the time it takes for a random217

walker to reach the “absorbing boundary” ξ∗, given that it started from an218

initial position ξ0. The standard calculation proceeds by solving the Fokker-219

Planck equation for the probability density P (ξ, t∣ξ0,0) and construct-220

ing the corresponding survival probability S(ξ0; t) = ∫ ξ∗
0

P (ξ, t∣ξ0,0)dξ,221

or, alternatively, directly solving the Backward Kolmogorov Equation for222

S(ξ0; t). The probability density, survival probability, and rupture time223

distribution are all easy solved numerically. In the over-damped limit of224

diffusive dynamics, the mean bond rupturing time ⟨T ⟩ ≡ ∫ ∞0 S(ξ0; t)dt can225

be found in exact closed form for any general free energy profile U(ξ).226

For a simple single-barrier free energy profile, one simple approximation227

is to assume a quadratic energy profile and compute the first passage time228

distribution to a particular displacement, reducing the calculation to that of229

finding the first crossing time of an over-damped Ornstein-Ulhenbeck pro-230

cess.10,11 Another more refined approximation concatenates two harmonic231

potentials (one of positive curvature, one of negative curvature) together232

to form an approximate potential. Upon using steepest descents, a simple233

expression for the mean bond rupturing time starting from the energetic234

minimum ξ0 can be found in the high barrier (rare crossing) limit:235
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⟨T (ξ0)⟩ ≈ e−(U(ξ
∗)−U(ξ0))

2π∣κ0κ∗∣ . (13)

Here, κ0 and κ∗ are the curvatures of the potential at the local minimum236

and at the top of the barrier, respectively. Since the barrier is high, and237

dissociation is a rare event, the distribution of rupturing times can be well-238

approximated by a single exponential with a dissociation rate kd ≡ 1/⟨T ⟩.239

In addition to the barrier height, Eq. 13 encodes the shape of the bond240

potential through the curvatures κ0 and κ∗.241

The simplest way to incorporate a time-varying applied force problem in242

the one-dimensional continuum limit is to define an auxiliary time variable243

τ such that ∂tτ = 1. In the backward equation for the mean rupture time244

τ is an independent variable12245

( ∂

∂τ
+F (τ) ∂

∂ξ
+L†) ⟨T (ξ, τ)⟩ = −1, (14)

where ξ is the initial starting coordinate of the bond and F (τ) = γτ for a lin-246

ear force ramp. With suitable boundary conditions ⟨T (ξ∗, τ)⟩ = ⟨T (ξ,∞)⟩ =247

0, one can find the expected rupture time ⟨T (ξ,0)⟩ numerically.248

Two analytical approximations can be made by assuming the pulling249

force F is fixed. In this case, the solution to (F∂ξ +L†) ⟨T (ξ,F )⟩ = −1 is12250

⟨T (ξ,F )⟩ = Q[exp (−U(ξ) +Fξ)] , (15)

where Q[...] is a complicated, but explicit integral functional.12 In a first251

approximation Shillcock and Seifert12 assumed that the typical rupturing252

force is determined self-consistently from F ∗ ≈ γ⟨T (ξ,F ∗)⟩.253

A self-consistent approach to estimate the rupture force distribution is254

to solve the mean-field equation Ṡ(t; ξ0) = −kd(t)S(t; ξ0) and use Eq. 4 to255

find256

w(ξ, t)dt = kd(ξ, t) exp [−∫ t

0
kd(ξ, t′)dt′]dt, (16)

where kd(ξ, t) is the time-dependent rate of dissociation. Upon using F (t) =257

γt to convert this distribution to a rupture force distribution yields258
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w(ξ,F ∗)dF ∗ = 1

γ
kd(ξ,F ∗) exp [− 1

γ
∫

F ∗

0
kd(ξ,F )dF]dF ∗

= 1

γ
kd(ξ,F ∗) exp [− 1

γ
∫

F
∗

0

dF

Q[exp(−U(ξ)+ Fξ)]]dF ∗,
(17)

where for the last equality, kd(ξ,F ) ≈ 1/⟨T (ξ,F )⟩ and Eq. 15 were used.259

This and related approximations are used in combination with specific260

bond energy profiles by many authors to derive expressions for rupture force261

distributions.13–20 For example, Dudko et al.14 treat the ensemble where262

the pulling velocity V is specified. They use a mean-field approximation for263

the bond survival probability (described in more detail in Section 3) and264

assume that the total potential is being shifted at a constant velocity V .265

For general potentials, they find a mean rupture force ⟨F ∗⟩ ∼ (lnV )2/3, as266

well as an expression for the rupture force distribution.267

The ultimate goal of using a time-dependent force to generate different268

rupture force distributions is to be able to infer the structure of the bond(s)269

holding molecular components together. All of the models used to derive270

a functional form of the rupture force distribution as a function of loading271

rate γ assume a simple potential energy profile with few parameters (such272

as well width and depth). The full reconstruction problem of determining273

a smooth potential energy profile from the distribution of rupture times274

has also been considered. In general, the problem, as with many inverse275

problems is ill-posed.21 The reconstruction of a potential from a single276

rupture time distribution starting from a single bond coordinate is not277

unique,21 however, additional experiments (such as multiple loading forces278

and multiple starting bond positions) can give rise to multiple rupture time279

distributions that allow for reconstruction of potentials defined by many280

more parameters.22 The extension of these inverse problems to those using281

rupture force distributions derived from different force loading rates could282

provide insight into the reconstruction of potentials more complex than283

simple harmonic, Lennard-Jones, or Morse type potentials.284

A process complementary to dissociation is self-assembly, which also285

arises in many biological contexts. The polymerization of actin fila-286

ments23–27 and amyloid fibrils,28 the assembly of virus capsids29–31 and of287

antimicrobial peptides into transmembrane pores,32,33 the recruitment of288

transcription factors, and the self-assembly of clathrin-coated pits34–36 are289

all important cell-level processes that can be cast as initial binding and self-290
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assembly problems that can be described in terms of stochastic processes.291

Generally, in biological settings, there exists a maximum cluster size which292

signals the completion of the assembly process. For example, virus capsids,293

clathrin coated pits, and antimicrobial peptide pores typically consist of294

N ∼ 100− 1000,N ∼ 10− 20, and N ∼ 5− 8 molecular subunits, respectively.295

Furthermore, in confined spaces such as cellular compartments, the total296

mass is a conserved quantity. Figure 3 depicts a homogeneous nucleation297

process where monomers spontaneously bind and detach to clusters one at298

a time.299

V= 1

Fig. 3. Homogeneous nucleation and growth in the slow detachment (q → 0+) limit
in a closed unit volume initiated with M = 30 monomers. If the constant monomer
detachment rate q is small, monomers will be nearly exhausted in the long time limit.
In this example, we assume that N = 6 is the maximum cluster size and that the first
maximum cluster is formed at time T (depicted in blue).

The classical description of self-assembly or homogeneous nucleation300

is a set of mass-action equations (such as the Becker-Döring equations)301

describing the concentration ck(t) of clusters of each size k at time t:302

ċ1(t) = −pc21 − pc1∑N−1
j=2 cj + 2qc2 + q∑N

j=3 cj

ċ2(t) = −pc1c2 + p

2
c21 − qc2 + qc3

ċk(t) = −pc1ck + c1ck−1 − qck + qck+1
ċN(t) = pc1cN−1 − qcN ,

(18)

where for simplicity, we have assumed a cluster size-independent attach-303

ment and detachment rates p and q, respectively. These equations can304
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readily be integrated to provide a mean-field approximation to the num-305

bers of clusters of each possible size k.37306

However, given a total number of monomersM one may be interested in307

the time it takes for the system to first assemble a complete cluster of sizeN .308

To address such a first passage problem, a stochastic model for the homo-309

geneous nucleation process must be developed. Consider an N -dimensional310

probability density P (n1, n2, . . . , nN ; t) for the system exhibiting at time t,311

n1 free monomers, n2 dimers, n3 trimers...and nN completed clusters. The312

forward master equation obeyed by P (n1, n2, . . . , nN ; t) is:37313

Ṗ ({n}; t) = −Λ({n})P ({n}; t)+ 1

2
(n1 + 2)(n1 + 1)W +

1 W
+
1 W

−
2 P ({n}; t)

+
N−1

∑
i=2

(n1 + 1)(ni + 1)W +
1 W

+
i W

−
i+1P ({n}; t)

+q(n2 + 1)W +
2 W

−
1 W

−
1 P ({n}; t)

+q
N

∑
i=3

(ni + 1)W −
1 W

−
i−1W

+
i P ({n}; t), (19)

where we have rescaled time to p−1, P ({n}, t) = 0 if any ni < 0, Λ({n}) =314

1
2
n1(n1 − 1) +∑N−1

i=2 n1ni + q∑N
i=2 ni is total rate out of configuration {n},315

and W ±
j is the unit raising/lowering operator on the number of clusters of316

size j. For example,317

W +
1 W

+
i W

−
i+1P ({n}; t) ≡ P (n1 + 1, . . . , ni + 1, ni+1 − 1, . . . ; t). (20)

The process associated with this master equation has been analyzed using318

Kinetic Monte-Carlo simulations as well as asymptotic approximations for319

the mean cluster numbers in limits of small and large q.37,38320

The first passage problem is to determine the distribution of times for321

the event nN = 0 ⇒ nN = 1. For the purpose of illustration, consider a322

small system with M = 7 or 8, and N = 3. Since the state space is small,323

we can visualize all possible configurations as shown in Fig. 4. The first324

passage time to a maximum cluster, starting from the all-monomer state325

(P ({ni}; t = 0) = δn1,M ∏N
i=2 δni,0) is the time the system takes to reach any326

of the states highlighted in blue, to the right of the red line.327

In the strong binding limit, when 0 < q ≪ 1 and for M even, one can328

find the dominant pathways to a largest cluster and surmise the leading329

order behavior ⟨T (q ≪ 1)⟩ ∼ 1/q, with a prefactor that depends nontrivially330

on M and N . This diverging assembly time arises from trapped states as331

highlighted in yellow in Fig. 4(b). As q is increased, more paths out of332
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(1,2,1) (2,0,2)(0,4,0)

(0,1,2)

(7,0,0)
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(4,0,1)

(2,1,1)

(0,2,1) (1,0,2)

(a) (b)

Fig. 4. Allowed transitions in stochastic self-assembly starting from an all-monomer
initial condition. In this simple example, the maximum cluster size N = 3. (a) Allowed
transitions for a system with M = 7. Since we are interested in the first maximum cluster
assembly time, states with n3 = 1 constitute absorbing states. The process is stopped
once the system crosses the vertical red line. (b) Allowable transitions when M = 8. Note
that if monomer detachment is prohibited (q = 0), the configuration (0,4,0) (yellow) is
a trapped state. Since a finite number of trajectories will arrive at this trapped state
and never reach a state where n3 = 1, the mean first assembly time T3(8,0,0) →∞ when

q = 0.

the trapped states are more likely, thereby decreasing the expected time to333

cluster completion. Only for the special case of N = 3 and M odd is ⟨T (q)⟩334

a nondivergent ratio of polynomials in q, as illustrated in Fig. 5(a).335

In the weak binding, q ≫ 1, maximum cluster formation is a rare event336

and ⟨T (q ≫ 1)⟩ ∼ qN−2. Because of these asymptotic relations, we expect337

at least a single minimum in the mean first assembly time as a function of338

detachment rate q. Figure 5 shows ⟨T (q)⟩ as a function of q for M = 7 and339

M = 8, clearly indicating a shortest expected maximum cluster formation340

time at intermediate detachment rates q. As long as M is even or N ≥ 4,341

traps states arise and the expected cluster completion time diverges as q →342

0. Thus, in this limit, it may be physically more meaningful to define the343

expected assembly time of a maximum cluster, conditioned on trajectories344

yielding complete clusters.345

Ideas of self assembly have also been applied to a structurally more spe-346

cific application of linear filament and microtubule growth.39,40 The cell347

cytoskeleton is a dynamically growing and shrinking assembly of micro-348

tubules and filaments that regulate cell migration, internal reorganization349
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Fig. 5. Mean first assembly times for M = 7 and N = 3 in panel (a) and M = 8 and
N = 3 in panel (b). The notation TN (M,0,0) denotes the mean first maximum cluster
(of size N) assembly time ⟨T ⟩ starting from an initial condition of M monomers. Exact
results are plotted as black solid lines, while red circles are obtained by averaging over
105 KMC simulation trajectories. The dashed blue lines show the q → 0 and q → ∞

asymptotic approximations.

such as organelle transport, and mitosis. The assembly and disassembly of350

microtubules is a key microscopic process for these vital higher order cell351

functions. The molecular players involved in these processes are numerous352

and their interaction are biochemically and geometrically complex. How-353

ever, one basic feature is that the tips of growing filaments can exist in354

a state that promotes elongation, or one that promotes disassembly. By355

switching between these two states, the filament can be biased to shrink356

or grow. A first passage problem that has been studied in this context has357

been to derive a model for the first disassembly time of a filament starting358

at a specific length. Using a discrete stochastic model describing the prob-359

ability density for the number of monomers in a single microtubule, as well360

as transitions between growing and shrinking states, Rubin calculated its361

disassembly time distribution in terms of modified Bessel’s functions.39362

In later work, Bicout40 used a semi-Markov model to describe single363

filament dynamics. During the growth or shrinking phases, the length of the364

filament was assumed to be continuous variable that increased or decreased365

according to deterministic velocities v±. However, the switching between366

growing and shrinking states was assumed Markovian with exponentially367

distributed times. The stochastic “telegrapher’s” equation used for this368

model is of the form369
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∂

∂t

⎛⎜⎝
P+

P−

⎞⎟⎠ = L
⎛⎜⎝
P+

P−

⎞⎟⎠ , (21)

where370

L =
⎛⎜⎝
−v+ ∂

∂x
− f+ f−

f+ v−
∂
∂x
− f−

⎞⎟⎠ , (22)

and is also known as the Broadwell model. Equation 21 is the corresponding371

forward equation for the probability vector P±(x, t∣x0,0) that the tip of the372

filament is between position x and x+dx at time t, and that it has velocity373

v±, given an initial probability vector where the initial position is at position374

x0. The ballistic intervals of motion introduces an overall memory into the375

dynamics. This can be seen by combining P+ + P− = P to find an equation376

for the total probability P (x, t) containing terms of the form ∂2P /∂t2.377

By using the associated Green’s function, Bicout40,41 found explicit so-378

lutions for the distribution of lifetimes of a microtubule that started off at379

a fixed length x0:380

w(t;x0)dt ∼ t3/2 exp [−t/τc]dt. (23)

The Broadwell model and telegrapher’s equation have been used in many381

other applications, including gas kinetics42,43 and photon transport.44 In382

the next section, we present another example of a first passage problem383

from molecular biophysics that involves electron transport and that is also384

described by equations similar to Eq. 21.385

3. Molecular Transport and Search386

A molecular setting in which first passage problems arise in biology is the387

so called “narrow escape problem”, which is simply a higher dimensional388

generalization of a high-barrier bond-rupturing problem. In cellular envi-389

ronments, numerous confined spaces arise in which molecules diffuse and390

react. Typically, a small section of the surface of the confined space is “re-391

active”, i.e., contains receptors that bind diffusing molecules, or is a hole392

that allows escape into a much larger volume. Examples include synaptic393
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clefts connecting neurons, nuclear envelopes and their associated nuclear394

pore complexes.395

Mathematically, the problem is described by Fig. 6(a) in which a particle396

diffuses in the domain Ω, bounded by ∂Ω. The boundary ∂Ω is made of two397

regions, a reflecting boundary ∂Ωr, and an absorbing one ∂Ωa, representing398

a hole or irreversibly binding surface. Asymptotic results for mean first399

passage times have been derived for ε = ∂Ωa/∂Ω ≪ 1. Since escaping is a400

rare event in this limit, we expect that the escape time will be insensitive401

to the starting position.402

Rc

Ωr

Ω1/dε
Ωa

Ω

εRcΩ

(c)(b)(a)

Fig. 6. (a) The canonical narrow escape problem. The mean time to escape u(x), as
a function of initial position x can be calculated in the asymptotic limit ε → 0. (b) An

escape problem where the escape hatch is at a cusp. (c) DNA target site search problem.
Search is facilitated by 1D diffusion along the DNA chain.

A number of asymptotic results for the mean escape time of particles403

in confined geometries have been determined by Singer, Schuss, and Hol-404

cman,45 as well as Ward, et al.46405

Figure 6(a) shows the diffusing particle in a volume Ω that can escape406

from a small hole of size ∼ εΩ1/3. If ε≪ 1, estimates of the mean first exit407

times have been derived using asymptotic analysis of equations of the form408

9 and conformal mapping. Specifically, in 2D and 3D, for escape from a409

small hole punched through a smooth boundary as shown in Fig. 6(a), we410

find411

⟨T ⟩ ≈ Ω

4πD
[log 1

ε
+O(1)] , 2D

⟨T ⟩ ∼ Ω2/3

εD
[1 + ε

π
log

1

ε
+ . . .] , 3D

(24)

Analogous results were obtained for the constriction escape problem, were a412
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narrow bottleneck is formed by circles or spheres of radius Rc approaching413

each other or revolved to form a three-dimensional bottleneck:414

⟨T ⟩ ≈ πΩ

2D
√
ε
, 2D

⟨T ⟩ ≈ Ω√
2RcD

1

ε3/2
, 3D.

(25)

Similar results have been derived for different geometries such as diffusion to415

the tip of a corner, and first passage to the end of a long neck. Note that all416

of these results are independent of the initial position of the particle within417

the volume Ω. Because escape is a rare event, the particle is allowed to418

reach an equilibrium distribution before escape events are drawn from this419

distribution. Since the time to reach the equilibrium distribution starting420

from a specific position is negligible compared to the mean escape time, it421

is a negligible factor.422

Another related and biologically important example of first passage is423

the search of molecules for their target sites, such as the binding of tran-424

scription factors, (sequence-specific DNA-binding proteins) to their corre-425

sponding binding sites along DNA47–51 (see Fig. 6(c)). These sites are often426

proximal to the genes they regulate, although in reality, numerous tran-427

scription factors form an initiation factor (including basal factors, RNA428

polymerase, coactivators, and activators) must assemble before transcrip-429

tion of a specific gene is initiated. The assembly of multiple particles to the430

binding site is also a heterogeneous self-assembly process. The search prob-431

lem has been of recent interest because experimental search times are much432

shorter than those estimated from simple 3D diffusion alone. The concept of433

facilitated diffusion, a mechanism whereby more than one transport path is434

available, has been applied in this setting. Moreover, since DNA is a linear,435

often compacted linear polymer, sections many bases away from the target436

may nonetheless be spatially proximal to it. These physical features have437

been incorporated into transport models to estimate the time it takes for a438

protein to bind its intended target along DNA of arclength L. The original439

phenomenological model assumes an effective absorbing sphere of radius λ440

around the target. where the length λ is a typical one-dimensional diffusion441

length along the contour of the DNA. A simple heuristic expression for the442

antennae effect on the search time was derived: ⟨T ⟩ ≈ (L/λ)(τ1+τ3), where443

τ1 and τ3 are the typical times spent in the DNA and in the bulk by a single444

enzyme. To obtain realistic search time using this expression requires that445
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the enzyme spend approximately an equal amount of time on DNA as in446

the bulk. However, in reality, enzymes spend an overwhelming majority of447

time associated with DNA. Moreover, this expression breaks down in cer-448

tain singular limits such as when the one-dimensional diffusivity D1 → 0,449

where τ1 →∞. An improved expression for the mean search time has been450

recently derived,52451

⟨T ⟩ ≈ Lr

2D3np

( r

λnad

+ λD3np

D1rnads

+ 2D3koff

konD1
√
np

) , (26)

where L is the arclength of the DNA, r is its effective thickness, np and452

nads are the number of bulk and adsorbed proteins, kon and koff are the453

attachment and detachment rates of protein (kon is defined using a reference454

protein concentration of one molecule per search volume). The typical455

arclength a protein stays within r of of the DNA before dissociating is456

λ ≈ r
√
konD1√

koffD3nads

(27)

The result (27) is able to resolve a number of quantitative kinetic issues.457

In particular, Cherstvy, Kolomeisky, and Korynyshev52 were able to find458

optimal binding energies that minimize the search time. Moreover, within459

a realistic parameter regime, the a reduction in search time relative to 3D460

diffusion alone can be obtained even for small D1/D3. Additional details461

and references are found in Kolomeisky.53462

The molecular search problem is also intimately related to the filament463

growth described in the previous section. During mitosis, the ends of grow-464

ing and shrinking microtubules emanating from centrosomal bodies form a465

party in search of kinetochores that hold together chromosomes.54,55 Us-466

ing the Green’s function approach of Bicout40 for a single microtubule as467

a stating point, Gopalakrishnan and Govindan56 found estimates for the468

search time to one kinetochore469

⟨T ⟩ ≈ e∆d

p
(1 + f−(1 − e−∆d)

v−∆
)(v+ + v−

∆v−v+
+ 1

f
) , (28)

where ∆ ≡ (v−f+ − v+f−)/(v+v−), and f is the frequency of nucleation of470

new microtubules from the centrosome that is located a distance d from the471

kinetochore target. The probability that any new microtubule is pointed in472

the right direction and within the capture cone is p≪ 1. The microtubule473
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velocities v± and flipping rates f± take on the same meaning as in Eq. 21474

used by Bicout to study the lifetime of a single microtubule. Equation 28475

holds only when the cell radius R ≫ d. This and related formulae allow476

for an easy determination of optimal parameters that minimize the mean477

search time. The topic of capture of multiple kinetochores associated with478

multiple chromosomes has also been treated by Wollman et al.55479

Besides the filament growth and search problems described in Section 2480

and above, two other examples of cellular transport involving first passage481

times have been recently discussed: optimal microtubule transport of virus482

material to a host cell nucleus,57 and localization of DNA damage repair483

enzymes to DNA lesions.58,59484

When a virus first enters a mammalian host cell its genetic material485

needs to be processed and transported into the host cell nucleus before pro-486

ductive infection can occur. The transport is often mediated my molecular487

motors that carry viral RNA or DNA towards the nucleus. This process488

was modeled by a unidirectional convection of cargo in multiple stages,489

while detachment of the motor and degradation of the viral cargo was im-490

plemented by a decay term. Nuclear entry probabilities and conditional491

first arrival times for cargo starting at the cell periphery and ending at492

the nucleus were calculated.57 These were found to depend on parameters493

describing convection, decay, and transformation in nontrivial ways which494

suggested new strategies for drug intervention of the transport process.495

Another biophysical example where finding first passage times is impor-496

tant is the localization of proteins to certain sites on DNA using an electron497

ejection mechanism.58 A redox mechanism for certain DNA repair enzymes498

to localize near DNA damage cites has been proposed,60–62 as depicted in499

Fig. 7(a). Here, a recently deposited repair enzyme oxidizes by releasing an500

electron that can either scatter or absorb at guanine bases and damaged501

DNA sites. The oxidized repair enzyme has a higher binding affinity to502

DNA. However, if the electron returns, the reduced enzyme will dissociate503

from the DNA.504

Within this overall mechanism, the problems of the first electron return505

time, conditioned on it returning arises. The model equation for this sub-506

problem is identical to Eq. 21 except that x, v±, and f± are the position,507

speeds, and flip rates of an electron along the DNA, and decay terms are508

added to describe the absorption of electrons “off” the DNA. The effective509

desorption rate was calculated from the probability and time of electron510

return. For repair enzymes that land far from electron absorbing lesions,511

and if other electron absorbing mechanisms are modest, return is likely and512
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Fig. 7. (a) A repair enzyme (hexagon) adsorbs onto a DNA which is initially populated
by guanine radicals (circled dots) with a density ρ. An electron is emitted to the left or
right with equal probability. The emitted electron has flip rates F±, rightward/leftward
velocity v± and decay rate M . (b) The one-sided Broadwell problem. An electron is
emitted from position X = 0 with probability 1 toward a guanine radical at X = L.
(c) The two-sided Broadwell problem. An enzyme is deposited between two guanine
radicals which are a distance L apart. Immediately after landing inside this segment,
an electron is emitted to the left or right with equal probability. (d) First passage time
to a boundary position y = L in the presence of multiple particles undergoing Langmuir
kinetics.

the enzyme will detach before it can diffuse sufficiently far. However, in513

a finite cell volume, the detached enzyme reenters the bulk pool and can514

reattach to the DNA, potentially closer to the lesion. Deposition near a515

lesion will likely be longer-lived because the ejected electron will be more516

likely absorbed rather than returning and dissociating the enzyme. In this517

way, Fok and Chou58,59 were able to find conditions under which the re-518

pair enzymes statistically localize near electron-absorbing damage sites on519

DNA.520

Finally, search problems can involve multiple diffusing particles. In this521

case, it is still reasonable to define the state-space in terms of the posi-522

tions {xj}, 1 ≤ j ≤ N for each of, say, N particles. In one-dimension, the523

first hitting time for any particle to reach an absorbing point of a line524

segment has been examined by Sokolov et al.63 who considered noninter-525

acting particles that diffuse and undergo Langmuir kinetics as shown in526

Fig. 7(b). In their study, the authors employ a mean-field assumption for527

Eq. 3 where the probability current J(t) is conditioned on no other particle528

having exited the interval previous to time t. The mean-field assumption529

arises by expressing this conditioning as Jconditioned(t) = JunconditionedS(t).530

The mean-field solution to the probability S(t) that no particle has hit the531

target site up to time t is532
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S(t) = J(t) exp [−∫ t

0
J(t′)dt′] , (29)

where J(t) is the unconditioned probability flux. Note that for this ap-533

proximation to yield physical results, we require534

lim
t→∞

tJ(t) > 0 (30)

in order for ∫ t

0
J(t′)dt′ to diverge and S(t)→ 0 as t →∞. In this problem,535

the flux was approximated by J(t) = −D∂yn(y, t)∣y=L, where n(y, t) is the536

particle density at position y that is found from537

∂n(x, t)
∂t

=D∂2n(x, t)
∂x2

− koffn + kon, (31)

where D is the one-dimensional diffusivity, and kon and koff are the parti-538

cle adsorption and desorption rates. Because of the implied infinite bulk539

reservoir (through rate kon) the mean-field flux satisfies Eq. 30. Even in540

the case koff = kon = 0, if an infinite system size is assumed, the condition in541

Eq. 30 is also satisfied. In fact, when the system is infinite, the mean-field542

assumption in Eq. 29 is exact.543

A more general approach that does not initially rely on the mean-544

field assumption, and can be used for finite-sized systems, is to note that545

if the particles are noninteracting, the survival probability S(t;{xi}) =546

∏N
i=1 S1(t;xi) is a product of the survival probabilities of each particle with547

initial position xi. We assume a finite segment and assume N total of par-548

ticles, including those in the bulk. In this way, we can compute the single549

particle probability flux J1(t) = −D∂yP1(y, t∣x,0)∣y=L, and use the exact550

relation551

S1(t;x) = −J1(t;x) =D∂yP1(y, t∣x,0)∣y=L. (32)

Using conservation of probability, ∫ ∞0 J1(t′;x)dt′ = 1 and, assuming the552

initial positions (including the possibility of being detached from the lattice)553

of all particles are identical, we find554

S(t;x) = [1 − ∫ t

0
J1(t′;x)dt′]N . (33)
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A direct comparison can be made with the mean field result in the case555

koff = kon = 0. Upon solving Eq. 31, we can find the the Laplace transform of556

the single-particle probability flux, assuming a uniformly distributed initial557

condition558

J̃1(s) = −D∂ñ(x, s)
∂x

∣
x=L

= tanhL
√
s/D

L
√
s/D . (34)

Upon inverse Laplace-transforming, and using the result in Eq. 33, we can559

find the exact survival probability. Note that this result is different from560

using NJ1(t) for J(t) in the mean-field approximation Eq. 29. Only in561

the infinite system size limit of L,N → ∞, but N/L = n0 constant do the562

mean-field and exact result S(t) = exp [−2n0

√
Dt/π] coincide. This can563

be shown mathematically by using L = N/n0 in Eq. 34, inverse Laplace564

transforming, substituting the result in Eq. 33, and taking the N → ∞565

limit. The discrepancy can be most easily seen by assuming all particles566

start at x and567

∂S(t;x)
∂t

= NSN−1
1 (t;x)∂S1(t;x)

∂t
= −NJ1(t;x)SN−1

1 (t;x). (35)

For noninteracting particles, the total annihilation flux J(t;x) =NJ1(t;x),568

and569

∂S(t;x)
∂t

= −J(t;x)SN−1
1 (t;x) = −J(t;x) S(t;x)

S1(t;x) . (36)

The relative effect of the extra factor S1(t;x) < 1 on S(t;x) decreases as570

N →∞571

Multiple particle first passage problems also illustrate the concept of572

order statistics. Although Eq. 33 provides the survival probability of a573

boundary untouched by any one of the diffusing particles, one might be574

interested in the statistics of the first, second, third, etc., particle to leave575

the interval, as well as the complete clearing time distribution. These order576

statistics and asymptotic expressions for the first two moments of the j577

exit times have been derived for independent particles diffusing in one-578

dimension64 and d−dimensions.65579
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4. Neuronal Spike Trains580

An important first passage problem within a living, functioning nerve cell,581

or group of nerve cells, also arises in the study of the timing of electrical582

spike trains. While modeling the stochastic dynamics of the membrane po-583

tential of a neuron requires taking into account a large number of detailed584

microscopic processes, such as nonlinear ion channel gating and membrane585

capacitance and leakage, the overall phenomena of spike trains can be ef-586

fectively described by a stochastic process with a threshold membrane po-587

tential V ∗. When the voltage of a neuron reaches V ∗, highly nonlinear588

processes take over, the voltage quickly spikes, and returns to a reset volt-589

age, as shown in Fig. 8(a). The interspike times are distributed according590

to the time that the transmembrane potential first reaches V ∗ after the591

previous resetting.592

V*
2

V2

V*
1

t

τ

A

B

C
V1

(a) (b)

DEV0

V(t)

εi

V*

Fig. 8. First exit times in simple neuronal firing models. (a) A schematic time trace of
the transmembrane potential showing voltage spikes triggered at V ∗ and resetting back to
V0. The subthreshold voltage dynamics is a stochastic processes with the interspike time
distribution measuring the statistics of the first passage time to the threshold voltage.
(b) Voltage trajectories for two coupled neurons, with transmembrane voltage V1 and
V2. If neuron 2 spikes first at point (B), V2 spikes and quickly resets to point (C). In
this example, neuron 1 spikes next at point (D), and V1 resets to point (E).

A simple one-dimensional stochastic model for predicting interspike593

times for a single neuron has been proposed by Stein.66 Here, the trans-594

membrane voltage is assumed to dissipate through a “leak” current, while595

other connected neurons impart noise to the neuron of interest. The model596

implicitly relies on a mean field assumption in the sense that none of the597

other neurons are affected by the behavior of the neuron in question. The598
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“bath” neurons provide random excitatory and inhibitory signals through599

unspecified physical connections with the isolated neuron. Starting from a600

stochastic differential equation (SDE) formulation, increments of the trans-601

membrane voltage V can be expressed as602

dV = −V
τ
dt + aedπe(re, t) − aidπi(ri, t), (37)

where ae and ai are the fixed amplitudes of the excitatory and inhibitory603

spikes feeding into the neuron, and πe(re, t) and πi(ri, t) are (possibly time-604

varying) unit excitatory and inhibitory Poisson processes of with rates re605

and ri, respectively. Suppose the voltage starts at V (t = 0) = X and that606

the threshold for spiking is V∗. The recursion equations for the moments607

Mn(X ;V∗) ≡ ⟨T n(X ;V∗)⟩ of the interspike times are67608

X

τ

dMn

dX
−reMn(X+ae)−riMn(X−ai)+(re+ri)Mn(X) = nMn−1(X), (38)

whereM0(X) ≡ 1. The mean interspike timesM1(X,V∗) ≡ ⟨T (X)⟩were an-609

alyzed by Cope and Tuckwell68 using asymptotic analysis for large negative610

reset voltages, and continuing the solutions to the threshold V∗. Assuming611

ae = ai, their result for the mean first time T (V ) to spiking starting from612

an initial voltage V can be expressed in the form613

⟨T (X,V∗)⟩ ≈ 1

re
[ 1

τre
log ( V

ae
) +C (V∗

ae
) + ∞∑

n=1

An (ae
V
)] , (39)

where the function C(V∗/ae) and the coefficients An were numerically found614

from recursion relations of a set of linear equations. However, note that the615

associated equation for the voltage probability density P (V, t∣V0,0)dV is616

∂P

∂t
= 1

τ

∂(V P )
∂V

+ reP (V − ae, t) + riP (V + ai, t) − (re + ri)P, (40)

where only arguments of P that are different from (V, t∣V0,0) are explic-617

itly written. A further simplification can be taken by assuming the noise618

amplitudes ae,i are small and Taylor expanding the probability densities to619

second order in ae,i (a “diffusion” approximation). The Fokker-Planck or620

Smoluchowski equation now takes the form621

∂P

∂t
= ∂

∂V
[(V

τ
− reae + riai)P ] + 1

2
(rea2e + ria2i ) ∂2P

∂V 2
, (41)
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with P (V, t∣V0,0) = δ(t) when V = V∗. This model for subthreshold neuron622

voltage is simply a first passage problem of the Ornstein-Uhlenbeck process623

that has been used to describe particle escape from a quadratic potential624

or rupturing of a harmonic bond. Recasting the problem using a Backward625

Kolmogorov Equation, the survival probability (the probability that no626

spike has occurred) as well as the moments of the interspike times can627

be expressed in terms of special functions.67 Tuckwell and Cope67 also628

provide a careful analysis of the accuracy of the diffusion approximation in629

approximating the “exact” results from Eq. 38. As expected the diffusion630

approximation is accurate in the limit of large excitatory and inhibitory631

spike noise rates re and ρi, and when the threshold voltage V∗ is far from632

the reset voltage.633

While one-dimensional models have been well-studied, higher dimen-634

sional models that include more mechanistic details of a single neuron635

have also been studied. In particular, stochastic first passage problems636

for Fitzhugh-Nagumo69 and Hodgkin-Huxley models70 have been devel-637

oped. These more complex models still focus on the voltage dynamics of a638

single neuron, with the voltage dynamics of other connected neurons sub-639

sumed into the “noise” felt by the neuron. Typically, the multiple neuron640

voltages can be simultaneously measured using multielectrode recordings,641

allowing for the quantification of the correlations between the spiking times642

of connected neurons. A first approach for modeling these higher dimen-643

sional data is to treat the stochastic dynamics of a small number of in-644

teracting neurons. For the two neuron problem illustrated in Fig. 8(b),645

the dynamics of the subthreshold voltages of neurons 1 and 2, V1 and V2,646

respectively, are independent of each other, and the probabilities factor-647

ize: P (V1, V2)dV1dV2 = P1(V1)P2(V2)dV1dV2. Interactions between the648

two neurons occur when either voltage spikes. A neuron connected to one649

that spikes can suffer a small voltage displacement. Rather than treating650

each neuron as subject to independent noise, the spiking time statistics of651

the neurons provide one component of the random noise of the other neu-652

ron. The full spiking time statistics must be computed self-consistently.653

Trajectories in the state space shown in Fig. 8(b) can be described moving654

along a torus with jumps in the orthogonal direction each time it crosses655

circumferentially or axially. Mathematically, the probability densities for656

the two subthreshold voltages obey657

∂Pi(Vi, t)
∂t

= ∂

∂Vi

[Ui(Vi)Pi] +Di

∂2Pi

∂V 2
i

, (42)
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where Di is the voltage diffusivity in neuron i. However, as soon as one Vi658

reaches V ∗i , not only does it reset, but Vj≠i → Vj≠i + δj is shifted by δj .659

5. Cellular and organismic population dynamics660

The simplest nonspatial deterministic population model, describing growth661

limitations due to a carrying-capacity, centers on the logistic equation662

dn(t)
dt

= rn(t)(1 − n(t)
K
) , (43)

where n(t) is the population density and K is the carrying-capacity. This663

deterministic model has stable fixed points at n = 0 and n = K. There are664

an infinite number of stochastic birth-death models than in the mean field665

limit reduce to Eq. 43.71 Nonetheless, all of these models requires at least666

one existing organism for proliferation to take take place. Therefore, these667

models contain an absorbing state at n = 0, where the population is extinct.668

Although the deterministic equation predicts, at long times, a permanent669

population n = K, a stochastic model predicts a finite extinction time T670

after which n(t ≥ T ) = 0. Approximations to this extinction time have been671

analyzed by Kessler and Shnerb72 using a WKB approximation and Assaf672

and Meerson73 using a generating function approach and properties of the673

associated Sturm-Liouville equation. Both methods use the approximation674

K ≫ 1, for which extinction is rare, and a near equilibrium number distribu-675

tion is first achieved before an extinction event occurs. This approximation676

is analogous to that of assuming “local thermodynamic equilibrium” (as677

opposed to kinetic theory) for transport calculations.74 The probability678

flux is then constructed from the rate of transport into an absorbing state679

from this near equilibrium density. The distribution of times for the rare680

extinction events are nearly exponential681

w(t)dt ≈ Γe−Γtdt, (44)

where to leading order the extinction rate is of the form682

Γ ∼K3/2e−K . (45)

Note that these results, as with those of the narrow escape problem (Section683

3), do not depend on the initial number n0 = n(t = 0) because equilibration684

to a quasi-stationary state occurs on a time scale much faster than Γ−1.685
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Other classic population models, such as models for cell geno-686

type/phenotype populations, Lotka-Volterra type models, and disease mod-687

els (such as SIS and SIR) have also been extended into the stochastic688

realm, and the corresponding exit times into absorbing configurations an-689

alyzed. Here, the total organism number is a random variable determined690

by the dynamical rules of the model, which may include “interacting” ef-691

fects such as carrying-capacity. The simplest model for heterogeneity in a692

birth-death process is the Wright-Fisher model or, in continuous-time, the693

Moran model. The latter is a stochastic model for two-competing species694

with numbers n1 and n2, where the total population n1 + n2 ≡ N is fixed.695

Since n2 = N − n1, the problem state-space reduces to one-dimension. The696

transition rules in the Moran model are defined by randomly selecting an in-697

dividual for annihilation, but instantaneously replacing it with either one of698

the same type (so that the system configuration does not change), or one of699

the opposite type. The transition probability in time interval dt for convert-700

ing an n1 individual to an n2 individual is thus r1n1n2dt = r1n1(N −n1)dt,701

while conversion of n2 to n1 occurs with probability r2n2(N − n2)dt. By702

defining P (n, t∣m,0) as the probability that there are n = n1 type 1 indi-703

viduals at time t, given that there were initially m type 1 individuals, the704

BKE is simply705

∂P (n, t∣m,0)
∂t

= m(N −m)[r1P (n, t∣m + 1,0) + r2P (n, t∣m − 1,0)
−(r1 + r2)P (n, t∣m,0)].

(46)

Note that n = 0 and n = N are absorbing states corresponding to the706

entire population being fixed to either type 1 or type 2 individuals. Upon707

summing ∑N−1
n=1 P (n, t∣m,0) ≡ S(t;m), we can find the corresponding BKE708

for the probability of survival against fixation at either n = 0 or n = N . The709

mean time to fixation can then be found from inverting the matrix equation710

m(N −m) [r1⟨T (m + 1)⟩ + r2⟨T (m − 1)⟩ − (r1 + r2)⟨T (m)⟩] = −1, (47)

with ⟨T (0)⟩ = ⟨T (N)⟩ = 0, to give the well-known result711

⟨T (m)⟩ = N m∑
k=1

N −m
N − k +N

N−1∑
k=m+1

m

k
. (48)

If spontaneous mutations are included in the model, there is strictly no712

fixation since the states n = 0,N are no longer absorbing. Many general-713



May 10, 2013 21:9 World Scientific Review Volume - 9in x 6in review9

First Passage Problems in Biology 29

izations of the Moran model have been investigated, including extensions714

to include more species, fluctuating population sizes, and time-dependent715

parameters such as the rates r1(t), r2(t).75 These extended models are typ-716

ically not amenable to closed form solutions such as Eq. 48. Nonetheless,717

it is often possible to employ asymptotic analysis in the large N limit and718

derive a corresponding PDE for either the probability density or its gener-719

ating function. For example, if one assumes N → ∞ and takes x = m/N720

one finds the diffusion approximation for the BKE721

∂S(t;x)
∂t

=Deffx(1 − x)∂2S(t;x)
∂x2

, 0 ≤ x ≤ 1. (49)

Here, we have introduced Deff = r1N2 = r2N2. The corresponding PDEs for722

more complex Moran-type models are often amenable to analysis, making723

the Moran model one of the paradigmatic theories in population biology and724

ecology. However, recall from Section 1 the discrepancy between the first725

passage times derived from discrete and corresponding continuum theories.6726

For Eq. 49, there is no selection or mutation giving rise to a convection term,727

so the corresponding mean first passage time asymptotically approaches the728

discrete result in Eq. 48 as N →∞. However, care should be exercised for729

more complex models that include effective convection terms.730

Higher dimensional generalizations of these types of discrete models can731

also be readily applied to problems in cell population biology such as cancer732

modeling and stem-cell proliferation. When total the population size con-733

straint is relaxed, a linear, multiple state model shares many mathematical734

features with the Zero-Range Process (ZRP),76 as shown in Fig. 9. The735

multiple sites in such a ZRP might represent the number of cells in a tissue736

at a particular mutation stage as the cells progress towards a cancerous737

state. Of interest is the first time that a certain number of cells arrive at738

the final, “fully cancerous” state a.739

Besides multi-hit models of cancer and evolution, the Zero-range pro-740

cess can also be adapted to model aging in a stem-cell population. Con-741

sider stem-cells that have a limited number of divisions due to shortening742

telomeres, ends of their DNA that are shortened at each division. Without743

telomerase to rebuild these ends, cells will generally be programmed for744

death. As shown in Fig. 9(a), our model assumes that each division leads745

to one stem-cell and one differentiated cell, both aged by one unit (or both746

aIn other contexts, such as individual survival probabilities against death from cancer
are called Kaplan-Meier curves which represent the fraction of a population alive as a
function of time after the initial diagnosis of cancer
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Fig. 9. Schematic of a reduced model of stem-cell aging. (a) Asymmetric division of
aging stem-cells. The circles represent stem cells, while the squares represent differen-
tiated cells. The numerical index represents the age of the cell and is assumed to be
inversely related to the telomere length. (b). A lattice representation of the stem-cell
aging model. The rate of asymmetric differentiation are shown as pk, while the death
rates µk at each age k are not indicated.

with shortened telomeres). Since all cell divisions are asymmetric, yielding747

one stem-cell and one differentiated cell, one only needs to keep track of748

the number of stem-cells. The forward master equation for the process has749

been derived in Shargel, D’Orsogna, and Chou,77 as well as the associated750

equation for the generating function:751

∂G

∂t
= −

N−1∑
j=1

(µj + pj)zj ∂G
∂zj
+

N∑
j=1

µj

∂G

∂zj
+

N−1∑
j=1

pjzj
∂G

∂zj
− µNzN

∂G

∂zN
, (50)

where752

G(z1,⋯, zN ; t) =∑
nj

P (n1,⋯, nN ; t)zn1

1 ⋯znN

N (51)

and P ({n}; t) is the probability that there are exactly nk stem-cells of age k753

at time t. If we do not assume an immigration of new stem-cells defined as754

having age k = 1 (as was done in Shargel, D’Orsogna, and Chou77), Eq. 50755

can be expressed in the form dG/dt = 0 and solved using the method of char-756

acteristics. The vector of characteristic trajectories Z = (z1, z2, . . . , zN)T757

can be found by solving Ż = PZ −M, where758
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1 + p1 −p1 0 ⋯ 0

0 µ2 + p2 −p2 ⋯ 0

0 ⋯ µj + pj −pj 0

0 ⋯ 0 µN−1 + pN−1 −pN−1
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 0 µN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(52)

and M = (µ1,⋯, µj ,⋯, µN )T . For an initial condition of one stem-cell of759

age k = 1, these trajectories can be inverted and expressed in terms of760

the initial values zi(t = 0), which form the independent variable in the761

generating function:762

G(Z; t) = z1e−∆1t +
N∑
i=2

⎡⎢⎢⎢⎣zi(−1)
i+1 (i−1∏

ℓ=1

pℓ) i−1∑
j=1

e−∆jt − e−∆it

∏i
k≠j(∆j −∆k)

⎤⎥⎥⎥⎦ + (53)

1 − e−∆1t +
N∑
i=2

⎡⎢⎢⎢⎣(−1)
i ( i∏

ℓ=1

pℓ) i−1∑
j=1

e−∆jt − e−∆it

∏i
k≠j(∆j −∆k)

⎤⎥⎥⎥⎦ .
where ∆j ≡ pj + µj , for 1 ≤ j ≤ N − 1 and ∆N = µN . From the generating763

function in Eq. 53 we can derive the probability P (n1 = 0, ..., nj = 1, ...nN =764

0; t) that a certain age by the descendants of single cell can be found at a765

given age j:766

P (n1 = 1, n2 = 0,⋯, nN = 0) = e−∆1t, (54)

while for all other ages 1 < j <N we find767

P (0,⋯, nj = 1,⋯,0; t) = (−1)j (j−1∏
ℓ=1

pℓ) j−1∑
k=1

e−∆jt − e−∆kt

∏j
i≠k(∆k −∆i)

= (pt)j−1(j − 1)!e−(µ+p)t,
(55)

where the last equality holds in the case where all pi = p and µi = µ are age-768

independent. Finally, the probability for complete extinction of the lineage769

is given by770

P ({n} = 0; t) = 1 − e−∆1t +
N∑
i=2

⎡⎢⎢⎢⎣(−1)
i (i−1∏

ℓ=1

pℓ) i−1∑
j=1

e−∆jt − e−∆it

∏i
k≠j(∆j −∆k)

⎤⎥⎥⎥⎦ . (56)
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It can be easily verified that the sum of the probabilities in Eqs. 54, 55 and771

56 add to unity, and that P (n1 = 0,⋯, nN = 0; t →∞) → 1, indicating that772

a single cell will eventually age and that its lineage will go extinct with773

certainty.774

From these probabilities we can construct the probability that the oldest775

age reached by a lineage is k:776

Qk = ∫
∞

0
[pk−1P (0, ..., nk−1 = 1, ...,0; t) − pkP (0, ..., nk = 1, ...,0; t)]dt.

(57)

Equation 57 is derived by considering the difference between the probability777

flux into age k and the flux out of age k into age k + 1 (excluding death).778

The time-integrated result Qk is thus the probability that the lineage died779

at age k. For the constant rate case pi = p and µi = µ, we find explicitly780

Q1 = µ

µ + p , Qk = µpk−1

(µ + p)k , and QN = pN−1

(µ + p)N−1 . (58)

From these probabilities, we can define the first passage time to age k781

conditioned on the system reaching at least age k. Since the decay at all782

ages preceding k are “interfering” absorbing states, we can use Jk
1 (t) =783

pP (0, ..., nk−1 = 1, ...,0; t) in Eq. 10 to find784

w1(t∣k) ≡ J1(t∣k) = (µ + p)((µ + p)t)k−2(k − 2)! e−(µ+p)t, k ≥ 2, (59)

with a corresponding conditional mean arrival time to age k ⟨T1(k)⟩ =785 (k − 1)/(µ+ p). Note that if the decay rate µ is high, the conditional mean786

arrival time is small because only fast trajectories will survive to state k.787

Our simple stem-cell aging model assumes all divisions are asymmetric788

at all ages. Nonetheless, this model serves as an illustrative example of789

an application of a simple Markov process to cell biology. Indeed, since790

aging only increases, our model can also be represented by a simple asym-791

metric, decaying random walk of a single “particle” in one-dimension, with792

the position of the particle representing the age of the single stem-cell in793

the system at any given time. The more complicated approach we have794

illustrated above allows our model to be generalized to include effects of795

multiple initial stem-cells and symmetric stem-cell division, as well as a796

more complete analysis of differentiated cell populations.797
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6. Summary798

We have surveyed only a few mathematical and physical models wherein799

first passage problems play a central role in the quantitative understand-800

ing of biological observations and experiments. These applications span all801

scales from molecular to cellular to populations. Most application thus far802

have been concerned with low dimensional models with few degrees of free-803

dom. As measurements improve and more complex systems can be quan-804

titively studied, first passage time problems should become increasingly805

important for in higher dimensional settings where additional analytic and806

numerical insights will be desired. Furthermore, first passage problems pro-807

vide a new framework with which to fit experimental data, model biological808

processes, and develop inverse problems of model determination.809
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