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Abstract. Many transport processes in ecology, physics, and biochemistry can be described
by the average time to first find a site or exit a region, starting from an initial position. Typical
mathematical treatments are based on formulations that allow for various diffusive forms and ge-
ometries but where only initial and final positions are taken into account. Here we develop a general
theory for the mean first passage time (MFPT) for velocity jump processes. For random walkers,
both position and velocity are tracked and the resulting Fokker--Planck equation takes the form of
a kinetic transport equation. Starting from the forward and backward formulations we derive a
general elliptic integro-PDE for the MFPT of a random walker starting at a given location with a
given velocity. We focus on two scenarios that are relevant to biological modeling; the diffusive case
and the anisotropic case. For the anisotropic case we also perform a parabolic scaling, leading to
a well-known anisotropic MFPT equation. To illustrate the results we consider a two-dimensional
circular domain under radial symmetry, where the MFPT equations can be solved explicitly. Fur-
thermore, we consider the MFPT of a random walker in an ecological habitat that is perturbed by
linear features, such as wolf movement in a forest habitat that is crossed by seismic lines.
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1. Introduction. A key issue in the study of species movement is determining
the time necessary for individuals to find a target, such as a food source, shelter, or
mate, for the first time [38, 58, 66]. In ecology, the time required for an animal to first
reach (or exit from) a region can be recorded via satellite tracking and the data used
to understand how the environment, road layout, seasonality, climate, and the pres-
ence of other species affect habitat selection, foraging, and migration patterns. This
information may be useful in ecosystem management [24, 41, 42, 47]. Within cellular
biology, identifying the time to first reach a specific site is also of primary interest,
since first arrivals may trigger irreversible on-site biochemical transformations that
indicate the onset of disease, the initiation of repair, or the completion of extracellular
signaling [5, 25, 40, 44, 61]. Examples include the first time a T-cell finds an anti-
gen presenting cell during immune response [49], the first time a fibroblast reaches a
wound to initiate healing [3], and the first time a base excision repair enzyme reaches
a lesion on a DNA strand via charge transport [26]. The first arrival time to a target
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is often a proxy for the efficiency of the search, and a common goal is to expedite,
hinder, or otherwise control the search process itself [1, 6, 19, 45]. For example, in
receptor-mediated viral entry a virus can enter a cell only after binding to a critical
number of surface receptors, as in the case of HIV, the SARS coronavirus, and hep-
atitis C [6, 28, 39]. The timing of gene expression also depends on the first time a
specific set of intracellular proteins reaches a threshold concentration [27, 63]. Related
questions arise in chemistry, material, and polymer science, and pertain to identifying
the first assembly time of a cluster starting from individual subunits, determining how
fast protein, filaments, or other molecular aggregates reach a predetermined size and
how fast bacteriophage and viral capsids are assembled [17, 23, 43, 70, 72].

First arrival time distributions can be quite broad, especially if outliers or rare
events are possible. For some state space trajectories finding the target may occur
quickly, for others the search may take longer, and in some cases it may never be
completed, being halted by degradation or adsorption into trapped states. A useful
quantity is the mean first passage time (MFPT), the average of all first arrival times of
the underlying stochastic process [62]. Note that since the MFPT is an average over
all completion times, it is enough for one trajectory to never reach the target site or
threshold for it to diverge. In transport phenomena the MFPT depends on dimension-
ality, geometry, the type of motion involved, and the heterogeneity of the environment;
in threshold phenomena it depends on the reversibility of events that drive the process,
cooperativity, and ordering effects [21]. Multiple theories have been developed to eval-
uate the MFPT in a variety of spatio-temporal scales and geometries, mostly (but not
all) in the context of diffusion-type models [12, 13, 29, 36, 38, 46, 60]. The most com-
mon forms of movement are Brownian motion, random walks, Levy flights, ballistic
motion, and their combinations to represent run-and-tumble motility in bacteria, for
example, or to model alternating periods of movement and rest [4, 50, 54].

However, an MFPT theory for kinetic equations is missing. These types of equa-
tions were introduced in biological modeling in the 1980s and have become a powerful
tool in the study of ecological and cell movement [2, 31, 33, 34, 56, 58, 59]. They are
particularly useful when movement characteristics of single individuals can be mea-
sured, such as the velocities, turning rates, and directional preferences of migrating
cells or animals. Recent advances in microscopy and communication systems have
facilitated the merging of theoretical results with actual data, as it is now possible
to observe molecular or cellular motion at high resolution and to follow in detail the
movement of animals over large distances or underwater. It is therefore of great inter-
est to develop an MFPT theory for kinetic equations, as first passage computations
may serve as a bridge between theoretic estimates that depend on microscopic fea-
tures of the transport process and the average timescales observed experimentally or
in the field.

Here we are interested in animal or cellular species that orient their movement
along directional features of the environment (see Figure 1). We derive expressions
for the mean first arrival time to a target as a function of the initial position and
velocity. Broadly speaking, since directional motion is anisotropic, the mean first
arrival time will depend on the microscopic features of the transport process, such as
turning rates, initial speed, and direction of movement. For the most general case we
are not able to find a closed-form equation for the MFPT. However, for diffusive and
anisotropic transport we are able to write integral equations of the first kind for the
MFPT starting from an initial position and velocity. In special cases, for example for
anisotropic, symmetric motion under the bimodal von Mises distribution, this general
expression leads to a differential equation for the MFPT that can be solved analytically
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80 HILLEN, D'ORSOGNA, MANTOOTH, AND LINDSAY

Fig. 1. Schematic of anisotropic transport in a bounded planar region \Omega \in \BbbR 2 in the presence
of one-dimensional substructures. Diffusion is one-dimensional along the linear features and two-
dimensional away from them. This schematic can represent, for example, organelle transport within
a two-dimensional cell, grown on a flat surface, whereby particles transition from performing linear
random walks along microtubules and/or other filaments emanating from the nucleus to undergoing
two-dimensional planar diffusion in the cytoplasm. Similarly, it can represent animal motion in a
given environment with roads or other one-dimensional features that direct the animal's movement.
Due to the stochastic nature of the transport process, each individual trajectory starting at a given
position x \in \Omega and with a given velocity v will reach the target area, shown in a red circle, at a
specific time. Our goal is to determine the mean first arrival time to the target. We can model
this transport scenario using a kinetic transport equation with turning kernel given by the bimodal
von Mises distribution in a circular geometry and assuming that motion is biased along the radial
direction.

and that can be readily applied to glioma movement [20, 22, 34, 37, 57, 68], sea turtle
orientation [58], and hill topping of butterflies [56]. Our main results are contained
in (36) and (42); the analytically solvable variant of (42) for the special case of the
bimodal von Mises distribution is shown in (60).

The rest of this paper is organized as follows. In section 2 we introduce kinetic
transport equations for biological modeling, and we categorize them as of Boltzmann
type, diffusive type, and anisotropic type. We consider the forward and backward
formulations, define the survival probability, and write its dynamics using the back-
ward equation. We thus derive the MFPT equation for the expected exit time \Theta (x, v)
of a random walker starting at (x, v) for the diffusive type in section 3 and for the
anisotropic case in section 4. The main results are given in formulas (36) and (42),
respectively. The parabolic scaling in section 5 allows us to consider the limit in cases
of macroscopic spatio-temporal scales. In this scaling we derive an anisotropic MFPT
for the mean exit time \Theta (x, v) = T (x), which no longer depends on the initial velocity
as shown in (60). In section 6 we apply our results to various cases. For anisotropic
movement in a radially symmetric circular domain we evaluate the MFPT to reach
given boundaries in the disk and in the annulus. A second application considers ori-
ented movement in a habitat that is criss-crossed by linear features. This scenario has
been used to explain wolf movement in thed presence of seismic lines in a forest land-
scape in Northern Canada in [47]. Here we show how the analysis carried out in [47]
fits within our more general framework. We close with section 7, in which we relate our
results to existing methods and open the door to interesting forthcoming problems.

2. Transport equations. Transport equations describe the time evolution of a
particle density p(x, v, t) at time t\geq 0, location x\in \Omega \subset \BbbR n, and velocity v \in V \subset \BbbR n.
For simplicity we take V = [\sigma 1, \sigma 2]\times \BbbS n - 1, where the speeds \sigma 1, \sigma 2 obey 0\leq \sigma 1 \leq \sigma 2 <
\infty . The time evolution of p(x, v, t) is described by the forward transport equation

pt(x, v, t) + v \cdot \nabla xp(x, v, t) =\scrL p(x, v, t) ,(1)
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where the subscript t denotes the partial time derivative, the subscript x denotes the
spatial derivative, and \scrL is the turning integral operator that describes the specific
directional changes of the particles. A typical form for \scrL is

\scrL \varphi (x, v, t) = - \mu (x)\varphi (x, v, t) + \mu (x)

\int 
V

K(x, v, v\prime )\varphi (x, v\prime , t)dv\prime .(2)

The first term on the right-hand side of (2) is the rate at which particles at position x
change their velocity from v to any other velocity v\prime \in V ; the second term is the rate
at which particles at location x switch into velocity v from any other velocity v\prime . The
quantity \mu (x) is the turning rate, and its inverse is typically identified as the mean run
time at position x. Although general formulations that include spatially dependent
turning rates \mu (x) arise in many applications [8, 9, 10, 11, 71], for simplicity we assume
henceforth that \mu (x) = \mu is spatially uniform. The turning kernel K(x, v, v\prime ) denotes
the probability density of switching velocity from v\prime to v, given that a turn occurs
at location x. The properties of K(x, v, v\prime ) are key to the analysis presented in this
work. The minimal assumptions on K are

K(x, v, v\prime )\geq 0, K(x, \cdot , \cdot )\in L2(V \times V ),

\int 
V

K(x, v, v\prime )dv= 1.(3)

The second condition implies that the integral operator with kernel K is a compact
Hilbert--Schmidt operator in L2(V ) [32], and the last assumption ensures that during
velocity changes no particle is lost. Among the various possible forms of K(x, v, v\prime )
are those that allow one to represent collisions between particles, periods of straight
motion alternating with abrupt directional changes (run-and-tumble models), and
general jump velocity processes where a particle's velocity undergoes a series of dis-
crete changes [14, 18, 33, 52, 59].

Kinetic transport equations such as (1) have been used in many applications,
from physics to biology to social sciences. They have a long history in the study of
the thermodynamics of gases, which include the effects of collisions between particles
[16]. In general formulations of the Boltzmann equation, the turning processes are
described by a nonlinear interaction kernel and the set of velocities V is unbounded.
A linear kernel such as (2) arises as linearization of the collision kernel at a Maxwellian
equilibrium distribution [16]. An important difference with respect to biological ap-
plications is that the Boltzmann equation conserves mass, momentum, and energy;
i.e., the kernel of the operator \scrL is five dimensional. In biological applications there is
only one conserved quantity, mass, and only in cases where there is no particle birth
or death. Our focus is on biological applications, and in this context it has proven
useful to distinguish between the isotropic diffusive and the anisotropic subclasses of
transport equations.

The isotropic diffusive transport equation is characterized by a turning inte-
gral operator \scrL whose null space consists of functions that are constant in velocity.
This means that at equilibrium there are no preferred directions and that over long
timescales the dynamics becomes diffusion-like. Full theories of the isotropic diffusive
transport equations have been developed and applied to biological processes such as
chemotaxis [33, 52]. We derive the MFPT equation for isotropic diffusive transport
in section 3.

The anisotropic transport equation is typically employed to describe the dynamics
of particles that have strong orientation guidance from the underlying environment.
Mathematically, this occurs via a nontrivial one-dimensional kernel of the turning
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integral operator \scrL . The MFPT equation for anisotropic transport is discussed in
section 3.

More specifically, for anisotropic transport it is assumed that the turning kernel
K does not depend on the incoming velocity v\prime , i.e.,

K(x, v, v\prime ) = q(x, v),(4)

where q \geq 0. This assumption may seem restrictive, since many species would show
some form of persistence in movement direction and it is entirely possible to keep
the dependence on v\prime in anisotropic movement as well. However, it has been shown
in many applications that the simplifying assumption (4) is extremely useful in the
modellng process and it can be justified in many cases, for example, when particles
change direction using a well-defined underlying network structure. The anisotropic
framework was developed in [31] and extended in [55]. To build q(x, v) we assume
that a distribution of preferred directions \~q(x, \theta ) is given for every spatial position x,
where \theta \in \BbbS n - 1 is a unit vector. We impose

\~q(x, \theta )\geq 0 and

\int 
\BbbS n - 1

\~q(x, \theta )d\theta = 1

and assume q(x, v) is proportional to \~q(x, \^v), where \^v= v/\| v\| denotes the correspond-
ing unit vector. Since \~q is a probability distribution on \BbbS n - 1, and q is a probability
distribution on the set of velocities V , we need to normalize appropriately, leading to

q(x, v) =
\~q(x, \^v)

\omega 
, with \omega \equiv 

\int 
V

\~q(x, \^v)dv=

\left\{   
1

n
(\sigma n

2  - \sigma n
1 ) for \sigma 1 <\sigma 2;

\sigma n - 1 for \sigma 1 = \sigma 2 = \sigma .
(5)

We refer to the rescaled quantity q(x, v) as the directional distribution of the underly-
ing environment, although the true directional distribution is \~q(x, \^v). For this choice
of turning kernel, (2) simplifies to

\scrL \varphi (v) = \mu (x)(q(x, v) \^\varphi  - \varphi (v)), with \^\varphi \equiv 
\int 
V

\varphi (v\prime )dv\prime .

To summarize, the anisotropic transport equation has the form

pt + v \cdot \nabla p= \mu (x)(q(x, v)\^p - p), with \^p\equiv 
\int 
V

p(t, x, v\prime )dv\prime .(6)

For the following analysis it is useful to consider two statistical quantities: the
expectation \BbbE q(x) and the variance-covariance matrix \BbbV q(x) of q(x, v) on V :

\BbbE q(x) =

\int 
V

vq(x, v)dv, \BbbV q(x) =

\int 
V

(v - \BbbE q(x))(v - \BbbE q(x))
T q(x, v)dv.(7)

We now discuss a few cases of directional distributions q(x, v) by assuming constant
particle speed \sigma , i.e., V = \sigma \BbbS n - 1. The extension to V = [\sigma 1, \sigma 2]\times \BbbS n - 1 is straightfor-
ward, but it introduces some extra parameters that need to be carried through the
integrals. The different cases are the following.

Uniform distribution: The simplest case arises if there is no directional bias at all.
This, of course, is also the most fundamental type of motion in diffusive transport.
We write

\~q(x, \theta ) =
1

| \BbbS n - 1| 
, q(x, v) =

1

\omega | \BbbS n - 1| 
,
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leading to

\BbbE q(x) = 0, \BbbV q(x) =
\sigma 2

\omega n
\BbbI ,

where \BbbI denotes the identity matrix. Note that this case falls under the isotropic
diffusive case as well.

Strict alignment: This case is most useful when the underlying medium favors
motion along a given direction \gamma (x)\in \BbbS n - 1, such as, for example, along a fiber, tissue,
microtubule, or track. One can write

\~q(x, \theta ) = \delta (\gamma (x) - \theta ), q(x, v) =
1

\omega 
\delta (\gamma (x) - \^v),

so that

\BbbE q(x) = \sigma \gamma (x), \BbbV q(x) = 0.

Von Mises distribution: The von Mises distribution is the analogue of the normal
distribution on the unit sphere \BbbS n - 1. Strictly speaking, it is called the von Mises
distribution only on \BbbS 1. In higher dimensions it is called the Fisher distribution. In
two dimensions the von Mises distribution is [35]

\~q(x, \theta ) =
1

2\pi I0(k(x))
ek(x)\gamma (x)\cdot \theta ,(8)

where k(x)\geq 0 is a measure of concentration of the distribution, \gamma (x) \in \BbbS 1 is a given
preferred direction, and I0(k(x)) is the modified Bessel function of the first kind of
order 0. As k(x) \rightarrow 0, the von Mises distribution becomes uniform (see Uniform
distribution above), whereas for k(x)\rightarrow \infty it becomes singular (see Strict alignment
above)i. The expectation and variance of the two-dimensional von Mises distribution
are [35]

\BbbE q(x) = \sigma 
I1(k(x))

I0(k(x))
\gamma (x),(9a)

\BbbV q(x) = \sigma 2

\Biggl[ 
1

2

\biggl( 
1 - I2(k(x))

I0(k(x))

\biggr) 
\BbbI 2 +

\Biggl( 
I2(k(x))

I0(k(x))
 - 
\biggl( 
I1(k(x))

I0(k(x))

\biggr) 2
\Biggr) 
\gamma (x)\gamma (x)T

\Biggr] 
,(9b)

where I0, I1, I2 denote the modified Bessel functions of the first kind of orders 0,1,
and 2, respectively.

Bimodal von Mises distribution: In many cases q is symmetric, for example when
guided motion along a two-dimensional fiber or a track has the same probability along
each direction. In this case q(x, - v) = q(x, v) and the bimodal von Mises distribution
can be written as the average of two single direction terms

\~q(x, \theta ) =
1

4\pi I0(k(x))

\Bigl( 
ek(x)\gamma (x)\cdot \theta + e - k(x)\gamma (x)\cdot \theta 

\Bigr) 
,(10)

with expectation and variance

\BbbE q(x) = 0 ,(11a)

\BbbV q(x) = \sigma 2

\biggl[ 
1

2

\biggl( 
1 - I2(k(x))

I0(k(x))

\biggr) 
\BbbI 2 +

I2(k(x))

I0(k(x))
\gamma (x)\gamma (x)T

\biggr] 
.(11b)

Note that instead of using a dyadic product \gamma \gamma T some authors prefer to use a
tensor product \gamma \otimes \gamma . We use the two interchangeably in this paper.
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2.1. Backward transport equation. The Kolmogorov backward transport
equation is the foundation from which the mean first passage time equation is de-
rived. For clarity we distinguish initial location and velocity (x, v) from terminal
location and velocity (\=x, \=v). Thus p(\=x, \=v, t| x, v) denotes the probability density of a
random walker starting at location x \in \Omega \subset \BbbR n with initial velocity v \in V to be at
location \=x with velocity \=v \in V at time t\geq 0. Let us rewrite the forward equation

pt + v \cdot \nabla \=xp= - \mu p+ \mu 

\int 
V

K(\=x, \=v, \=v\prime )p(\=x, \=v\prime , t| x, v)d\=v\prime ,(12)

where the gradient subscript allows us to distinguish between the spatial derivative
with respect to the current location (\nabla \=x) and the derivative with respect to the
starting location (\nabla without index). The model (12) can be seen as a forward equation
of the stochastic process of a velocity jump process [51]. To derive the corresponding
Kolmogorov backward equation, we consider the formal adjoint. We write (12) as

pt(\=x, \=v, t| x, v) =\scrA p(\=x, \=v, t| x, v).

The operator \scrA acts on functions \varphi (\=x, \=v) of the variables (\=x, \=v) in \Omega \times V and is
defined as

\scrA \varphi (\=x, \=v) = - \=v \cdot \nabla \=x\varphi (\=x, \=v) - \mu \varphi (\=x, \=v) + \mu 

\int 
V

K(\=x, \=v, \=v\prime )\varphi (\=x, \=v\prime )d\=v\prime .

To proceed, we utilize the Chapman--Kolmogorov equation [69] under the assumption
of time translational invariance. Since we assumed that the turning kernel K(x, v, v\prime )
and the turning rate \mu are time independent, the assumption of time translational
invariance is satisfied. We thus write

p(\=x, \=v, t| x, v) =
\int 
\Omega 

\int 
V

p(\=x, \=v, \tau | x\prime , v\prime )p(x\prime , v\prime , t - \tau | x, v)dv\prime dx\prime (13)

for any \tau \geq 0. Taking the time derivative on both sides we find

pt(\=x, \=v, t| x, v) =
\int 
\Omega 

\int 
V

p(\=x, \=v, \tau | x1, v1)\scrA p(x\prime , v\prime , t - \tau | x, v)dv\prime dx\prime 

=

\int 
V

\int 
\Omega 

\scrA \ast p(\=x, \=v, \tau | x\prime , v\prime )p(x\prime , v\prime , t - \tau | x, v)dx\prime dv\prime ,

where the operator \scrA \ast is the adjoint of \scrA and acts on functions of the variables (x\prime , v\prime )
in \Omega \times V . Notice that if we let \tau \rightarrow t, then lim\tau \rightarrow t p(x

\prime , v\prime , t - \tau | x, v) = p(x\prime , v\prime ,0| x, v) =
\delta (x\prime  - x)\delta (v\prime  - v), leading to

pt(\=x, \=v, t| x, v) =\scrA \ast p(\=x, \=v, t| x, v),(14)

where the adjoint \scrA \ast acts on functions of the (x, v) variables in \Omega \times V . This is the
Kolmogorov backward equation. To find \scrA \ast explicitly, given \scrA on \Omega \times V , we consider
two functions \phi (x, v),\psi (x, v) that satisfy the Dirichlet boundary condition

\phi (x, v) =\psi (x, v) = 0 on (x, v)\in \partial \Omega \times V.(15)

Equation (15) implies that particles are absorbed on the boundary of \Omega . In principle,
the exit boundary may be any positive measure subset of \partial \Omega ; for example, one may
want to study the exit from a given region of the boundary or stipulate that certain
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portions are reflecting. For simplicity, we assume the exit boundary coincides with
\partial \Omega . In the next section, we will define the ``survival probability"" that a particle
remains in \Omega at time t and we will use \scrA \ast to study its dynamics. As particles cannot
survive at the exit boundary, the survival probability must be zero on \partial \Omega . Thus, since
obeying Dirichlet boundary conditions is a requirement for the survival probability,
we impose that \scrA \ast also acts on functions that obey (15). In this way, the survival
probability is naturally part of the functional domain of \scrA \ast . We can now calculate\int 

\Omega 

\int 
V

\phi \scrA \psi dv dx= - 
\int 
\Omega 

\int 
V

\phi (x, v)(v \cdot \nabla x)\psi (x, v)dv dx

+

\int 
\Omega 

\int 
V

\phi (x, v)

\biggl( 
 - \mu \psi (x, v) + \mu 

\int 
V

K(x, v, v\prime )\psi (x, v\prime )dv\prime 
\biggr) 
dv dx

=

\int 
V

\int 
\Omega 

\psi (x, v)(v \cdot \nabla x)\phi (x, v)dxdv - \mu 

\int 
V

\int 
\Omega 

\phi (x, v)\psi (x, v)dxdv

+ \mu 

\int 
V

\int 
\Omega 

\biggl( \int 
V

K(x, v, v\prime )\phi (x, v)dv\prime 
\biggr) 
\psi (x, v\prime )dxdv.

The last identity follows from integration by parts and from the Dirichlet boundary
condition \phi (x, v) = \psi (x, v) = 0 for x \in \partial \Omega . If we now denote the adjoint integral
kernel as

K\ast (x, v, v\prime ) =K(x, v\prime , v),

then \scrA \ast , the adjoint operator of \scrA , is given by

\scrA \ast \phi (x, v) = (v \cdot \nabla )\phi (x, v) - \mu \phi (x, v) + \mu 

\int 
V

K\ast (x, v, v\prime )\phi (x, v\prime )dv\prime .

The Kolmogorov backward equation in explicit form becomes

pt  - v \cdot \nabla p= - \mu p+ \mu 

\int 
V

K\ast (x, v, v\prime )p(\=x, \=v, t| x, v\prime )dv\prime .(16)

This equation was previously derived by Stroock [67]. We can write (16) to mirror
(1) by introducing the turning operator \scrL \ast ,

pt(t, x, v) - v \cdot \nabla p(t, x, v) =\scrL \ast p(t, x, v),(17)

where \scrL \ast =\scrA \ast  - (v \cdot \nabla ) is given by

\scrL \ast \varphi (t, x, v) = - \mu \varphi (t, x, v) + \mu 

\int 
V

K\ast (x, v, v\prime )\varphi (t, x, v\prime )dv\prime .(18)

It is straightforward to show that \scrL \ast is the formal adjoint of \scrL defined in (2).

2.2. The survival probability. To derive an expression for the mean first pas-
sage time of the transport process, we first introduce the survival probability s(x, v, t).
This quantity is defined as the probability that having started from an initial position
x \in \Omega with velocity v \in V the final position \=x and velocity \=v at time t remain in the
same domain \Omega \times V . We thus assume p(\=x, \=v, t= 0| x, v) = \delta (\=x - x)\delta (\=v - v) with x\in \Omega 
and v \in V and define

s(x, v, t) =

\int 
V

\int 
\Omega 

p(\=x, \=v, t| x, v)d\=xd\=v \forall (x, v)\in \Omega \times V.(19)
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In principle the domain for the forward and backward equations can be different,
as one can study the exit time from a subset of the domain on which the forward
equation is valid. Here, for simplicity, we assume they are the same and utilize
absorbing boundary conditions on \Omega . Thus, we set s(x, v, t) = 0 for any x \in \partial \Omega to
indicate that a random walker starting at the boundary of \Omega does not survive at any
time. Furthermore, the initial condition p(\=x, \=v, t = 0| x, v) = \delta (\=x - x)\delta (\=v  - v) implies
that s(x, v, t= 0) = 1 for all x\in \Omega . We also define the probability flux j(x, v, t) as

j(x, v, t) =

\int 
V

\int 
\Omega 

v p(\=x, \=v, t| x, v)d\=xd\=v= vs(x, v, t).(20)

We now integrate the backward equation (16) over the final position \=x\in \Omega and \=v \in V
to find a transport equation for s(x, v, t),

st  - v \cdot \nabla s= - \mu s+ \mu 

\int 
V

K\ast (x, v, v\prime )s(x, v\prime , t)dv\prime .(21)

Given the above definitions of s(x, v, t) and j(x, v, t), we note that one is most often
concerned with the survival probability, and the mean first passage time, of reaching
the boundary \partial \Omega regardless of the velocity. Hence we introduce the marginal survival
probability S(x, t) defined as

S(x, t) =
1

| V | 

\int 
V

s(x, v, t)dv ,(22)

where | V | =
\int 
V
dv. The corresponding flux is

J(x, t) =
1

| V | 

\int 
V

j(x, v, t)dv.(23)

Note that S(x, t) remains a probability and S(x, t = 0) = 1. The flux J(x, t) still
carries units of a velocity. For later use we collect the initial conditions here:

p(\=x, \=v,0| x, v) = \delta (\=x - x)\delta (\=v - v), s(x, v,0) = 1, S(x,0) = 1.(24)

To study the dynamics of S and J , we must specify the properties of the turning
kernel K(x, v, v\prime ) and of its adjoint K\ast (x, v, v\prime ); we do so in the two cases below for
diffusive and anisotropic transport.

2.2.1. The mean first passage time. The quantity of interest in our analysis is
\Theta (x, v), the expected survival time before leaving \Omega given the random walker started
at position x with velocity v. Thus, through \Theta (x, v) we keep the initial velocity
explicit in the definition of the MFPT. As s(x, v, t) denotes the survival probability,
1  - s(x, v, t) denotes the probability of exit, which has the density  - st(x, v, t). We
calculate via integration by parts that

\Theta (x, v) :=  - 
\int \infty 

0

tst(x, v, t)dt=

\int \infty 

0

s(x, v, t)dt.(25)

We can directly integrate the backward equation (21) over time and impose that
particles start at position x with velocity v, and that none of them survive forever,

s(x, v,0) = 1, lim
t\rightarrow \infty 

s(x, v, t) = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



MEAN FIRST PASSAGE TIMES FOR TRANSPORT EQUATIONS 87

to obtain an integro-differential equation for the expected survival time \Theta (x, v). We
find that

 - 1 = v \cdot \nabla \Theta (x, v) - \mu \Theta (x, v) + \mu 

\int 
V

K\ast (x, v, v\prime )\Theta (x, v\prime )dv\prime =\scrA \ast \Theta (x, v).(26)

This equation will become useful later. Here we continue our analysis of the survival
probability S(x, t) and its flux J(x, t) for several special cases.

2.2.2. Higher moments. Here we give a brief description of how to derive
recursive expressions for the moments \Theta m(x, v) of the survival probability s(x, v, t)
for m\geq 1. For m\geq 0, the m-moment is defined as

\Theta m(x, v) := - 
\int \infty 

0

tmst(x, v, t)dt=m

\int \infty 

0

tm - 1s(x, v, t)dt,(27)

where the last equality was obtained using integration by parts and the assumption
that s(x, v, t) decays fast enough at infinity:

lim
t\rightarrow \infty 

tm - 1s(x, v, t) = 0.

Then \Theta 0(x, v) = 1 denotes the total probability and the first moment \Theta 1(x, v) =
\Theta (x, v) is the mean first passage time as defined in (25). To find the higher moments
for m\geq 2, we follow a process similar to that leading to (26). First, we multiply the
backward equation (21) by tm - 1 and then integrate over t \in (0,\infty ). Using the same
initial conditions as above, we find that

 - m\Theta m - 1(x, v) = v \cdot \nabla \Theta m(x, v) - \mu \Theta m(x, v) + \mu 

\int 
V

K\ast (x, v, v\prime )\Theta m(x, v\prime )dv\prime (28)

=\scrA \ast \Theta m(x, v).

Upon setting m= 1 in (28) we recover the expression for the expected survival time
\Theta (x, v) shown in (26).

3. MFPT for isotropic diffusive transport. We now write the equation for
the mean first passage time under the isotropic diffusive transport regime as discussed
above. In addition to (3) we assume symmetry and particle conservation of the turning
kernel K:

K(x, v, v\prime ) =K(x, v, - v\prime ) and

\int 
V

K(x, v, v\prime )dv\prime = 1.(29)

For the adjoint operator this implies

K\ast (x, v, v\prime ) =K\ast (x, - v, v\prime ) and

\int 
V

K\ast (x, v, v\prime )dv= 1.(30)

We use assumption (30) and integrate (21) for the survival probability s(x, v, t) over
velocity space to obtain a conservation law

St  - \nabla \cdot J = 0.(31)

We also multiply the backward equation (21) by v, integrate over velocity space, and
divide by the volume | V | to obtain

Jt  - 
1

| V | 

\int 
V

v(v \cdot \nabla )sdv= - \mu J +
\mu 

| V | 

\int 
V

\int 
V

vK\ast (x, v, v\prime )s(x, v\prime , t)dv\prime dv.(32)
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Since assumption (30) on the symmetry of K implies that\int 
V

vK\ast (x, v, v\prime )dv= 0,

the last integral vanishes. Finally, using tensor notation for a dyadic product of two
vectors we write

Jt  - 
1

| V | 
\nabla \cdot 
\int 
V

v\otimes v s(x, v, t)dv= - \mu J.(33)

Equations (31) and (33) do not not lead to a closed system of equations for S and
J . We will discuss the closure problem in more detail later. For now, we identify the
complement of S(x, t), the function F (x, t) = 1 - S(x, t), as the exit probability from
\Omega . Its density is given by

f(x, t) = Ft(x, t) = - St(x, t).

The expected survival time T (x) before exiting \Omega given the random walker started at
the initial position x\in \Omega can be now alcomputed through integration by parts as

T (x)\equiv 
\int \infty 

0

tf(x, t)dt=

\int \infty 

0

S(x, t)dt.

We refer to T (x) as the mean first passage time. Integrating (31) for the dynamics
of S, and (32) for the dynamics of J , both over time, and using the initial conditions
(24), we obtain the following:

 - 1 =\nabla \cdot 
\int 
Jdt,(34a)

0 =
1

| V | 
\nabla \cdot 
\int 
V

\int \infty 

0

v\otimes v s(x, v, t)dtdv - \mu 

\int 
Jdt.(34b)

In the above calculation, we have assumed that p(\=x, \=v, t \rightarrow \infty | x, v) = 0 since all
particles eventually exit the domain and are ``captured"" by the boundary due to the
Dirichlet boundary condition. In addition, we have applied that

\int 
V
vdv= 0 due to the

symmetry of the V domain. We can now take the divergence of (34b) and substitute
the resulting expression in (34a) to obtain

 - 1 =
1

\mu | V | 
\nabla \otimes \nabla :

\int 
V

\int \infty 

0

v\otimes v s(x, v, t)dtdv.(35)

Here we have used the colon notation : to denote the tensor convolution of two vectors
a and b as

a\otimes a : b\otimes b=

n\sum 
i,j=1

aiajbibj .

We would like to obtain an equation for the exit time \Theta (s, v), defined in (25). Inte-
grating (25) over V we obtain

T (x) =
1

| V | 

\int 
V

\Theta (x, v)dv.

Using (35) we find the MFPT equation for the case of isotropic diffusive transport:

 - 1 =
1

\mu | V | 
\nabla \otimes \nabla :

\int 
V

v\otimes v\Theta (x, v)dv.(36)
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3.1. Example. We assume constant speed so that V = \sigma \BbbS n - 1 and rotational
symmetry in the initial velocity dependence of s(x, v, t) = s(x, t) so that\int 

V

v\otimes v s(x, v, t)dv=
\sigma 2

n
\BbbI 
\int 
V

s(x, t)dv,

where \BbbI denotes the identity matrix. Substituting this expression in (36) and noting
that \nabla \otimes \nabla : \BbbI =\Delta , we find that

 - 1 =
\sigma 2

n\mu 
\Delta T (x).(37)

This equation has the well-known form of an MFPT for a diffusion process in an
n-dimensional system with diffusion constant Dn = \sigma 2

n\mu . This coefficient also agrees
with the parabolic limit of the transport equation, as carried out in several papers;
see, for example, [33].

4. MFPT for anisotropic transport. We now derive the equation for the
mean first passage time under anisotropic transport, where directional cues from
the environment bias particle movement along one or more select directions. For
simplicity, in addition to (3) we also assume that K(x, v, v\prime ) = q(x, v) is independent
of the incoming velocity v\prime and that q(x, v) is symmetric in v. We summarize the
properties of K(x, v, v\prime ) and q(x, v) below:

K(x, v, v\prime ) = q(x, v), i.e., K\ast (x, v, v\prime ) = q(x, v\prime ),(38a)

q\geq 0, q \in L2(V ),

\int 
V

q(x, v)dv= 1, q(x, - v) = q(x, v).(38b)

This choice of K(x, v, v\prime ) does not satisfy the conditions listed in (30), since\int 
V

K\ast (x, v, v\prime )dv= q(x, v\prime )| V | ,

and the right-hand side equals 1 if and only if q(x, v\prime ) = 1
| V | . Hence, the results shown

in section 3 for diffusive transport apply only to the simple case of a uniform turning
kernel but are not valid for a general, nonuniform q(x, v). To find an expression for
the MFPT under anisotropic transport, we start with the backward equation (21) for
the survival probability s(x, v, t), adapting it to the case at hand, and write

st  - v \cdot \nabla s= - \mu s+ \mu 

\int 
V

q(x, v\prime )s(x, v\prime , t)dv\prime .(39)

We now multiply (39) by q(x, v) and integrate over the velocity domain to obtain\int 
V

q(x, v)st(x, v, t)dv - 
\int 
V

vq(x, v) \cdot \nabla s(x, v, t)dv

= - \mu 
\int 
V

q(x, v)s(x, v, t)dv+ \mu 

\int 
V

\int 
V

q(x, v)q(x, v\prime )s(x, v\prime , t)dv\prime dv= 0.

The last identity is derived from the property that q(x, v) integrates to unity in velocity
space. To simplify the notation we introduce the following two quantities:

n(x, t) =

\int 
V

q(x, v)s(x, v, t)dv and w(x, t) =

\int 
V

vq(x, v) \cdot \nabla s(x, v, t)dv,
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which leads to

nt  - w= 0.(40)

We now derive a differential equation for w, including dependencies only where ex-
plicitly needed:

wt =

\int 
V

vq \cdot \nabla st dv=
\int 
V

vq \cdot \nabla 
\biggl( 
v \cdot \nabla s - \mu s+ \mu 

\int 
V

q(x, v\prime )s(x, v\prime , t)dv\prime 
\biggr) 
dv

=

\int 
V

q (v\otimes v :\nabla \otimes \nabla )sdv - \mu 

\int 
V

vq \cdot \nabla sdv

+ \mu 

\int 
V

vq(x, v)dv \cdot \nabla 
\int 
V

q(x, v\prime )s(x, v\prime , t)dv\prime .

Since
\int 
V
vq(x, v)dv= 0 by the symmetry assumption in (38b), the last term vanishes,

yielding

wt =

\int 
V

q(x, v)(v\otimes v :\nabla \otimes \nabla )s(x, v, t)dv - \mu w.(41)

We now integrate (40) and (41) over time and obtain boundary terms. Since no
particle survives forever, i.e., s(x, v, t\rightarrow \infty ) = 0, we can write n(x,\infty ) =w(x,\infty ) = 0.
Moreover, the initial condition s(x, v,0) = 1 yields n(x,0) = 1 and w(x,0) = 0. Using
these identities we find that

 - 1 =

\int \infty 

0

w(x, t)dt,

0 =

\int 
V

\int \infty 

0

q(x, v)(v\otimes v :\nabla \otimes \nabla )s(x, v, t)dtdv - \mu 

\int \infty 

0

w(x, t)dt,

which combine to yield

 - 1 =
1

\mu 

\int 
V

\int \infty 

0

q(x, v)(v\otimes v :\nabla \otimes \nabla )s(x, v, t)dv dt.

We can rewrite this expression by invoking \Theta (x, v), the MFPT where both the initial
condition and the velocity are specified, to finally obtain the MFPT equation for
anisotropic transport:

 - 1 =
1

\mu 

\int 
V

q(x, v)(v\otimes v :\nabla \otimes \nabla )\Theta (x, v)dv.(42)

There is an alternative way to derive the above equation (42) directly from (26).
The calculations are essentially the same as performed above, but they are carried
out in a different order. Still, we find it useful to sketch this derivation here to keep
a record of the intermediate steps.

We still set K(x, v, v\prime ) = q(x, v) and assume (38a) and (38b) to obtain from (26)
that

 - 1 = v \cdot \nabla \Theta (x, v) - \mu \Theta (x, v) + \mu 

\int 
V

q(x, v\prime )\Theta (x, v\prime )dv\prime .(43)

We multiply (43) by q(x, v) and integrate over V to find that

 - 1 =

\int 
V

q(x, v)v \cdot \nabla \Theta (x, v) dv.(44)
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Then we take the spatial gradient of (43) to get

0 = v \cdot \nabla \otimes \nabla \Theta (x, v) - \mu \nabla \Theta (x, v) + \mu \nabla 
\int 
V

q(x, v\prime )\Theta (x, v\prime )dv\prime .(45)

Multiplying (45) by vq(x, v) and integrating over V yields\int 
V

q(x, v)v \cdot \nabla \Theta (x, v) =
1

\mu 

\int 
V

q(x, v) (v\otimes v :\nabla \otimes \nabla )\Theta (x, v)dv,(46)

where we used the symmetry of q such that
\int 
vqdv = 0. Finally, we use (46) in (44)

to obtain the main result (42).
Equation (42) is an interesting anisotropic integro-differential equation for the

mean first exit time \Theta (x, v) when starting at (x, v). In this general setting, we cannot
derive a simple equation for the mean exit time T (x), since the initial velocity cannot
be neglected. Also, we cannot simply integrate (42) over velocity space, since the ve-
locity and derivative terms are mixed. This issue is similar to a moment closure prob-
lem, which is well known and well studied in the theory of transport equations [15, 30].
In order to proceed we must find an approximation for the q(x, v)-weighted second
moment of \Theta (x, v). One way to accomplish this is to consider parabolic scaling, which
leads to an equation for T (x) alone. We do this in the next section.

5. Parabolic scaling for anisotropic transport. Parabolic scaling is a well-
known technique to study transport processes on macroscopic time and space scales.
While the scaling of the forward equation is standard, the corresponding scaling for the
backward equation is a new result to the best of the authors' knowledge. Here, for con-
sistency, we present both cases, forward and backward. For simplicity we assume that
K(x, v, v\prime ) = q(x, v) = q(x, - v) is a symmetric, anisotropic directional distribution that
does not depend on the incoming velocity v\prime and whose properties are listed in (38b).
We now collect some functional analytical properties of K(x, v, v\prime ) = q(x, v). First, for
the forward transport equation in (1) we write the turning operator \scrL defined via the
integral representation (2) as a mapping on L2(V ) so that for a test function \varphi (x, v)

\scrL \varphi (x, v) = - \mu \varphi (x, v) + \mu q(x, v) \^\varphi (x), \^\varphi (x) =

\int 
V

\varphi (x, v\prime )dv\prime .

Similarly, for the backward Kolmogorov equation in (17) the turning operator \scrL \ast can
be written as

\scrL \ast \varphi (x, v) = - \mu \varphi (x, v) + \mu 

\int 
V

q(x, v\prime )\varphi (x, v\prime )dv\prime .

To perform the parabolic scaling we need to find the null spaces (kernel) and the
pseudoinverses of the \scrL ,\scrL \ast operators on the complement of their null spaces. We
collect these properties in the following lemmas.

Lemma 5.1. The kernels of the operators \scrL and \scrL \ast are the one-dimensional spaces
spanned by the functions q(x, v) and 1, respectively:

ker\scrL = \langle q(x, v)\rangle , ker\scrL \ast = \langle 1\rangle .

Proof. To find the kernel of \scrL we seek functions \phi (x, v) that satisfy \scrL \phi = 0. This
condition is

 - \mu \phi (x, v) + \mu q(x, v)\^\phi (x) = 0, \^\phi (x)\equiv 
\int 
V

\phi (x, v)dv.
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To solve the above equations consistently, \phi (x, v) must be proportional to q(x, v). To
find the kernel of the adjoint \scrL \ast we must instead solve \scrL \ast \phi = 0, or

 - \mu \phi (x, v) + \mu 

\int 
V

q(x, v\prime )\phi (x, v\prime )dv\prime = 0,

implying that \phi (x, v) is uniform in v, i.e., \phi (x, v) = \phi (x).

Note that elements in \langle 1\rangle \bot carry no mass since

0 = (\psi ,1) =

\int 
V

\psi (v)dv for all \psi \in \langle 1\rangle \bot .

Lemma 5.2. For the \scrL operator consider the inverse of the generating function
q(x, v) as a weight in L2(V ) and restrict \scrL to the domain of functions that are L2(V )
when weighted by q - 1, which we denote by L2

q - 1(V ). A similar construct for \scrL \ast using
the corresponding generating function 1 does not alter the domain of \scrL \ast . Then, the
pseudo-inverse operators acting on

\scrL :L2
q - 1(V ) \mapsto \rightarrow L2

q - 1(V ), \scrL \ast :L2(V ) \mapsto \rightarrow L2(V )

are, respectively, the multiplication operators\bigl( 
\scrL | \langle q\rangle \bot 

\bigr)  - 1
= - 1

\mu 
,

\bigl( 
\scrL \ast | \langle 1\rangle \bot 

\bigr)  - 1
= - 1

\mu 
.

Proof. To find \scrL  - 1 the pseudoinverse of \scrL on (ker\scrL )\bot , the orthogonal comple-
ment of ker\scrL , we consider a given \phi \in ker\scrL \bot and find that \psi \in ker\scrL \bot , which solves
\scrL \psi = \phi , so that \psi =\scrL  - 1\phi . The equation \scrL \psi = \phi reads as

 - \mu \psi (x, v) + \mu q(x, v) \^\psi (x) = \phi (x, v).(47)

The assumption that \psi \in \langle q\rangle \bot in L2
q - 1(V ) implies that

0 = (\psi , q)q - 1 =

\int 
V

\psi (x, v)q(x, v)
dv

q(x, v)
= \^\psi (x)2,

where (\psi , q)q - 1 denotes the inner product of \psi (x, v) and q(x, v) in V space using
q(x, v) - 1 as a weight function. Hence (47) is solved as

\psi (x, v) = - 1

\mu 
\phi (x, v).

Similarly, for \scrL \ast we consider \phi \in ker\scrL \ast \bot and find that \psi \in ker\scrL \ast \bot , which solves
\scrL \ast \psi = \phi . We find that

 - \mu \psi (x, v) + \mu 

\int 
V

q(x, v\prime )\psi (x, v\prime )dv\prime = \phi (x, v).(48)

We integrate this equation over V and use the fact that \phi ,\psi \in \langle 1\rangle \bot to find that

0 + \mu | V | 
\int 
V

q(x, v\prime )\psi (x, v\prime )dv\prime = 0.

Hence (48) is solved as

\psi (x, v) = - 1

\mu 
\phi (x, v),

implying that
\bigl( 
\scrL | \langle q\rangle \bot 

\bigr)  - 1
= - 1/\mu .

We use these results in the next section, where we derive expressions for the mean
first passage time through parabolic scaling in the case of anisotropic transport where
K(x, v, v\prime ) = q(x, v) and under symmetry conditions q(x, v) = q(x, - v).
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5.1. Parabolic scaling of the forward transport equation. As mentioned
above, parabolic scaling of the forward transport equation is well established in the
literature [7, 34]. In the anisotropic case the forward transport equation (6) for
p(x, v, t) reads as

pt + v \cdot \nabla p=\scrL p.(49)

We now introduce a small parameter \varepsilon > 0 and rescale macroscopic time and space
through the parabolic scaling variables \tau and \xi defined as

\tau = \varepsilon 2t, \xi = \varepsilon x.(50)

The forward transport equation now becomes

\varepsilon 2p\tau + \varepsilon v \cdot \nabla \xi p=\scrL p,(51)

where p(\xi , v, \tau ) is expressed in terms of the rescaled quantities. Note that \scrL contains
no derivatives, so the formal expression for \scrL p in (51) is unaffected by the scaling
procedure. We now expand (51) in powers of \varepsilon ,

p(\xi , v, \tau ) = p0(\xi , v, \tau ) + \varepsilon p1(\xi , v, \tau ) + \varepsilon 2p2(\xi , v, \tau ) + \cdot \cdot \cdot ,(52)

where the functions p0, p1, p2, . . . are to be determined by comparing orders of \varepsilon in
(51). Results are as follows:

\varepsilon 0: Collecting the zeroth-order in \varepsilon terms in (51) leads to

0 =\scrL p0.

Hence, p0 \in ker\scrL by Lemma 5.1 and

p0(\xi , v, \tau ) = \^p0(\xi , \tau )q(\xi , v), \^p0(\xi , \tau ) =

\int 
V

p0(\xi , v, \tau )dv.(53)

\varepsilon 1: Collecting the first-order in \varepsilon terms in (51) leads to

v \cdot \nabla \xi p0 =\scrL p1.

This equation can be solved if the left-hand side is in the orthogonal comple-
ment of the kernel of \scrL in L2

q - 1(V ). A direct calculation yields

(v \cdot \nabla \xi p0, q)q - 1 \equiv 
\int 
V

v \cdot \nabla \xi \^p0(\xi , \tau )q(\xi , v)
dv

q(\xi , v)

=\nabla \xi \cdot 
\int 
V

vq(\xi , v)dv \^p0(\xi , \tau ) = 0,

where (v \cdot \nabla \xi p0, q)q - 1 denotes the inner product of the two arguments in
V space using q - 1 as a weight function. The last identity comes from the
symmetry condition q(x, v) = q(x, - v), which implies q(\xi , v) = q(\xi , - v) and
thus

\int 
V
vq(\xi , v)dv= 0. Then, according to Lemma 5.2

p1(\xi , v, \tau ) = - 1

\mu 
v \cdot \nabla \xi (\^p0(\xi , \tau )q(\xi , v)) .(54)
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\varepsilon 2: Collecting the second-order in \varepsilon terms in (51) leads to

p0\tau + v \cdot \nabla \xi p1 =\scrL p2.

We integrate this equation over V and use (53) and (54) to find that\int 
V

\^p0\tau (\xi , \tau )q(\xi , v)dv+

\int 
V

v \cdot \nabla \xi 

\biggl( 
 - 1

\mu 
v \cdot \nabla \xi (\^p0(\xi , \tau )q(\xi , v))

\biggr) 
dv= 0,

which we can write using tensor notation as

\^p0\tau =
1

\mu 
\nabla \xi \otimes \nabla \xi :

\biggl[ 
\^p0(\tau , \xi )

\int 
V

v\otimes vq(\xi , v)dv

\biggr] 
.

Finally, the parabolic limit of the forward transport equation can be written
through the introduction of a diffusion tensor \BbbD (\xi ) as follows:

\^p0\tau (\xi , \tau ) =\nabla \xi \otimes \nabla \xi : [\BbbD (\xi )\^p0(\xi , \tau )] , with \BbbD (\xi ) =
1

\mu 

\int 
V

v\otimes vq(\xi , v)dv.(55)

Equation (55) is a well-studied anisotropic diffusion equation [64]. The mean
first passage time \tau (\xi ) to the boundary of the spatial domain can be obtained
by introducing the survival probability as shown in section 2.2 and following
the same procedures described here. We do this below.

5.2. Parabolic scaling of the backward Kolmogorov equation. Under
anisotropic, symmetric transport, the backward Kolmogorov equation for the survival
probability s(x, v, t) in (39) can be written as

st  - v \cdot \nabla s=\scrL \ast s.

Similarly to the forward case, we rescale space and time as in (50) to obtain

\varepsilon 2s\tau  - \varepsilon v \cdot \nabla \xi s=\scrL \ast s.(56)

We can now expand s(\xi , v, \tau ) in powers of \varepsilon so that

s(\xi , v, \tau ) = s0(\xi , v, \tau ) + \varepsilon s1(\xi , v, \tau ) + \varepsilon 2s2(\xi , v, \tau ) + \cdot \cdot \cdot 

and compare orders of \varepsilon as follows.
\varepsilon 0: Collecting the zeroth-order in \varepsilon terms in (56) leads to

0 =\scrL \ast s0.

Hence s0 \in ker\scrL \ast by Lemma 5.1 and is independent of v:

s0(\xi , v, \tau ) = s0(\xi , \tau ).(57)

\varepsilon 1: Collecting the first-order in \varepsilon terms in (56) leads to

 - v \cdot \nabla \xi s0 =\scrL \ast s1.

We check the solvability condition on \langle 1\rangle \bot :

(v \cdot \nabla \xi s0,1) =\nabla \xi \cdot 
\int 
V

vdv s0(\xi , \tau ) = 0.

The last identity arises from the assumption of symmetry in the velocity space
V so that if v \in V , then also  - v \in V . Lemma 5.2 implies
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s1(\xi , v, \tau ) =
1

\mu 
v \cdot \nabla \xi s0(\xi , \tau ).(58)

\varepsilon 2: Collecting the second-order in \varepsilon terms in (56) leads to

s0\tau  - v \cdot \nabla \xi s1 =\scrL \ast s2 = - \mu s2 + \mu 

\int 
V

q(\xi , v\prime )s2(\xi , v
\prime , \tau )dv\prime .

We multiply this equation by q(\xi , v), integrate over V , and express s1 through
(58) to find that

s0\tau  - 
\int 
V

q(\xi , v)v \cdot \nabla \xi 

\biggl( 
1

\mu 
v \cdot \nabla \xi s0(\xi , \tau )

\biggr) 
dv

= - \mu 
\int 
V

q(\xi , v)s2(\xi , v, t)dv+ \mu 

\int 
V

q(\xi , v)dv

\int 
V

q(\xi , v\prime )s2(\xi , v
\prime \tau )dv\prime = 0,

where we use the condition
\int 
V
q(x, v)dv= 1, which also implies

\int 
V
q(\xi , v)dv=

1. The above identity can be rewritten as

s0\tau =
1

\mu 

\int 
V

q(\xi , v)v\otimes vdv :\nabla \xi \otimes \nabla \xi s0.

Finally, utilizing the same diffusion tensor as in (55) we write

s0\tau =\BbbD (\xi ) :\nabla \xi \otimes \nabla \xi s0,

which is the parabolic limit of the backward equation (39). If we integrate
this equation over time from 0 to \infty and use the fact that s0(\xi ,0) = 1, then
we obtain the MFPT equation for \tau (\xi ):

 - 1 =\BbbD (\xi ) :\nabla \xi \otimes \nabla \xi \tau (\xi ).(59)

Shifting back to the original spatio-temporal coordinates (x, t) and using T (x) =
\varepsilon 2\tau (\varepsilon x), we find an expression for the mean first passage time T (x) that is independent
of the velocity v:

 - 1 =\BbbD (x) :\nabla \otimes \nabla T (x), \BbbD (x) =
1

\mu 

\int 
V

v\otimes v q(x, v)dv.(60)

Note that if \Theta is independent of v, this equation follows directly from (42).

6. Applications. To illustrate our results we consider several examples of an-
isotropic oriented movement in two-dimensional regions. We begin with the bimodal
von Mises distribution introduced in (10) with n= 2 to express the orientation biases
of the random walker. Since in this case V = \sigma \BbbS n - 1 = \sigma \BbbS 1, and \omega = \sigma n - 1 = \sigma from
(5), we write

q(x, v) =
\~q(x, \theta )

\sigma 
=

1

4\pi \sigma I0(k(x))

\Bigl( 
ek(x)\gamma (x)\cdot \theta + e - k(x)\gamma (x)\cdot \theta )

\Bigr) 
=

cosh(k(x)\gamma (x) \cdot \theta )
2\pi \sigma I0(k(x))

,

(61)

where k(x) \geq 0 is a measure of concentration and the unit vector \gamma (x) defines the
preferred orientation at location x \in \Omega . The bimodal von Mises distribution includes
both directions \pm \gamma (x) to allow for symmetric movement along the preferred orienta-
tion. The functions Ij(k(x)) are modified Bessel functions of the first kind of order
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j \geq 0. Note that if k(x) = 0, then q(x, v) becomes the uniform distribution on a
circle q(x, v) = 1/(2\pi \sigma ) and that if we let k(x) \rightarrow \infty , the distribution displays two
\delta -singularities, one at \theta = \gamma (x) and one at \theta = - \gamma (x).

In this scenario, where particles move at fixed speed \sigma and assuming the turning
kernel biases motion along a preferred orientation \gamma (x) that does not depend on
incoming velocity, we assume that we are close to the parabolic limit, \Theta (x, v) = T (x),
and use (60). The diffusion tensor \BbbD (x) that appears in (60) can be calculated using
(11), leading to [35]

\BbbD (x) =
\sigma 2

2\mu 

\biggl( 
1 - I2(k(x))

I0(k(x))

\biggr) 
\BbbI +

\sigma 2

\mu 

I2(k(x))

I0(k(x))
\gamma (x)\gamma T (x).(62)

In the following examples, we show solutions of (60) using various choices for the
domain \Omega and the fields \gamma (x) and k(x) in (62).

6.1. MFPT for anisotropic transport on a circular domain. Bica, Hillen,
and Painter [7] studied anisotropic transport on a two-dimensional disk where the
bimodal von Mises distribution was used to describe biological particles moving in
radially symmetric environments. Applications include intracellular transport along
microtubules, cancer cell migration along collagen fibres, or animals aggregating near
watering holes. Here we similarly assume a two-dimensional circular domain \Omega with
radius R0 and employ planar polar coordinates (r,\varphi ). We now need to specify k(x),
\gamma (x). For most of this section we let the parameter of concentration be uniform,
k(x) = k\geq 0; however, we keep general k(x) in our analytical derivations. We also as-
sume that the preferred orientation \gamma (x) is either radial, i.e., as if along the spokes of
a bicycle wheel, or circular, along the direction perpendicular to the radial direction,
following concentric circles inside the disk. If we now write the radial unit vector as
\^x = x/| | x| | = (cos\varphi , sin\varphi ) and its orthogonal as \^x\bot = ( - sin\varphi , cos\varphi ), then \gamma (x) can
be represented as

\gamma (x) =

\Biggl\{ 
\^x for radial orientation,

\^x\bot for circular orientation.
(63)

These two choices can be combined into a common notation by introducing the an-
isotropy indicator \alpha (x) as follows [7]:

\BbbD (x) =
\sigma 2

\mu 

\left\{     
1

2
(1 - \alpha (x))\BbbI + \alpha (x)\^x\^xT , x \not = 0,

1

2
\BbbI , x= 0,

(64a)

where \alpha (x) for general k(x) is given by

\alpha (x) =
I2(k(x))

I0(k(x))
\times 

\Biggl\{ 
+1 for radial orientation,

 - 1 for circular orientation.
(64b)

If we set k(x) = k, then \alpha (x) = \alpha is also uniform, and since I2(k)\leq I0(k) for all k\geq 0,
it is also true that \alpha \in ( - 1,1). Note that the uniform distribution that arises from
setting k(x) = 0 in (61) corresponds to \alpha (x) = 0 due to (64b) and the properties of
the Bessel functions. The limit k(x)\rightarrow \infty , which leads to a singularity along \pm \gamma (x) as
discussed above, results in \alpha (x)\rightarrow 1 for radial orientation and \alpha (x)\rightarrow  - 1 for circular
orientation. This implies that motion is singularly biased along the radial direction
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for \alpha \rightarrow 1 - and along the tangential direction for \alpha \rightarrow  - 1+. Finally, in (64a) \BbbI is the
identity matrix and the tensor product \^x\^xT is given by

\^x\^xT =

\biggl( 
cos2\varphi sin\varphi cos\varphi 

sin\varphi cos\varphi sin2\varphi 

\biggr) 
.

We can now solve the anisotropic mean first passage time equation (60). Given the
radial symmetry, we use the notation T\alpha (r) to indicate the MFPT for the random
walker starting at r under the anisotropy indicator \alpha . A direct calculation of (60)
and (64), assuming \alpha (x) = \alpha (r) is only radially dependent, yields

1 + \alpha (r)

2r

\Bigl( 
rT \prime 

\alpha (r)
\Bigr) \prime 

 - \alpha (r)

r
T \prime 
\alpha (r) = - 1

2D
,(65)

where the diffusion constant D = \sigma 2/(2\mu ) is consistent with the n = 2 diffusivity
introduced in (37). Note that the case \alpha = 0 corresponds to the standard diffusion
process in two dimensions. The general solution of (65) is

T\alpha (r) = - r2

4D
+H1 +H2

\int r

exp

\biggl[ 
 - 
\int \eta 1

s

1 - \alpha (s)

1 + \alpha (s)
ds

\biggr] 
d\eta ,(66)

where H1,H2 are constants that depend on the chosen boundary conditions. For
uniform \alpha (s) = \alpha , (65) reduces to

T\alpha (r) = - r2

4D
+H1 +H2r

2\alpha 
1+\alpha .(67)

Below, we solve for H1,H2 in given geometric scenarios and for fixed \alpha \in ( - 1,1).
Note that since (67) contains two unknowns, two conditions are necessary to identify
them. We plot the resulting T\alpha (r) in the most interesting cases in Figure 2.

6.1.1. Exit from a disk. In this scenario we assume the random walker can
exit the disk only through the boundary at r =R0. This implies that the mean first
exit time at r = R0 must be zero. We also impose smoothness at the origin so that
all derivatives at r = 0 are zero. Thus, we solve (67) in the domain 0 < r < R0 with
boundary conditions

T \prime 
\alpha (0) = 0, T\alpha (R0) = 0,(68)

to obtain the solution

T\alpha (r) =
1

4D

\bigl( 
R2

0  - r2
\bigr) 
.(69)

Remarkably, (69) is independent of \alpha . Thus, the two-dimensional MFPT to reach the
boundary of a disk for a particle moving under the von Mises jump distribution (61)
with a uniform concentration parameter k(x) = k has the same form as in the case of
a random, diffusive process.

6.1.2. Exit from the inner circle of an annulus. We now consider motion
constrained to an annular region so that \rho < r < R0 for all trajectories. As shown
below, the effects of anisotropy can be more pronounced here compared to motion in
a disk. We specifically assume that the random walker can only exit the annulus via
the inner circle at r= \rho and impose reflecting (Neumann) boundary conditions at the
outer circle at r = R0. Thus we solve (67) in the domain \rho < r < R0 with boundary
conditions

T\alpha (\rho ) = 0, T \prime 
\alpha (R0) = 0.(70)

The general solution of (65) under uniform \alpha is
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(a) Exit from inner circle. (b) Exit from inner or outer circle.

Fig. 2. The MFPT (65) for D= 0.5 on an annulus with domain \rho < r <R0, inner circle radius
\rho = 0.5, outer circle radius R0 = 3, and several values of \alpha \in ( - 1,1). Panel (a): Particles exit the
annulus only through the inner circle; the corresponding boundary conditions under which to solve
(67) are T\alpha (\rho ) = T \prime 

\alpha (R0) = 0. Note that T\alpha (r) increases with \alpha for given r > \rho and T\alpha (r > \rho )\rightarrow \infty 
as \alpha \rightarrow  - 1+ as shown in (72c). Under purely circular motion, particles move tangentially and
cannot decrease their distance from the origin, and hence they will never exit the annulus. Panel
(b): Particles may exit the annulus through both the inner and the outer circles; the corresponding
boundary conditions under which to solve (67) are T\alpha (\rho ) = T\alpha (R0) = 0. In the limit \alpha \rightarrow  - 1+

the solution T\alpha (r) displays a discontinuity at r = \rho as particles located at r \rightarrow \rho + will be able to
exit the annulus only through the outer circle at r =R0. Particle simulations (black squares) based
on N = 104 independent stochastic simulations of (1) with \mu = 104, \sigma =

\surd 
\mu agree with theoretical

predictions. Specialized numerical algorithms are needed to simulate the exit from the inner circle
as \alpha \rightarrow  - 1+ since T\alpha \gg 1. Indeed, we note the difference in the scale of the vertical axes between
the two panels. All quantities are in arbitrary units.

T\alpha (r) =
1

4D
(\rho 2  - r2) +

1

2\beta D
R

\beta 
\alpha 
0 (r\beta  - \rho \beta ), with \beta \equiv 2\alpha 

1 + \alpha 
.(71)

The resulting plot of this function is shown in Figure 2a for several values of \alpha . We
then derive the limits for the MFPT corresponding to motion that is purely radial
(\alpha \rightarrow 1 - ), isotropic (\alpha \rightarrow 0), or purely circular (\alpha \rightarrow  - 1+):

lim
\alpha \rightarrow 1 - 

T\alpha (r) =
1

4D
(\rho 2  - r2) +

R0

2D
(r - \rho ),(72a)

lim
\alpha \rightarrow 0

T\alpha (r) =
1

4D
(\rho 2  - r2) +

R2
0

2D
log

\biggl( 
r

\rho 

\biggr) 
,(72b)

lim
\alpha \rightarrow  - 1+

T\alpha (r) =

\Biggl\{ 
+\infty , r > \rho ;

0, r= \rho .
(72c)

Since the function r  - \rho  - R0 log(r/\rho ) is a negative, decreasing function of r for
\rho < r < R0 the MFPT in the purely radial case (\alpha \rightarrow 1 - in (72a)) is less than in the
isotropic case (\alpha \rightarrow 0 in (72b)). This implies that exiting the annulus from its inner
circle is faster if the motion is constrained along the radial direction rather than being
isotropic. Also note that under purely circular motion (\alpha \rightarrow  - 1+ in (72c)) the MFPT
T\alpha (r > \rho ) = +\infty for any starting position r. Since the preferred motion is along the
tangent direction, a particle that started at r > \rho can never randomly turn to smaller
values of r to reach the only exit boundary at r= \rho . Hence, it will remain trapped in
the annulus for infinite time.
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6.1.3. Exit from the outer circle of an annulus. We now consider the
opposite scenario where the random walker can only exit the annulus via the outer
circle at r = R0 and impose reflecting (Neumann) boundary conditions at the inner
circle at r= \rho . Thus we solve (67) in the domain \rho < r <R0 with boundary conditions

T \prime 
\alpha (\rho ) = 0, T\alpha (R0) = 0.(73)

The general solution of (65) under uniform \alpha is given by replacing \rho and R0 in (71):

T\alpha (r) =
1

4D
(R2

0  - r2) +
1

2\beta D
\rho 

\beta 
\alpha (r\beta  - R\beta 

0 ), with \beta \equiv 2\alpha 

1 + \alpha 
.(74)

The limits for the MFPT corresponding to motion that is purely radial (\alpha \rightarrow 1 - ),
isotropic (\alpha \rightarrow 0), or purely circular (\alpha \rightarrow  - 1+) are

lim
\alpha \rightarrow 1 - 

T\alpha (r) =
1

4D
(R2

0  - r2) +
\rho 

2D
(r - R0),(75a)

lim
\alpha \rightarrow 0

T\alpha (r) =
1

4D
(R2

0  - r2) +
\rho 2

2D
log
\Bigl( r

R0

\Bigr) 
,(75b)

lim
\alpha \rightarrow  - 1+

T\alpha (r) =
1

4D
(R2

0  - r2).(75c)

In this case, the function r  - R0  - \rho log(r/R0) is a negative, increasing function of r
for \rho < r < R0 so that the MFPT in the purely radial case (\alpha \rightarrow 1 - in (75a)) is still
less than in the isotropic case (\alpha \rightarrow 0 in (75b)). Thus, exiting the annulus from its
outer circle is faster if particle motion is constrained along the radial direction rather
than being isotropic. Since r < R0, comparing (75c) to (75a) and (75b) shows that
purely circular motion yields the longest MFPT to exiting the annulus. Furthermore
for \alpha \rightarrow  - 1+ the MFPT does not depend on \rho since the motion is purely tangential
and, as discussed above, a particle starting at r > \rho will always randomly increase its
distance from origin.

Upon comparing (72a) and (75a), one can show that under purely radial motion
the MFPT to exit the annulus from the outer or inner circle is the same if trajectories
start at r = rc = (\rho +R0)/2, the exact midpoint. For r > rc the MFPT is shortest if
exiting from the outer circle, and for r < rc the MFPT is shortest if exiting from the
inner circle.

6.1.4. Exit from the inner or outer circle of an annulus. Finally, we solve
(67) in the case where a particle can exit the annulus from both the inner and the
outer circles using the following boundary conditions:

T\alpha (\rho ) = T\alpha (R0) = 0.

We find that

T\alpha (r) = - 1

4D
r2 +

1

4D

\Biggl( 
R\beta 

0\rho 
2  - R2

0\rho 
\beta 

R\beta 
0  - \rho \beta 

\Biggr) 
+
r\beta 

4D

\Biggl( 
R2

0  - \rho 2

R\beta 
0  - \rho \beta 

\Biggr) 
, \beta =

2\alpha 

1 + \alpha 
.(76)

This function is plotted in Figure 2b for a range of values of the parameter \alpha . As done
above, we highlight the limiting cases of purely radial (\alpha \rightarrow 1 - ), isotropic (\alpha = 0),
and purely circular (\alpha \rightarrow  - 1+) motion to find that
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lim
\alpha \rightarrow 1 - 

T\alpha (r) =
1

4D
(\rho  - r)(r - R0),(77a)

lim
\alpha \rightarrow 0

T\alpha (r) =
1

4D

(R2
0  - \rho 2) log r - (r2  - \rho 2) logR0 + (r2  - R2

0) log\rho 

logR0  - log\rho 
,(77b)

lim
\alpha \rightarrow  - 1+

T\alpha (r) =

\Biggl\{ 1

4D
(R2

0  - r2), r > \rho ;

0, r= \rho .
(77c)

By comparing (77a) with (72a) and (75a), one can show that under purely radial
motion the MFPT to exit the annulus from either the inner or outer circle is always
less compared to when exit is allowed from only one of the two boundaries. Note the
discontinuity in (77c): under purely circular motion, particles starting at r > \rho can
exit the annulus through the outer circle so we recover the same result as in (75c).

6.2. MFPT for anisotropic transport with linear features. As discussed
previously, anisotropic transport is often facilitated by the presence of linear struc-
tures in the environment. For example, roads and seismic lines modulate animal
movement in ecological landscapes while intracellular transport occurs along actin
filaments or microtubules. Multiple segments (of roads or filaments) carry random
relative orientations and occasionally intersect. As such, we study the MFPT in the
presence of one or several preferential orientations. For concreteness, we use a square
domain \Omega and assume that particles can exit the domain through any of its edges.
We thus solve (60) with absorbing (Dirichlet) boundary conditions. To model the
presence of linear features we introduce a bimodal von Mises distribution constructed
using (61) and a tessellation process. For each point x we find the Euclidean distance
d(x) to the closest linear feature and evaluate the anisotropic distribution in (61) by
setting k(x), \alpha (x) as follows:

k(x) =

\Biggl\{ 
k0, d(x)<d0,

0, otherwise,
\alpha (x) =

I2(k(x))

I0(k(x))
.(78)

The directional field \gamma (x) = (cos\varphi , sin\varphi ) is taken as the slope of the nearest line to
point x. These choices imply that once a particle is at a distance greater than a cutoff
value d0 from any linear feature, i.e., for d(x)\geq d0, movement is an isotropic random
walk since in this case k(x) = \alpha (x) = 0. Once the particle is closer to a linear feature,
for d(x) < d0, movement is biased towards a bidirectional random walk along the
\pm \gamma (x) directions corresponding to the specific linear feature as per (61). The larger
the value of k0, the larger the bias along \pm \gamma (x). Note that setting \alpha (x) positive in (78)
corresponds to radial orientation in (64b) and that k0 \rightarrow \infty yields \alpha (x : d(x)<d0)\rightarrow 1.
The contour plots shown in the top row of Figure 3 are the numerical solutions of (60)
and (78) using linear segments given by a vertical line, a slant line, 3 parallel vertical
lines, and 10 randomly intersecting lines as shown in the inset and using k0 = 25
and d0 = 0.02 which correspond to \alpha (x : d(x) < d0) = 0.922. For these parameters
the effective motion is a combination of isotropic two-dimensional (d(x) \geq d0) and
quasi one-dimensional random walks (d(x)< d0). The modulation of the MFPT due
to the simple linear features is clearly distinguishable in all four scenarios shown in
Figure 3. We also numerically evaluate the MFPT in the same square geometry but
under isotropic diffusion, which corresponds to setting d0 \rightarrow 0 in (78), and show the
difference between the two MFPTs in the bottom row of Figure 3. The rightmost
panels in Figure 3 with 10 randomly oriented linear features yields an MFPT that is
closest to an isotropic random walker.
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Fig. 3. Top row: The MFPT to the boundary of the domain \Omega = [ - 1,1]2 in the presence of one
or multiple linear segments orienting particle motion. Results are obtained by numerically solving
(60) for T (x) in the domain \Omega = [ - 1,1]2 under the bimodal von Mises distribution (61) modulated by
the linear structures shown in the inset as described in (78). The cutoff distance d0 for particles to
move along the linear structures is set at d0 = 0.02, and the corresponding measure of concentration
is k0 = 25. The anisotropy profiles from left to right are a vertical line, a slant line, 3 parallel vertical
lines, and 10 randomly intersecting lines. Bottom row: The difference between the MFPT under
anisotropic transport and the MFPT for a random walker in the same two-dimensional domain. The
scenario of 10 randomly intersecting segments in the rightmost panels yields the smallest difference
between the two MFPTs. All quantities are in arbitrary units.

6.3. MFPT on an ecological landscape. Finally, we consider an actual eco-
logical landscape with linear features to specifically model animal movement using the
results and methods of section 6.2. McKenzie and co-workers [47, 48] have previously
used the anisotropic model (60) and fitted it to oriented movement of red foxes in
Minnesota in the presence of prey and a den site [47], and to wolf movement data in
forest areas of the Canadian Rocky Mountains, where forests are disturbed by seismic
lines [48]. They find that preferred movement of wolves along seismic lines increases
the encounter rate of predator and prey, thereby reducing prey density.

Here we revisit this case as an illustration and use an aerial image that was not
used in [48]. Figure 4(a) shows a landscape of intersecting roads and seismic lines in
the boreal forest of Western Canada. In [34, 35] the forward transport equation (6)
was solved on the rectangular domain of this image. Here we use the same image to
evaluate the MFPT to the boundary of the domain. The image was first digitized
and thresholded such that landscape features are represented by a boolean variable.
The binarized image is then processed into two fields, \gamma (x) and d(x), representing the
direction of, and distance to, the closest linear feature for each x\in \Omega , where \Omega is the
rectangular domain of the image. The resulting linear features and their associated
directions are shown in Figure 4(b). The directional field is incorporated into the
bimodal von Mises distribution (61) so that motion near linear features is biased
along the two directions \pm \gamma (x). In the blank space of Figure 4(b), where directional
information is not shown, the diffusion is isotropic.

Similarly to what done in section 6.2, the MFPT equation (60) is solved on the
image's rectangular domain with k(x) given in (78) and the direction field shown in
Figure 4(b). We allow the random walker to exit the domain through any of the edges
of the image and apply absorbing (Dirichlet) boundary conditions on \partial \Omega . The contour
plot of the resulting numerical solution of (60) is shown in Figure 4(c). We observe
a similar phenomenon to that observed in Figure 3, where the superposition of linear
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(a) Forest image. (b) Linear features with orienta-
tion.

(c) Normalized MFPT T (x)/T\mathrm{m}\mathrm{a}\mathrm{x}.

Fig. 4. Calculation of the MFPT on an ecological landscape. Panel (a): Aerial snapshot of
the boreal forest in Western Canada. Panel (b): A digitized and thresholded version of the same
image highlighting roads and seismic lines with bidirectional information. Panel (c): Contour plot
of the MFPT as derived from (60), (62), and (78) using the method described in section 6.2. Also
shown are three single trajectories from particle simulations of (1), each initialized at the origin
with parameters \mu = 104, \sigma = 104, and bimodal von Mises turning kernel (61). Particle trajectories
remain closely anchored to the linear segments before eventual absorption at different edges of \partial \Omega .
All quantities are in arbitrary units.

features with different angles yields an apparently isotropic MFPT. Figure 4(c) also
displays three single trajectories obtained from stochastic simulations of (1), which
shows strong alignment on the linear features. Hence, the occupation density of par-
ticles is strongly localized on the anisotropic features, while the MFPT is modulated
to by these features to a much lesser degree. This, of course, is because the MFPT is
the average of the mean first passage time derived from all possible trajectories.

7. Conclusions. Kinetic transport equations form a large class of models that
are used in many applications from physics, engineering, and material sciences. Here
we focus on biological applications, which include a wide variety of species and spatio-
temporal scales, such as E. coli run-and-tumble movement [53], brain tumor invasion
[68], sea turtle orientation [58], DNA repair mechanisms [26], and many more.

As it turns out, the general transport equation (1) is too general to derive a
meaningful mean first passage time equation. Hence, we focused on three cases: the
diffusive, anisotropic, and parabolic limit cases, all of which are relevant to biology.
Each of these cases translates into a set of assumptions on the model parameters and
in particular on the integral kernel K(x, v, v\prime ). We summarize these assumptions in
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Table 1
Summary of the basic assumptions for the various cases studied in this manuscript.

Case Reference Assumptions

General assumption (3) K \geq 0, K \in L2(V \times V ),
\int 
V K(x, v, v\prime )dv= 1.

Diffusive case (3) + (29) K(x, v, v\prime ) =K(x, v, - v\prime ),
\int 
V K(x, v, v\prime )dv\prime = 1.

Anisotropic case (3) + (38) K(x, v, v\prime ) = q(x, v), q(x, - v) = q(x, v).

Parabolic scaling (3) + (38) \tau = \varepsilon 2t, \xi = \varepsilon x.

+ (50, 52) p(\xi , v, \tau ) = p0(\xi , v, \tau ) + \varepsilon p1(\xi , v, \tau ) + \varepsilon 2p2(\xi , v, \tau ) + \cdot \cdot \cdot .

Table 1 for accessible comparison. The diffusive and anisotropic cases are not disjoint,
since, for example, the constant kernel K(x, v, v\prime ) = | V |  - 1 is contained in both.

In our analysis we find two types of MFPT equations. For the diffusive and
anisotropic cases we find an integro-PDE for the MFPT \Theta (x, v), (36) and (42), re-
spectively. The expected exit time \Theta (x, v) depends on the initial location x and the
initial velocity v, and the explicit dependence on v makes this equation so interesting.
A systematic study of equations of types (36) and (42) has not been done yet. In the
parabolic scaling case, the v-dependence disappears, and we obtain the anisotropic
MFPT equation (60) for T (x). This model fits within the classical theory of MFPT
equations, as, for example, illustrated in [62, 64, 69, 70], and much is known about
its properties and its solutions.

Solutions to MFPT equations depend, of course, on the domain \Omega and the bound-
ary conditions on \partial \Omega . For the parabolic limit case (60), boundary conditions can be
included in a standard way, using T (x) = 0 on the absorbing part of the boundary and
\^n \cdot \BbbD (x)\nabla T (x) = 0 on the no-flux part of the boundary, where \^n denotes an outward
normal vector on the boundary. The domain can be connected or disconnected, it
can have holes and other special shapes, and the literature on various domains is vast
(see, for example, [19, 29, 38, 60, 62]).

For the diffusive or the anisotropic case, however, boundary conditions need to
include the velocity v. A reasonable choice to describe absorbing boundaries is to
assume that a random walker on the boundary \partial \Omega that starts in an outward direction
is lost immediately. In mathematical terms, for any x \in \partial \Omega such that \^n(x) denotes
the unit outward normal vector, we have

\Theta (x, v) = 0 for all v \in V : v \cdot \^n> 0.(79)

On the reflecting parts of the boundary various conditions can be stipulated. They
often take the form of an integral relation [65]. Given x \in \partial \Omega , for each v \in V with
v \cdot \^n(x)\leq 0, we define

\Theta (x, v) =

\int 
\{ v\prime \cdot \^n>0\} 

I(x, v, v\prime )\Theta (x, v\prime )dv\prime (80)

with an appropriate integral kernel I. Combining the MFPT equations (36) and (42)
with these type of boundary conditions (79) and (80) provides a formidable math-
ematical and numerical challenge. It will require substantial new ideas to develop
theories for existence, uniqueness, boundedness, etc. We hope our work stimulates
further research in this direction.

It should be noted that the MFPT equations derived here have no drift term, i.e.,
no first order term. This is by design, since we assume symmetry of the underlying
kernels, K(x, v, v\prime ) = K(x, v, - v\prime ) and q(x, v) = q(x, - v); see Table 1 above. These
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symmetry conditions ensure that certain integrals in our derivation are zero. If these
conditions are relaxed, those integrals stay, and we expect them to lead to drift terms
in the end result. We did not work out the details here, since our focus was on de-
veloping the overall framework to derive the MFPT equation for transport equations.
By relaxing the above assumptions, more general models can be derived.

The bimodal von Mises distribution is an excellent nontrivial example to study
the models developed here. It obeys the conditions listed above and allowed us to an-
alytically solve (60) for several movement types and geometries, including radial and
circular motion on a disk and on an annulus. We also found numerical solutions for a
specific preferred orientation (or orientations) as provided by the underlying environ-
ment. Finally, we compared the MFPTs in these various settings to the isotropic case
and discussed under what conditions anisotropy yields longer or shorter MFPTs to the
boundary of given domains. Our work provides a framework to quantify important
timescales associated to biological or animal movement processes without resolving
the entire forward process.

There are many avenues for future work arising from this study. Our examples of
MFPT calculation in sections 6.2 and 6.3 suggest that the presence of multiple linear
anisotropic features produces a superposition that is independent of individual hetero-
geneities. Hence, we hypothesize that a homogenization limit can be obtained to re-
flect an effective description of diffusion processes in crowded domains. Our principal
consideration of the bimodal von Mises produces unbiased one-dimensional diffusion
along linear features. It is natural to extend the formulations obtained herein towards
more general classes of distributions, including single modal von Mises and multimodal
distributions such as Kent and Bingham distributions in two dimensions or higher.
These may be more difficult to evaluate, as, for example, the symmetry condition
q(x, v) = q(x, - v) does not hold for the single modal von Mises distribution in (8).
Other avenues of exploration include deeper investigations of ecological scenarios, for
example by studying how the MFPT changes upon allowing animals to exit only from
select portions of the boundary, modifying the parameter k0, or allowing it to have
different values along different segments for the purpose of optimally steering herds of
animals to given locations, where, for example, foraging conditions are more suitable.
The variance in the MFPT plays an important role in the context of ecological diffu-
sion problems [38], and hence extensions of this work to the derivation of higher-order
moments would be valuable. An even more ambitious objective would be to derive
the probability density  - st(x, v, t), from which all moments could be generated.

Appendix A. Discretization of the anisotropic MFPT equation. Our
numerical simulation of (42) with diffusivity tensor (64a) is based on finite difference
simulation in MATLAB. We write the following for x= (x1, x2) and \nabla = (\partial x1 , \partial x2):

\BbbD (x) :\nabla \otimes \nabla T =D11\partial 
2
x1x1

T + 2D12\partial 
2
x1x2

T + D22\partial 
2
x2x2

T = - 1,(81)

\BbbD (x) =
\biggl( 
D11 D12

D12 D22

\biggr) 
.

In the formulation above, the tensor coefficients D11, D12, and D22 are spatially
varying functions defined in (64). A mesh for the rectangular domain \Omega = (a, b)\times (c, d)

is formed at points x
(j)
1 = a+ (j  - 1)\Delta x1 for j = 1, . . . ,N1 and x

(k)
2 = c+ (k  - 1)\Delta x2

with k= 1, . . . ,N2, such that

b - a

N1  - 1
=\Delta x1,

d - c

N2  - 1
=\Delta x2.
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We define T (j,k) = T (x
(j)
1 , x

(k)
2 ) and utilize the standard finite difference

approximations

\partial 2x1x1
T (j,k) =

T (j+1,k)  - 2T (j,k) + T (j - 1,k)

\Delta x21
,(82a)

\partial 2x2x2
T (j,k) =

T (j,k+1)  - 2T (j,k) + T (j,k - 1)

\Delta x22
,

\partial 2x1x2
T (j,k) =

T (j+1,k+1)  - T (j+1,k - 1)  - T (j - 1,k+1) + T (j - 1,k - 1)

4\Delta x1\Delta x2
.(82b)

Hence, combining the discretizations (82) with (81), we arrive at the discrete linear
system

D
(j,k)
11

T (j+1,k)  - 2T (j,k) + T (j - 1,k)

\Delta x21

+ D
(j,k)
12

T (j+1,k+1)  - T (j+1,k - 1)  - T (j - 1,k+1) + T (j - 1,k - 1)

2\Delta x1\Delta x2

+ D
(j,k)
22

T (j,k+1)  - 2T (j,k) + T (j,k - 1)

\Delta x22
= - 1.

In our simulation, we apply the Dirichlet boundary so that T (j,k) = 0 for any j \in 
\{ 1,N1\} and any k \in \{ 1,N2\} .
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