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We model the kinetics of ligand-receptor systems, where multiple ligands may bind and unbind to the
receptor, either randomly or in a specific order. Equilibrium occupation and first occurrence of complete
filling of the receptor are determined and compared. At equilibrium, receptors that bind ligands
sequentially are more likely to be saturated than those that bind in random order. Surprisingly however,
for low cooperativity, the random process first reaches full occupancy faster than the sequential one. This
is true except near a critical binding energy where a “kinetic trap” arises and the random process
dramatically slows down when the number of binding sites N = 8. These results demonstrate the subtle
interplay between cooperativity and sequentiality for a wide class of kinetic phenomena, including
chemical binding, nucleation, and assembly line strategies.
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Cooperativity plays a key role in determining the equi-
librium properties of queuing systems such as ligand-
receptor binding, nucleation, melting of « helices, coupled
chemical reactions, and assembly lines. Biophysical ex-
amples include O, or CO binding to hemoglobin and
myoglobin [1-3] and binding during cell signaling and
morphogenesis [4,5]. For a local bulk ligand concentration,
the associated receptors will typically have a fraction of
sites filled. The kinetics of queuing in these processes can
exhibit diverse and rich behavior. A receptor may need to
have a critical number of bound ligands before it can signal
the next biochemical step. Thus, it is important to know not
only the equilibrium ligand occupancy, but also the mean
time to first reach this critical occupancy, as a function of
local ligand concentration and binding strength. Similarly,
in nucleation processes such as a-helix formation or melt-
ing, local helix turns can form randomly or sequentially.
The first time a complete helix forms (or melts) will be an
important ingredient in protein folding models [6]. First
passage times also define extinction and fixation in birth-
death processes [7,8]. Equilibrium distributions and first
passage times also arise in applications of queuing, where,
for example, average computer loads and the first time that
demand exceeds capacity should be distinguished [9].

In this Letter, we formulate and use a kinetic chain
model to highlight subtleties of ligand adsorption and
desorption, queuing, and cooperativity. Our model is pre-
sented in the language of ligand binding to a single recep-
tor with N active sites of which 0 = n = N are occupied
by ligands at any given time. The order of the binding can
be imposed in two limiting ways. As shown in Fig. 1, the
addition of each successive ligand can influence one other
specific site and allow the next ligand to bind to, or unbind
from, that site only (a case we will denote by the index o =
0). Alternatively, the allosteric effect (from, e.g., a large
scale conformational change) can be spread equally to all
remaining sites. The next ligand can bind to any one of
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these remaining open sites (a case we will denote by the
index & = 1). Here, all bound ligand molecules are equally
likely to spontaneously desorb. We do not consider mixed
processes in which the binding order is sequential and the
unbinding random, or vice versa. Thus, in our model,
ligand binding occurs in a totally sequential manner as in
Fig. 1(a), or randomly as shown in Fig. 1(b). We show how
the binding order plays a crucial role in determining both
equilibrium and kinetic properties: sequential ordering
generally implies higher occupancy, while random order-
ing is associated with a shorter mean first passage to
saturation. We also discover an intriguing regime of kinetic
slowdown where different queuing rules result in dramati-
cally different behaviors.

We define P(n, t) as the probability that the receptor has
n bound ligands at time ¢, given that it had n, at time ¢,.
The evolution of the occupancy state n can be mapped onto
a one-dimensional random walk with a master equation
given by 0,P(n,f)=gq,. 1 Pn+1,1)—(q,+k,)P(n, 1)+
k,_P(n—1,1). Here, k, and g, represent the ligand ad-
sorption and desorption rates, respectively, when there are
already n ligands bound to the receptor. The probability
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FIG. 1. Two limiting models of multiple ligand binding. In
both cases, N =6, and n = 3. (a) Sequential ligand binding/
unbinding. At any given time, only one specific site can accept
ligand adsorption and only one ligand can desorb. Upon defining
the kinetics, this case will be denoted &« = 0. (b) Random ligand
binding/unbinding. An additional ligand can bind to any one of
the open sites. Similarly, any one of the bound ligands can
spontaneously desorb. This case will be denoted o = 1.
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density current from state n + 1 to state n is J(n, 1) =
gni1P(n+1,1) — k,P(n,f). The master equation,
d,P(n,t) = J(n,t) — J(n — 1, 1), is solved under the con-
straint ¥V ( P; = 1.

Different functional forms of k, and ¢, distinguish the
sequential model from the random one. The number of
ways for a ligand to bind an #n state receptor is proportional
to the number of accessible binding sites. For sequential
kinetics, at any given time, only one site is accessible for
binding the next ligand, whereas for random binding, all
N — n empty sites are accessible. The number of acces-
sible sites can thus be succinctly expressed as (N — n)®,
where the index a = 0 corresponds to the sequential
model, and a =1 corresponds to the random one.
Similarly, the number of ways to detach a particle from
an occupation state n + 1 is (n + 1)®. If conformational
changes of the receptor molecule reach local thermody-
namic equilibrium within the time scales required for
ligand binding and unbinding, the rates obey detailed
balance:

k, N — n\a
-~ —Z<n+ 1) exp[—AG, ] (D

The proportionality constant z =~ v[L] is dimensionless
and depends on the bulk ligand concentration [L] and on
the capture volume per binding site v. Typical values of
[L1=1uM and v = 1 nm? give z = 1075, The quantity
—-AG, =G, — G, is the free energy change, in units of
thermal energy kz7', upon detachment of one ligand from
state n + 1 to state n. Equivalently, AG,, can be interpreted
as the free energy change due to ligand addition from state
n to state n + 1. Cooperativity can be defined as the addi-
tional proclivity for the (n + 1)* ligand to bind as n
increases. A simple model for the free energy of binding
is AG, = —gy(n + 1)” where g is the nonnegative ligand
binding energy in units of kz7. The nonnegative parameter
v controls the cooperativity of successive binding. For y =
0, AG, = —¢g is independent of n and the binding is
noncooperative. If y >0, AG,, decreases with n, hence a
positive cooperative effect. Large values of y represent
strong cooperativity. The equilibrium probability distribu-
tion Pgy(n) is derived by imposing J(n, 1) = 0 and by using
reflecting boundary conditions for the empty and full
states, k_1, go = 0 and gy, ky = 0, respectively [10].
Upon using Eq. (1),

() Thizsexpleos”0 = 8,0) + 8,0

N o
I+ Z%=1 Zm<m> [T, expleps”]

Pey(n) = o)

For the noncooperative case, the occupation probabilities
can be expressed in terms of a binding affinity x = ze®°. In
Figs. 2(a) and 2(b) we show the noncooperative Pg4(n) for
N = 10 and various x. Only the random case allows an
intermediate maximum of Py(n) to develop as x is in-
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FIG. 2 (color online). Equilibrium occupation probabilities
Pey(n) for N =10 and y = 0 as a function of ligand loading
n and various affinities x. (a) Sequential binding. (b) Random
binding. Only the random model exhibits a probability maxi-
mum at intermediate n. This results from enhanced opposing
drifts at small and large occupancies. The distributions for y = 1
are qualitatively similar to those in (a). (c) The equilibrium
probability of full occupancy (n = N = 10) for both models
and y = 0 as a function of x. Full occupancy is more likely for
the sequential case than for the random one. (d) The sequential
and random case MFPT at N = 10 and y = 0. Note the loga-
rithmic scale.

creased. From Eq. (1), it can be seen that for small n values
the ratio &, /g, is larger for the random case than for the
sequential one. Conversely, the same ratio is smaller for
large n. The random process thus induces an effective drift
towards intermediate n values. This is schematically shown
in Fig. 3. We can rewrite Eq. (1) in the form k,/q,+, =
exp(—AG,), where

- N —
AG, = AG, — aln[—") — Inz 3)
n+1
is the effective free energy change that includes the entropy
associated with ligand binding and unbinding. Unlike G,,
the total effective free energy as a function of n,

G_,,=G,,—aln<];,>—nlnz, (4)

can have a minimum with respect to n if @ = 1. Thus, a
maximum in P,(n) can occur only in the random case.
Equilibrium distributions and occupancy probabilities
have been widely used in approximations of kinetics of
biochemical reactions [10]. One commonly used metric is
the filling fraction fe,(x;c, y) = N"'3N_ nP,(n). We
can compute f., under either the sequential or random
assumptions:

170603-2



PRL 95, 170603 (2005)

PHYSICAL REVIEW LETTERS

week ending
21 OCTOBER 2005

sequential  (a=0)
k
e — e = e = e = e = e — e
q
ko
e — o ——— — — ° °
n=0 1 2 gy 3 4 N-1 N

random (o=l)

FIG. 3. Kinetic steps for x ~1 and y =0. (a) Sequential
process. All successive steps incrementing the number of bound
receptors have the same rate k, while all decrement steps have
the same rates ¢. (b) Random process. There are more ways to
attach a ligand when # is small. Similarly, there are more ways of
removing receptors when there are many bound receptors. The
effective rates push the system from both directions toward an
intermediate occupation level. Given an initial condition at n =
0, the first passage statistics to n = N will be controlled more by
the effective forward rates k, than the effective backward rates
q,- Therefore, the larger &, tending to load the receptor outweigh
the effects of the larger ¢, tending for desorption. The overall
MFPT is thus larger in the random case than in the sequential
one.

x(1 = (N + DxN + NxN*T)

Jeq(x:0.0) = N(x —1)> + Nx(x — DY — 1)’ )
X
feq(X; 1,0) = 1+ (6)

respectively. These two expressions coincide only in the
infinite affinity limit x — oo, signifying that the process no
longer depends on binding order. Expressions such as fq
have been used in kinetic equations describing binding to
hemoglobin or myoglobin [1,2], regulatory networks [11],
viral infection dynamics [12], and cell signaling [13].
However, using equilibrium expressions in kinetic equa-
tions assumes separation of time scales or near steady
states. Moreover, filling fractions do not provide informa-
tion about typical loading time scales. The queuing non-
equilibrium properties are more telling, in this context,
than their equilibrium counterparts and surprising effects
may arise. In particular, faster complete occupation of a
receptor can occur even though the mean occupancy is
lower at equilibrium. The mean first passage time (MFPT)
to a target filling can be evaluated by using standard
techniques [14]. For a receptor in the unoccupied n = 0
state at = O the MFPT to reach an n™ filling is [15]

n—1 n—ln—1
nﬁmg=;;%<yfgdl%?> %)

To evaluate Eq. (7) we need independent expressions
for k, and ¢,. We let k, = vo[L](N — n)® and ¢, =
v(n + 1)*exp[AG, ], where v is the frequency of reaction
attempts. We choose k,, to be independent of AG,, because

for many systems, such as antibody-antigen complexes
[16], cooperative effects are felt only in the detachment
process. In these cases, the strength of a ligand-receptor
chemical bond depends on the total number of bound
ligands present. These existing ligands typically do not af-
fect the kinetics of attachment. For the noncooperative case
(y = 0), the MFPT to full occupancy in units of »~ ! is [17]

=0) ol {XN_1+N} (8)

:z(x—l x—1

T(N; a

Logarithms of the MFPT from n = 0 to complete filling
n* = N are plotted in Fig. 2(d) for y = 0. A comparison
with Fig. 2(c) shows an unexpected effect. Although the
noncooperative random process yields a lower equilibrium
ligand population than the sequential process, its MFPT is
shorter. This is due to an overall effective increase in the
local diffusivity as evident from the form k, o (N — n)?.
However, near the half-filling affinity x = 1, correspond-
ing to feq = 1/2, the MFPT of the random case is greater
than that of the sequential one. This is emphasized in
Fig. 4(a), where we plot the ratio of random to sequential
MFPT as a function of binding energy. A striking peak
develops for x = 1 provided the receptor has at least N, =
8 binding sites. Indeed, as N > N, increases, the random
MFPT increases dramatically. Why does this happen?
From Fig. 3, we see that for the random case near x = 1,
the backward rates ¢, ; balance the forward rates k,,. This
results in a vanishing net drift at intermediate occupations.
The effective potential G, develops a minimum that for
x = 1 is exactly located at N/2. The opposing drifts bias
the filling to intermediate values forming a kinetic trap and
delaying first saturation. The MFPT increases significantly
due to the time required to escape this trap, despite the
increase in effective diffusivity near the potential mini-
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FIG. 4 (color online). Mean first passage time ratios

T(N;1)/T(N;0). (a) For y =0, random binding (a = 1) is
faster except for a window of binding energies near x = ze® =
1. For clarity we plot T(N;1)/T(N;0) as a function of g, for
7z =107°. The critical value x = 1 occurs at g, = 13.8. The
peak scales as ~2V/N3. (b) For y = 1 (and in fact y = 1), the
random process always reaches full occupancy faster than the
sequential one.
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FIG. 5 (color online). Logarithm of the ratio Ty,,(M;1)/
Tl,ap(M ;0). Here, x = 1, v = 0, and the initial occupancy is at
n = N/2. Negative values of the ratio imply that escaping a 2M
kinetic trap is faster for the random process than for the sequen-
tial one. This occurs only for small enough traps centered on
N/2 where the random dynamics is faster. For large enough
values of trap length 2M the effects described in Fig. 3 take place
and the exit time of the random case, Ty,,(M; 1), is much larger
than the sequential one, Ty,,(M;0).

mum. When N = 8§, the trapping is strong enough that the
MFPT of the random case is greater than that of the
sequential process. This effect is disrupted as x deviates
from unity as the minimum in G, disappears. Note that this
behavior occurs only in the absence of cooperative effects:
for , e.g., ¥ = 1 the equilibrium occupancies follow the
same trends as in Fig. 2(c) and the random system reaches
full occupancy first, even at x = 1.

To explicitly see a size-dependent trap, consider the
MFPT, Tlrap(M ; @), out of a band of sites of length 2M,
centered about n = N/2. For x = 1, v = 0, and an initial
condition of n = N/2, the logarithm of the ratio of the
random 7\, (M; 1) to the sequential 7\, (M 0) is plotted in
Fig. 5. The trapping effect is evident from the fact that for
large enough M the random T,,(M; 1) can easily be e'
times larger than the sequential 7\, (M;0).

Our analysis reveals the conspicuous effects that coop-
erativity and sequence have on binding kinetics, especially
on the MFPT to saturation. The key result is that equilib-
rium and dynamic measurements offer different answers as
to whether the sequential or the random order is more
efficient in ligand saturation. At equilibrium, sequential
processes are more likely than random ones to saturate the
ligand. For dynamic properties, such as MFPTs, random
processes are faster. This is true except for large noncoop-
erative systems (N = 8) with a binding affinity near x = 1,
where random processes dramatically slow down. One can
also consider the reverse process of emptying a completely
filled receptor. The clearance time can be obtained by using
particle-hole symmetry and the replacements &,/ 9pi1 =
[(N = p)/(p + 1)]* exp(AG,)/z where p is the number of
holes present.

The rate parameters used in our study can also be
reinterpreted as the inverse of the mean servicing time in
a customer service queue. Our results indicate a rich set of
outcomes depending on queue size, cooperativity, and
sequentiality. Levels of “service discipline,” or how to
order customer service [9], can be implemented in different
ways to achieve the desired outcome with highest proba-
bility, measured by average (equilibrium) or MFPT (non-
equilibrium) attributes.
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