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We study charge transfer between donor-acceptor molecules subject to a mirror symmetry constraint
in the presence of a dissipative environment. The symmetry requirement leads to the breakdown of the
standard single reaction coordinate description, and to a new charge transfer model, in the limit of low
temperature, based on two independent reaction coordinates of equal relevance. We discuss implications
of these results to charge transfer between DNA base pairs, whose geometrical configuration is modified
by the addition of the migrating charge in conformity with the discussed symmetry constraint.
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Charge transfer between large organic molecules in
aqueous solvent plays a key role in biochemical reactions,
particularly those involving animal and plant metabolism
[1,2]. Compared to electronic transport in solid state
materials, electron transfer in and between proteins is
characterized by low values of the tunneling matrix ele-
ments and strong coupling between the electronic and
nuclear degrees of freedom [3]. As a result, charge trans-
fer mainly occurs when the nuclear coordinates happen to
adopt a value for which the donor (D) and the acceptor (A)
state energies are nearly degenerate.

In the conventional Born-Oppenheimer, or adiabatic,
description, such a degeneracy region transforms to a
saddle point in the energy landscape separating the D
and A states, while the transfer rate can be computed
from the classical Kramers theory for activated chemi-
cal reactions in a dissipative medium [4—6]. However,
because of the low value of the tunnel frequency A, for
biomolecular charge transfer, the adiabatic assumption
is often not valid and, as a result, a full quantum-
mechanical description is required to determine the
charge transfer rate. The interaction of the nuclear de-
grees of freedom with the solvent medium plays an
important role in this respect. On the one hand, coupling
to a finite-temperature heat bath allows the system ac-
cess to the degeneracy points by thermal activation.
On the other hand, friction between the nuclear degrees
of freedom and the dissipative solvent— according to
the fluctuation-dissipation theorem —increases the time
spent by the nuclear degrees of freedom in the degeneracy
region [7,8].

The analytical theory of D-A charge transfer between
biomolecules is based on the assumption that, among the
many nuclear degrees of freedom involved, there is al-
ways a single dominant one: the reaction coordinate Y.
This reaction coordinate leads across the lowest saddle
point in the adiabatic energy landscape separating the D
and A states. Charge transfer takes place when Y is within
the Landau-Zener distance [, « iAy/AF [9,10] of the
degeneracy point, with AF the typical force level on the
nuclear degrees of freedom at the degeneracy point [11].
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Crossover to the adiabatic regime occurs when the time
spent in the Landau-Zener region 7 ; is large compared
to the typical tunneling time A;!. Single reaction coor-
dinate D-A theory is a basic tool not only for describing
donor-acceptor charge transfer processes but also for de-
scribing chemical reactions involving macromolecules in
general.

Charge transfer to or from large organic molecules can
involve the Jahn-Teller effect [12]. By removing one of
the electrons from a degenerate highest occupied molecu-
lar orbital (HOMO), the electronic energy of the system is
lowered by reducing the symmetry of the HOMO through
a structural distortion of the molecule. This structural
distortion can adopt alternative symmetry related forms.
The Jahn-Teller mechanism has been demonstrated, for
instance, for the aromatic benzene cation C6H6+ [13,14]. It
is the aim of this Letter to demonstrate that the single
coordinate description fails in the presence of structural
degeneracy as provided by the Jahn-Teller mechanism. To
demonstrate this claim, consider charge transfer between
two identical molecules. The electronic degree of freedom
will be represented by Pauli spin matrices with o, =1
denoting the electron in the D state and o, = —1 inthe A
state. The electron is coupled to the same two nuclear
degrees of freedom of the D and A molecules Y; and V>,
respectively. The Hamiltonian is
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Here M is the effective mass and V the potential energy of
the two nuclear degrees of freedom. Two collections of
harmonic oscillators {x, }, with mass m, and frequency
w,, represent the environmental degrees of freedom.
They are coupled separately to the two nuclear degrees
of freedom by the linear term proportional to ¢, in Eq. (1).
The coupling generates a frictional drag on Y; and Y,
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with a friction constant [15]:
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In the absence of any symmetry constraints, the lowest
order coupling between the nuclear and electronic degrees
of freedom is of the form (Y, — ¥,)o,. Treating (Y; — Y,)
as the reaction coordinate leads to the standard single
coordinate formalism. However, when we impose the
mirror symmetry, ¥ — —Y, {x, — —x,}, this term is
forbidden. Expanding the potential energy to the lowest
order in the lowest order in the nuclear coordinates under
the symmetry constraint gives a Landau-Ginsburg type
potential:

1 1
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Here k is a spring constant, v describes the stabilizing
effect of the lowest order anharmonic term, and A is the
dimensionless coupling constant between electronic and
nuclear degrees of freedom.

We restrict ourselves to the case 1 < A <2. In this
regime, the donor-state energy surface (1|V|1) has two

minima, at ¥, = *£/k(A — m, Y, = 0, corresponding
to a charge deformed molecule in one of two alternative
mirror-related structures. We denote the “left” and
“right” donor structures, respectively, by |LT) and |RT).
The acceptor state energy surface {{I1V|l) has two corre-
sponding minima but rotated over /2 in the (Y}, Y,)
plane, as shown in Fig. 1. To locate the degeneracy points,
we must solve for (I|V|1) = (||V|l), which yields two
degeneracy lines Y; = *Y, that cross at the origin of
the (Y, Y,) plane. The lowest degeneracy point, the puta-
tive transition state, is the origin with an energy barrier
AE = %k(/\ - 1)%/v.

To see why a single reaction coordinate description
cannot be consistent in the presence of the symmetry
constraint, consider the two possible trajectories shown
in Fig. 1 in the (Y}, Y,) plane for a thermally activated hop
in the donor state from the L to the R configuration. The
trajectories are classified by the impact parameter ¢, the
distance of closest approach to the origin. A typical
trajectory will cross the two degeneracy lines at least
once. At each crossing point a charge transfer event can
take place, with the system eventually ending in one of
the two acceptor minimum states. Within a single reaction
coordinate description for the charge transfer events, each
degeneracy line is then at the center of a Landau-Zener
region of width [ 4(q) = hAy/kAq. For low impact pa-
rameters, the two Landau-Zener regions of the degener-
acy lines start to overlap when ¢ drops below 1 z(g), i.e.,

when ¢ is less than & = \/iAy/kA. As a result, there is a
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FIG. 1. Two different reaction paths in the Y;, ¥, plane of the
nuclear coordinates. The locus of degeneracy points between
the donor and the acceptor state energies are indicated by the
lines Y; = *Y,. Charge transfer reactions take place within the
Landau-Zener region centered at the intersection of the reac-
tion path with each degeneracy line. The top trajectory, with a
large impact parameter g, crosses the two degeneracy lines
separately, and the corresponding 1D Landau-Zener regions,
not shown in the picture, are of order /; z(q). At the crossing
points, charge transfer to the acceptor state |R|) (dashed
arrows) is allowed, according to the single reaction coordinate
description. The 2D Landau-Zener length ¢ defines a region
surrounding the origin where single-reaction coordinate theory
fails. At the center of the 2D region one encounters strong
resonant tunneling within a distance « from the origin. The
bottom trajectory, with a low impact parameter ¢, enters both
the 2D region of width £ and the coherent tunneling region of
width «. Here the charge transfer process must be described
within a 2D framework.

region of size & surrounding the origin where charge
transfer is inherently two dimensional. If the thermal
energy is low compared to the barrier height AE, then it
is precisely this 2D region that will dominate the charge
transfer reaction so the single reaction coordinate as-
sumption cannot be valid.

In order to analyze a 2D charge transfer event we
generalize the Smoluchowski-Zusman (SZ) method
[7,16] to two dimensions. In principle, this method is
restricted to the case of strong damping, when the thermal
energy kpT is large compared to /iw ., with o, the relaxa-
tion rate of the reaction coordinates. For the 1D case
though, the SZ method reproduces the weak coupling
nonadiabatic result in the limit of low tunneling rates.

In a 2D SZ description, the 2 X 2 density matrix n; ; of
the “spin” degrees of freedom (i, j now indicate spin up
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and down, respectively) obeys the following transport
equation:

on;
a—t] = —V{F + kBTVI’l, ]} [Ho') ni,j]’ (4)
RA Ak
H(T:TOO— _—[Y2_Y2]0-7; (5)

where 7 is the frictional drag of Eq. (2) and F
—V<1|V|]> is the 2 X2 force matrix derived from
Eq. (3). The first term on the right hand side of Eq. (4)
is the Smoluchowski operator for the 2D diffusive motion
of a classical particle in a force field. The second term
describes the precession of a spin 1/2 degree of freedom
with the spin Hamiltonian H, given by Eq. (5). Note
that the energy difference between spin up and spin
down has a saddle point at the origin. The characteristic
length scale appearing in H, is the 2D Landau-Zener
length & encountered above. A comparison of H,, with the
Smoluchowski operator produces the second length scale
asp = (hkgT/mk)'/*, which is the characteristic vari-
ation length of n;,. In the regime of strong damping,
a,p 1s small compared to €.

The equation for the off-diagonal part of the density
matrix can be solved under the condition that n, , varies
over length scales that are short compared to those of the
diagonal terms n;; and ng;:

= 432711 (0, 1) — ny5(0, N]8(Y).  (6)

The 2D delta function in Eq. (6) for the nuclear degrees of
freedom is actually a Gaussian with a width of order a,p.
Inside this Gaussian region, the off-diagonal part of the
density matrix is large: the spin degree of freedom is
precessing coherently. Physically, this means that reso-
nant tunneling is taking place between the D and A states
within a distance a,p of the origin of the (Y;,Y,)
plane. Substituting Eq. (6) in Eq. (4), we find that the
diagonal terms of the density matrix obey a classical
Smoluchowski equation with a “sink’ at the origin:

Imn12 Y t
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- 477\/§A0§2(n1,1 - nz,z)a(f/), (N
0
Z? = —V{F22 + kgTV}ny,

+ 4720082 (ny ) — 1) 8(Y). (8)

The decay rate of the donor state can be computed from
Egs. (8) and (9) using standard methods:

hA2
£_4\/2()‘_ 1) a)k,(: (9)
To S R R S

Here w,' = 1/k(A — 1) is the classical lifetime of the
transition state, and I'y is the classical Kramers rate for an
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activated hop to the transition state. The constant C
equals 44/21n2.

The 2D decay rate of Eq. (9) is in the same form of the
1D description for donor-acceptor charge transfer pro-
vided we interpret g,p = ﬁA(Z)/a)ckBT as the new adiaba-
ticity parameter. For a 1D charge transfer event, the
adiabaticity parameter is of the form gp o« AA}/
w.AE, with AE, the characteristic energy scale of the
nuclear degrees of freedom, such as the activation barrier.
In the low temperature limit k7T << AE,, the effective
2D adiabaticity parameter diverges while g;p remains
finite. Physically, this means that in the low temperature
limit, the adiabatic description is always valid in the
presence of the symmetry constraint.

We can justify treating g,p as an adiabaticity para-
meter by estimating the time 7, spent in the 2D
Landau-Zener region during a hop event. By Einstein’s
relation, the classical diffusion constant D of the nu-
clear degrees of freedom is kgT /7, so that 7,p ~ £2/D
is of order & n/kgT. Using & = \JAA,/kA and identi-
fying Ay7,p as the adiabaticity parameter we recover
the above expression for g,,. Interestingly, even though
the quasiclassical method should become generally
valid in the low temperature limit, due to the symme-
try constraint, the latter enhances the resonant tunneling
regime as well. In the 1D description, resonant tunnel-
ing takes place within a distance ap, = (kzTh/nAF)'/3
of the degeneracy point. Compared to a,p =
(kgTH/mk)'/* for the present case, we see that for
T — 0 the regime of coherent tunneling in 2D is always
larger than in 1D.

DNA may provide a testing ground for the study of D-A
charge transfer with symmetry constraints. A number of
experiments have reported that radicals are able to move
over considerable distances along double-stranded DNA
by 7 orbital overlap [17]. The transport of a radical
between two adjacent base pairs can be viewed as an
example of a D-A charge transfer process. The charge
degree of freedom is strongly coupled to the nuclear
degrees of freedom and the latter are coupled to the
solvent medium. Molecular dynamics simulations by
Chen et al [18] show that charging produces a large
deformation of the DNA base pairs. A neutral pair has
a mirror-planar symmetry, so there are two possible
mirror-related forms for this deformation, as shown in
Fig. 2. The reaction coordinate Y; (Y,) of the D (A) mole-
cule of this Letter would then correspond to the normal
mode coordinate that has the maximum overlap with the
deformation obtained in [18]. The coefficients k and v of
Eq. (3) can be obtained by means of a molecular dynam-
ics simulation [19].

For multiple stacked bases along a B-DNA chain, the
mirror symmetry is not exact due to the propeller twist.
The two alternative L and R structures of a charged base
pair, however, may still be sufficiently similar for the
present model to be relevant.
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FIG. 2. Side view of charge induced structural deformation in
DNA base pairs. Neutral base pairs, shown in the center, have a
mirror symmetry that is broken by the addition of an external
charge.

Finally, DNA base pairs undergo large-scale, thermally
induced structural fluctuations [20], as required by the
present model. Testing our description requires a mea-
surement of the temperature dependence of the adiaba-
ticity parameter g,p, which is predicted to diverge as
T~!'. The donor-state decay rate I' provides a natural
venue to this end, since it depends on g,p as gip/
(1 + g,p) and has already been measured for DNA by
laser spectroscopy [21].
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