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Coarsening and accelerated equilibration in mass-conserving heterogeneous nucleation
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We propose a model of mass-conserving heterogeneous nucleation to describe the dynamics of ligand-receptor
binding in closed cellular compartments. When the ligand dissociation rate is small, competition among receptors
for free ligands gives rise to two very different long-time ligand-receptor cluster-size distributions. Cluster sizes
first plateau to a long-lived, initial-condition-dependent, “metastable” distribution, and coarsen only much later
to a qualitatively different equilibrium one. Surprisingly, we also find parameters for which a very special subset
of clusters have equal metastable and equilibrium sizes, appearing to equilibrate much faster than the rest. Our
results provide a quantitative framework for ligand-binding kinetics and suggest a mechanism by which different
clusters can approach their equilibrium sizes in unexpected ways.
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I. INTRODUCTION

The binding of multiple particles to specific nucleation
sites is a key process in many physical and chemical settings.
The formation of droplets, condensates on aerosols [1,2], and
crystals [3] is often triggered by the presence of impurities or
boundaries, in a process known as heterogeneous nucleation
[4,5]. Heterogeneous nucleation also occurs in cell biology
during the assembly of sickle hemoglobin [6], β-amyloid
fibers [7], Arp2/3 complex-mediated actin nucleation [8], and
probably during clathrin-coat assembly [9]. Within biochem-
ical applications, ligand-receptor binding can also be viewed
as a particular paradigm of heterogeneous nucleation, where
multiple ligands bind to a single receptor akin to an impurity
seed in solid-state nucleation.

Viewed through this lens, nucleation is ubiquitous in cell
biology. Indeed, receptor loading levels control a variety of
biochemical reactions, from viral entry to cell signaling. The
chemical stoichiometries involved in ligand-binding events
however, may limit the maximum number of ligands a receptor
can hold to about a dozen. For example, hemoglobin can
bind at most four oxygen molecules [10], virus-cell fusion
occurs after a small number of cell surface receptors bind to a
viral protein [11], and cell signaling is initiated after a certain
number of phosphates bind to specific enzymes [12]. This is
in contrast to most physical and chemical systems, in which
aggregation of an unlimited number of particles can lead to
the emergence of macroscopic structures.

An even more critical feature of nucleation in cellular
settings is the small system volumes involved and, as a
consequence, the presence of a finite number of monomeric
ligands driving the nucleation process. In the small volumes
encountered in cells, ligand production and degradation are
often slower processes than attachment and detachment to
receptors, allowing certain ligands to be depleted [13]. Because
there is no source to replenish the free ligand concentration,
receptors in confined, isolated systems compete amongst
themselves for the finite pool of free monomeric ligands, as
depicted in Fig. 1. For simplicity, throughout the remainder of
this paper, the terms “monomers” and “ligands” will be used
interchangeably, as will “seeds” and “receptors.”

The dynamics of mass-conserving homogeneous nucle-
ation has been well-studied in the context of Becker-Döring
equations [14–16]. In this work we study its heterogeneous
counterpart, relevant for ligand-receptor kinetics in biology. So
far, most theoretical treatments for heterogeneous nucleation
have considered equilibrium partition functions for nucleation
with specific forms for the free energy of monomer association
[17–19]. Many other approaches focus on either the molecular
details and geometry of an individual cluster particle [20],
or on the asymptotic dynamics of even more coarse-grained
continuum size distributions [21]. In many applications, a
constant source of monomers is also imposed [22]. Here, we
will instead consider the dynamics of a system with a total fixed
number M of monomeric ligands (bound and unbound) and
a fixed number Ns of receptor seeds. Each receptor can bind
at the most N monomeric ligands according to the spatially
uniform mass-action equations we describe in the next section.

Two qualitatively different cases are analyzed. In Sec. III,
we first consider irreversible binding, where the detachment
rate is strictly zero so that once attached, monomers cannot
detach from clusters. Irreversibility leads to a loss of ergodicity
since only a fraction of the possible cluster configurations will
be sampled during the dynamics, while many others will never
be visited. As a result, the final “quenched” or “metastable”
cluster-size distribution is not an equilibrium one and depends
strongly on initial conditions. Ergodicity is restored in the
case of a nonzero detachment rate, where all possible cluster
configurations are eventually sampled and where the cluster
sizes approach an equilibrium distribution, independent of the
initial configuration. Reversible binding, in the limit of small
unbinding rates, is in analyzed Sec. IV.

Several studies of homogeneous nucleation have shown
the existence of long-lived metastable states followed by final
equilibration, or “coarsening,” to a very different cluster size
distribution. These results were found for nucleating systems
driven by an infinite supply of monomers and while allowing
clusters to grow without bound [14,15,23]. Our results for
mass-conserving heterogeneous nucleation show a similar
coarsening behavior. The steady-state cluster distributions
arising from the irreversible and reversible dynamics are very
different from each other, especially in the limit of small
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FIG. 1. (Color online) A heterogeneous nucleation process in
which ligand monomers bind only to seeds. Here, Ns = 6 seeds (open
hexagons) are available to bind M = 30 initial monomers (filled dots).

particle numbers and even in the case of vanishingly small
detachment rates. In the latter case, when unbinding is very
slow compared to binding, relaxation to the true equilibrium
cluster-size distribution occurs over the long time scales
associated with unbinding. As a result, cluster concentrations
reach long-lived metastable plateaus that depend on initial
conditions and that can be closely approximated by results
obtained from considering irreversible dynamics, as treated in
Sec. III. Only at longer times, after monomers start unbinding
in appreciable numbers, does this metastable size distribution
“coarsen” and cross over to the true equilibrium one. While the
metastable and equilibrium cluster distributions are generally
very different, we find a surprising result: for certain sets
of parameters, special cluster sizes have identical metastable
and equilibrium concentrations. For these clusters, the equi-
libration process appears to be dramatically accelerated. In
Sec. V we find the exact mathematical relationship leading
to the apparent fast coarsening where certain clusters reach
equilibrium concentrations well before the rest. Our results
are a consequence of total mass conservation, and do not
arise in the case of receptors binding an unlimited supply of
free ligand monomers. Finally, in the Conclusions, we discuss
implications and future extensions of our work.

II. MASS-ACTION EQUATIONS

To begin our analysis, we consider a model of hetero-
geneous nucleation for M well-mixed monomeric ligands
binding sequentially [24] to any of the Ns uniformly dispersed
ligand seeds, neglecting fragmentation and aggregation that do
not involve monomers, since they have been treated in other
contexts [16,25]. We also assume that each seed can accommo-
date at most N monomers due to stoichiometry constraints, and
consider the mean-field mass-action equations for the number
of clusters ck(t) of size k, where 0 � k � N . Here, k = 0
indicates “naked seeds,” with no bound monomers, and k = N

saturated ones, where no further binding is possible. In general,
monomer attachment and detachment rates from a cluster of
size k can be explicitly k-dependent. Specific forms for pk and
qk have been used to describe cooperativity and the nucleation
of clusters of various shapes and in different dimensions.
For instance, pk ∼ k1/2 and constant qk are typically used
to model 2D nucleation of circular droplets when monomer
binding is not diffusion-limited [26]. Here, we assume that
while detachment is independent of the number of particles in
the free monomer pool, the attachment process depends only

on how many monomers remain unbound. The Becker-Döring
equations for ck(t) can thus be written as

ċ0 = −p0m(t)c0 + q1c1,

ċk = −pkm(t)ck − qkck + pk−1m(t)ck−1 + qk+1ck+1, (1)

ċN = −qNcN + pN−1m(t)cN−1.

The rates pkm(t) and qk represent monomer attachment and
detachment rates, respectively. The effective attachment rate is
proportional to m(t), the number of free monomers available
for binding:

m(t) ≡ M −
N∑

k=1

kck(t). (2)

Note that although these equations are written assuming finite
particle numbers, they can also describe concentrations, given
a normalizing reference concentration. The quantities M , N ,
Ns, and ck(t) therefore need not be integers. We assume a
typical initial condition where all the mass is in the form of
monomers m(t = 0) = M,c0(t = 0) = Ns, and ck>0(t = 0) =
0. The other constraint particles must obey is that the total
number of seeds must be Ns at all times, regardless of cluster
population levels. We thus impose

Ns =
N∑

j=0

cj (t), (3)

which is satisfied by the system in Eq. (1), using the given
initial conditions. For clarity, and because we will be referring
to these equations often, we rewrite our mass-action equations
for the simplified case of uniform attachment and detachment
rates pk = p and qk = q. This approximation might be
most relevant for modeling nucleation and growth of linear
filaments, where there are always only one or two ends that
monomers can bind to or detach from. Rescaling time by the
attachment rate p, we find

ċ0 = −m(t)c0 + εc1,

ċk = −m(t)ck − εck + m(t)ck−1 + εck+1, (4)

ċN = −εcN + m(t)cN−1,

where ε = q/p. In the context of Eqs. (4), irreversible binding
corresponds to ε = 0 and reversible binding to ε > 0. In the
following, we shall be interested in the difference in behavior
between ε = 0 and ε → 0+. As we shall see, the presence
of a vanishingly small detachment rate ε → 0+ can lead to
qualitatively different cluster-size distributions compared to
those obtained in the purely irreversible case at ε = 0.

III. IRREVERSIBLE BINDING

We first consider the strictly irreversible binding limit in the
general framework of Eqs. (1), where there is no detachment
and qk = 0. Two possibilities arise. For M � NNs , there is an
excess of available monomers. Given the irreversible nature
of the dynamics, all Ns seeds will be fully occupied by N

ligands, leaving M − NNs free ones. In this case, we expect
steady-state solutions to yield cN (t → ∞) = Ns , ck �=N (t →
∞) = 0, and m(t → ∞) = M − NNs . We shall call this the
excess monomer limit. In the other case of M < NNs there are
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not enough monomers to fill seeds to capacity, and a nontrivial
steady state will arise. Here, we expect the existence of a finite
time t∗ at which the pool of free monomers is depleted, so that
m(t∗) = 0. At this time, the final cluster distribution is the one
frozen at t∗, since no further attachments nor any detachments
are possible. We shall call this the excess seed limit. Since the
quantity M − NNs will play an important role in our analysis,
we introduce the monomer excess parameter σ = M/NNs, so
that values of σ � 1 correspond to the excess monomer case,
while σ < 1 describes the case of excess seeds.

To determine the final cluster-size distributions in both
cases, first note that Eqs. (1) [or Eqs. (4)] are nonlinear due to
the constraint on m(t) involving ck(t) via Eq. (2). If qk = 0,

however, all terms on the right-hand side multiply m(t). We
can make analytic progress by dividing by m(t) and defining
a rescaled time τ according to

dτ

dt
= m(t) = M −

N∑
k=1

kck(t). (5)

Equations (1) can now be written as

dc0

dτ
= −p0c0,

dck

dτ
= pk−1ck−1 − pkck, (6)

dcN

dτ
= pN−1cN−1.

Our goal is to find the rescaled time τ∗ corresponding to
the rescaled time at which monomers are irreversibly depleted:
m(τ∗) = M − ∑N

k=1 kck(τ∗) = 0. The quenched, steady-state
cluster-size distribution is thus found by evaluating the cluster
concentrations at τ∗: ck(τ∗) ≡ c∗

k . Equations (6) are linear and
can be solved by using Laplace transforms. Upon defining
c̃k(s) = ∫ ∞

0 e−sτ ck(τ )dτ , we find that c̃k(s) satisfy

sc̃0 − Ns = −p0c̃0,

sc̃k = −pkc̃k + pk−1c̃k−1, (7)

s ˜cN = pN−1c̃N−1,

which yield the solutions

c̃k(s)

Ns

=
∏k−1

j=0 pj∏k
j=0(s + pj )

,
c̃N (s)

Ns

=
∏N−1

j=0 pj

s
∏N−1

j=0 (s + pj )
. (8)

To simplify our analysis, we restrict ourselves to uniform
intrinsic attachment rates pk = p and use units of time such
that p = 1. The dynamics are now described by Eq. (4) with
ε = 0. The solutions represented by Eqs. (8) thus simplify to

c̃k(s)

Ns

= 1

(s + 1)k+1
,

c̃N (s)

Ns

= 1

s(s + 1)N
, (9)

which can be inverse Laplace transformed to yield

ck<N (τ )

Ns

= τ ke−τ

k!
,

cN (τ )

Ns

= 1 −
N−1∑
j=0

τ j e−τ

j !
. (10)

These results obey the constraint in Eq. (3). The value of τ∗ can
now be found by using Eqs. (10) in the mass constraint Eq. (2)

and imposing the condition m(τ∗) = 0. After some algebra,
this condition yields

τN
∗ e−τ∗

N�(N )
+ (N − τ∗)

�(N,τ∗)

N�(N )
= 1 − σ. (11)

As mentioned above, we expect a finite solution τ∗ only in the
excess seed (σ < 1) case. For excess monomers (σ � 1), we
do not expect a finite time at which monomers are depleted.
Indeed, the left-hand side of the above expression is positive
and monotonically decreasing, implying that Eq. (11) will have
a finite, real solution only in the excess seed case, for σ < 1.
When the initial monomer number M is increased, and σ

decreases past unity, the root τ∗ diverges since all binding sites
on the seeds are eventually occupied and further depletion
of monomers can never occur. The quenched concentrations
in this case are described by m(τ∗ → ∞) = M − NNs and
ck(τ∗ → ∞) = Nsδk,N , indicating that all seeds are filled to
capacity for σ � 1, as expected.

As a nontrivial example of the excess seed case, σ < 1, we
can numerically solve Eq. (11) for N = 10, M = 30, Ns = 8,

and σ = 3/8 to obtain τ∗ = 3.75248 and

c0

Ns

= e−τ∗ = 0.02346,
c1

Ns

= τ∗e−τ∗ = 0.088031,

c2

Ns

= τ 2
∗

2!
e−τ∗ = 0.165168,

c3

Ns

= τ 3
∗

3!
e−τ∗ = 0.206596,

c4

Ns

= τ 4
∗

4!
e−τ∗ = 0.193812,

c5

Ns

= τ 5
∗

5!
e−τ∗ = 0.145455,

(12)
c6

Ns

= τ 6
∗

6!
e−τ∗ = 0.0909699,

c7

Ns

= τ 7
∗

7!
e−τ∗ = 0.0487661,

c8

Ns

= τ 8
∗

8!
e−τ∗ = 0.0228743,

c9

Ns

= τ 9
∗

9!
e−τ∗ = 0.0095373,

c10

Ns

= τ 10
∗

10!
e−τ∗ = 0.0035788.

It can be explicitly verified that these solutions obey∑10
k=0 c∗

k = Ns . Finally, for large N (but NsN < M), the root
of Eq. (11) is approximately

τ∗ � M

Ns

+ e− M
Ns Ns

M
√

2πN

(
eM

NNs

)N

, (13)

which allows us to find analytic approximations to the
final quenched values c∗

k = ck(τ∗) in this limit. The full
irreversible dynamics are illustrated in Fig. 2. In order to
find approximations for the maximal concentrations of clusters
ck(t) of size k < N , we note that from Eq. (10) they occur at
the rescaled time τmax = k. To find the corresponding real time
tmax we insert Eqs. (10) into the scaling relationship Eq. (5) so
that

dτ

dt
= M − Ns

N−1∑
k=1

k
τ ke−τ

k!
− N

(
1 −

N−1∑
k=0

τ ke−τ

k!

)
. (14)

Equation (14) can be numerically integrated to find t(τ ).
An approximation can be easily derived for large N (while
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FIG. 2. (Color online) (a) Numerical solution to Eqs. (4) with
M = 50, N = 6, Ns = 5, and ε = 0. Since monomers are in excess
(σ = 5/3 > 1), all clusters except cN vanish at long times. This
plot is indistinguishable from the one plotted using ε = 0.0001,
and is qualitatively similar to what would be found for a con-
stant free monomer concentration m(t) = M . (b) The numerically
computed (colored dots) maximal cluster concentrations ck(tmax) =
kke−k/k! and corresponding times tmax. The approximation tmax ≈
N−1

s ln[M/(M − Nsk)] and the corresponding ck(tmax) are also shown
by the dashed and solid curves, respectively.

remaining in the NsN < M excess monomer limit). In this
case, the right-hand side of Eq. (14) is approximately

N−1∑
k=1

k
τ ke−τ

k!
≈ τ, (15)

with corrections of O(1/N). Equation (14) can therefore be
accurately approximated by

dτ

dt
≈ M − Nsτ, (16)

which can be explicitly integrated to give

t(τ ) ≈ N−1
s ln[M/(M − Nsτ )]. (17)

We plot tmax ≡ t(τmax) = t(k) ≈ N−1
s ln[M/(M − Nsk)] and

the associated ck(tmax) = kke−k/k! in Fig. 2(b) as a function
of k. The approximation for tmax is shown by the dashed curve
in Fig. 2(b) and is extremely accurate, especially for small k

where maxima are reached before appreciable accumulation
of larger clusters invalidate the approximation τ̇ ≈ M − Nsτ .

In the next section we will analyze the nucleation process
when successive monomer detachment is allowed. The ques-
tion will arise as to how closely the irreversible nucleation
results found here are followed in the case of a vanishingly
small, but nonzero, detachment rate ε. As we shall see, our
reversible results will closely mirror the irreversible ones in
the limit ε → 0+, only in the excess monomer case, when
seeds are saturated with ligands. In the excess seed case on
the other hand, dramatic differences between reversible and
irreversible binding arise, even as ε → 0+. Only very special
parameter choices will lead to the rare matching of reversible
and irreversible dynamics for specific clusters.

IV. REVERSIBLE BINDING

In this section we find the equilibrium cluster-size dis-
tributions allowing for positive detachment rates qk > 0.
We start by finding the equilibrium cluster concentrations
c

eq
k ≡ ck(t → ∞) by setting dck/dt = 0 in Eqs. (1). Due to

reversibility, initial conditions are irrelevant. After defining
meq ≡ M − ∑N

k=1 kc
eq
k , we find that c

eq
k can be written as a

function of c
eq
0 and meq as follows:

c
eq
k = c

eq
0

∏k−1
j=0 pj∏k
j=1 qj

[meq]k. (18)

This expression can be used in the mass constraint of Eq. (2)
and the total cluster number constraint in Eq. (3) to find two
equations for the two unknowns c

eq
0 and meq:

meq = M − c
eq
0

N∑
k=1

k

∏k−1
j=0 pj∏k
j=1 qj

[meq]k, (19)

Ns = c
eq
0

N∑
k=1

∏k−1
j=0 pj∏k
j=1 qj

[meq]k. (20)

These equations can be solved by substituting the expression
for c

eq
0 in Eq. (20) into Eq. (19) and determining meq numeri-

cally. Again, computations are greatly simplified by restricting
our analysis to uniform attachment and detachment rates
pk = p and qk = q, respectively. Further nondimensionalizing
time in units of p−1 and introducing ε ≡ q/p, Eqs. (18)
become

c
eq
k = c

eq
0

[
meq

ε

]k

≡ c
eq
0 zk, (21)

where z ≡ meq/ε. The fixed seed number constraint in Eq. (3)
yields c

eq
0 = Ns(z − 1)/(zN+1 − 1) so that by substituting

c
eq
0 zk into Eq. (2) we find an equation for z:(

εz

NsN
− σ

)
(z − 1)(zN+1 − 1) + zN+2

− (1 + 1/N )zN+1 + z

N
= 0. (22)

Equation (22) determines the numerical value for the normal-
ized cluster fugacity z. In the small detachment limit ε → 0+,
once more, the two limits of excess monomers and excess seeds
naturally arise. In the excess monomer case, σ � 1, the real
root of Eq. (22) can be found as the inner solution of a singular
perturbation [27], where the largest power of z multiplies ε so
that z = ε−1(M − NsN ) + Ns(M − NsN )−1 + O(ε). Insert-
ing this approximation for z into the seed constraint Eq. (3),
we find c

eq
0 ≈ Ns[ε/(M − NsN )]N + O(ε), which yields

c
eq
k ≈ Ns

(NsN )N−k

εN−k

(σ − 1)N−k
+ O(εN−k+1). (23)

Thus, equilibrium concentrations all vanish as O(εN−k)
except that of the maximum cluster k = N, which asymptotes
to c

eq
N ≈ Ns − O(ε). This qualitative behavior is expected in

the excess monomer case when nearly all available binding
sites are occupied and only nearly fully occupied seeds survive.
In particular, when ε → 0+, c

eq
k �=N → 0 and c

eq
N → Ns . This

result is identical to what was found for the strictly irreversible
case of ε = 0 in the preceding section. Thus, in the excess
monomer case (σ � 1), all clusters will be filled to capacity
in the case of vanishingly small detachment rates, regardless
of when the limit ε → 0+ is taken.
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FIG. 3. (Color online) Values of the normalized cluster fugacity z

determined from the real root of Eq. (22). Fugacities for N = 3,10,40
are plotted in the limit ε/(NsN ) = 10−6. A good approximation to z is
given by Eq. (24) and is shown by the dashed curves. The region σ ≡
M/(NsN ) � 1 corresponds to the case of excess monomers where
c

eq
k ∼ εN−k , as shown in Eq. (23).

In the opposite case of excess seeds, σ < 1, monomers
are depleted before all binding sites on all Ns seeds can be
filled, leading to finite concentrations c

eq
k . Interestingly, the

excess seed limit further separates into two subcases. From
our numerical analysis of Eq. (22) we find that z > 1 for 1/2 <

σ < 1, implying that c
eq
k+1 > c

eq
k and larger cluster sizes tend

to be favored. On the contrary, for σ < 1/2 we find z < 1 so
that c

eq
k+1 < c

eq
k . In this case, there are too few monomers M

for larger clusters to persist and smaller cluster sizes are more
populated. For a range of values of σ near 1/2 we find that the
approximation

z ≈ 2 −
[

1 − 24

N + 2

(
σ − 1

2

)]1/2

, (24)

and the associated c
eq
k = c

eq
0 (z)zk , are highly accurate. Note

that at the special point σ = 1/2 the monomer fugacity z =
1 and all equilibrium concentrations c

eq
k = Ns/(N + 1) are

equal. The behavior of the root z of Eq. (22) as a function
of the monomer excess is plotted for σ < 1 in Fig. 3. The
analytic approximation Eq. (24) is also indicated by the dashed
curves.

Our analysis thus far does not provide insight into how
the equilibrium state is reached. As discussed earlier, when
ε → 0+, we expect binding to occur in a nearly irreversible
manner over intermediate times, yielding metastable cluster-
size distributions. Repeated monomer detachment and reat-
tachment become significant only after much longer times,
of the order tc ∼ ε−1, allowing redistribution of mass into
equilibrium clusters.

To find the metastable cluster-size distribution, we make
the ansatz that ck(t) can be approximated by setting the
detachment rate ε = 0 at intermediate times. We may thus
neglect detachment and use the results obtained for irreversible
binding up to tc ∼ ε−1, beyond which detachment effects may
become appreciable, both in the excess monomer and excess
seed cases.

Figure 2(a) shows the full time dependence of ck(t) in the
reversible, excess monomer case where σ = 5/3 � 1. Here,
as expected, both c

eq
k<N and ck<N (τ → ∞) ≡ c∗

k<N vanish
as ε → 0+. In this case, the dynamics is not appreciably
affected by the onset of detachment and there are no dramatic
behavioral crossovers originating across the ε−1 time scale.
Reversible and irreversible dynamics thus coincide at all time
scales in the ε → 0+ limit if σ � 1. In particular, the initial
rise in c0<k�N (t) is determined by the monomer loading
process and is independent of the detachment rate ε. Setting
ε = 0 and using our results from the preceding section we
can numerically compute the time scale tmax over which
the cluster-size distributions peak. We have verified that as
ε → 0+, the full dynamics arising from the reversible binding
process is not appreciably different from that obtained in the
irreversible binding limit. In summary, when monomers are in
excess, σ � 1, the differences between c

eq
k and c∗

k vanish in the
ε → 0+ limit, ergodicity-breaking is not apparent, and seeds
are always filled to capacity.

We now consider reversible binding in the σ < 1 case,
where there are more receptor seeds than initial free monomers.
As in the ansatz made in the excess monomer case, we
assume that at least up to time scales of order ε−1, the
dynamics can be approximated as an irreversible binding
process, where ε = 0. By following the full dynamics in
Eqs. (4) we verify that at intermediate times, the metastable
concentrations ck(t) approach levels approximated by the final
ones ck(τ∗) ≡ c∗

k ≡ Nsτ
k
∗ e−τ∗/k! reached in the irreversible

case when ε = 0. Following the evolution of Eqs. (4) beyond
time scales ε−1, we find that these metastable concentrations
eventually coarsen toward a qualitatively different equilibrium
distribution defined by c

eq
k (ε → 0+).

This qualitative difference in cluster-size distributions is
noticeable only in the excess seed limit when σ < 1 and
illustrates ergodicity-breaking at ε = 0, as clearly shown in
Fig. 4. In Fig. 4(a), where σ = 3/8 < 1/2, seeds are in
such strong excess that monomers are quickly depleted and
c∗
k+1 < c∗

k . Figure 4(b) plots c
eq
k as a function of ε, found

from numerically solving Eq. (22). Note that the values of
c

eq
k (ε → 0+) differ from the intermediate ones approximated

by the frozen distribution c∗
k . The latter are indicated by the

colored dots. Figures 4(c) and 4(d) are the analogous plots but
for 1/2 < σ < 1, where c∗

k+1 > c∗
k . When seeds are in excess,

the crossover to equilibrium is clearly observable over the
coarsening time scale tc ∼ ε−1.

V. APPARENT ACCELERATED EQUILIBRATION
OF SPECIFIC CLUSTERS

The general qualitative behavior described in the preceding
section is that when seeds are in excess (σ < 1), the full hetero-
geneous nucleation problem exhibits dynamics occurring over
two time scales. The first is of t ∼ O(1) and corresponds to
monomer attachment rates, while the second coarsening time
scale, tc ∼ ε−1, is associated with the monomer detachment
rate. In general, c

eq
k �= c∗

k .
However, upon fine tuning relevant parameters, we find

special values of σ < 1 and N where up to two specific
cluster sizes k can have nearly equal values of quenched and
equilibrium concentrations (ceq

k ≈ c∗
k ) in the ε → 0+ limit.

011608-5



TOM CHOU AND MARIA R. D’ORSOGNA PHYSICAL REVIEW E 84, 011608 (2011)

FIG. 4. (Color online) Ergodicity-breaking occurs only when
seeds are in excess. (a) Numerical solution to Eqs. (4) with ε =
0.0001, M = 30, N = 4, and Ns = 20 (σ = 3/8). In this strong
excess seed case, σ < 1/2 and both c∗

k > c∗
k+1 and c

eq
k > c

eq
k+1.

(b) c
eq
k as a function of ε. Note that even as ε → 0+, c

eq
k are different

from the metastable values c∗
k (colored dots) found from setting ε = 0

in Eqs. (4). (c) Cluster concentrations ck(t) for ε = 0.0001, M = 30,
N = 4, and Ns = 10 (σ = 3/4). In this weak excess seed case, σ >

1/2, both c∗
k < c∗

k+1 and c
eq
k < c

eq
k+1. (d) Again, ergodicity-breaking

arises since c
eq
k (ε → 0) �→ c∗

k (ε → 0). In all plots, the free monomer
concentration m(t) and the number of naked seeds c0(t) can be recon-
structed from the constraint conditions and are not explicitly shown.
Labeling for panels (b) and (d) is such that the c

eq
k values at ε = 0

correspond to the closest ck values in panels (a) and (c), respectively.

These clusters quickly reach their equilibrium concentrations
on a short time scale independent of ε. Mathematically, the
sizes k that are subjected to this rapid, apparent equilibration
can be found by setting c∗

k = c
eq
k :

Ns

τ k
∗ e−τ∗

k!
= Ns

(z − 1)zk

(zN+1 − 1)
, (25)

where τ∗ and z are determined by Eqs. (11) and (22),
respectively.

Figure 5(a) shows the relative difference (c∗
k − c

eq
k )/ceq

k

for fixed N = 6 and σ as a function of the discrete cluster
size k. Generally, we find that many values of 0 < σ < 1
give rise to at least one value of k at which quenched
cluster concentrations equal equilibrium concentrations. In
the above example, N = 6 and σ = 0.35633, and clusters
of size k = 4 (red arrow) quickly quench to their equi-
librium values. Figure 5(b) plots the numerical solution
to Eq. (4) for ε = 10−10, N = 6 and σ = 0.35633. For
simplicity, we have plotted only c3(t),c4(t), and c5(t). Note
that even though c∗

4 = c
eq
4 (dashed line), c4(t) does suffer a

small transient perturbation due to the rearrangement of all
other clusters ck �=4 at time t ∼ ε−1, temporarily disturbing
the balance of c4(t). Figures 5(c) and 5(d) illustrate the
behavior for σ = 0.86293. Here, Fig. 5(c) predicts that c1

quickly reaches its equilibrium value. Figure 5(d) explicitly
plots c0(t),c1(t), and c2(t) for σ = 0.86293. Figures 5(a)

FIG. 5. (Color online) (a) The relative difference (c∗
k − c

eq
k )/ceq

k

as a function of discrete values of k for σ = 0.08,0.35633,0.92.
(b) Selected cluster concentrations for σ ≡ M/(NsN ) = 0.35633,
where c∗

k=4 ≈ c
eq
k=4. Note the small transient in c4(t) near t ∼ ε−1.

(c) (c∗
k − c

eq
k )/ceq

k plotted as a function of k for σ =
0.08,0.86293,0.92 These values indicate that for σ = 0.86293, the
concentration c1(t) quickly reaches its equilibrium value. (d) The
corresponding concentration plot showing just c0(t),c1(t), and c2(t).
These plots also indicate that for σ = 0.08, the concentration c2(t)
experiences accelerated equilibration.

and 5(c) also suggest that c∗
4 ≈ c

eq
4 over a wide range of

values of σ . For the finite processes we have considered,
we find that at most two sizes of k, out of N , can exhibit
accelerated equilibration, provided σ and N are precisely
tuned. We expect the qualitative aspects of these results
to hold when binding and/or unbinding rates are weakly
cluster-size dependent, allowing our analysis to apply in
scenarios of weakly cooperative ligand-receptor binding [24].

VI. CONCLUSIONS

In this work we have analyzed a simple and mathe-
matically tractable model of heterogeneous nucleation to
describe ligand-receptor binding in closed systems, such as
within cells or organelles. A complete analysis in terms of
the parameters (M,N,Ns) in the ε → 0+ limit shows how
dramatically differently the system behaves in a monomer-rich
environment compared to a seed-rich one. In the latter case,
when binding sites outnumber initial monomers (σ < 1), we
find that after an initial transient ∼ tmax, cluster densities
first approach c∗

k , approximating the quenched concentrations
when ε = 0 and all free monomers have been depleted.
This long-lived metastable distribution eventually coarsens
to a very different equilibrium distribution c

eq
k at much later

times tc ∼ 1/ε. Surprisingly, when parameters (σ and N ) are
finely tuned, it is also possible that c∗

k ≈ c
eq
k , for particular

k clusters, resulting in much shorter coarsening times. We
find that clusters of up to two specific sizes may appear to
reach their equilibrium concentrations by t ∼ (1). Our results
have general implications for ligand-receptor kinetics and
suggest practical ways of tuning (M,N,Ns) in experiments to
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accelerate the equilibration of specific clusters by stabilizing
their metastable sizes.

There are potentially many physical realizations of our
analysis. In the hemoglobin example mentioned in the Intro-
duction, Ns would correspond to the concentration of oxygen-
binding hemoglobin metalloproteins, while M would represent
the oxygen molecule concentration. Here, each hemoglobin
binds at most N = 4 oxygen molecules, and typically there
is an excess of oxygen ligands (M � NsN ), except perhaps
under the most extremely hypoxic conditions. However, there
are many other scenarios in which ligand concentrations can
be comparable or lower than the total number of binding sites
(M ∼ NsN ). Examples where ligand depletion often occurs
include transcription factor binding, radioligand analysis
[28,29], and signal transduction [30]. In this last example,
the dynamic range of receptor concentrations predicted by our
analysis puts bounds on the chemical signaling that can arise
from up-regulation of receptor expression.

A number of extensions of our analysis can be further inves-
tigated. Certain forms for cluster-size-dependent attachment

and detachment rates, pk and qk , can be incorporated into
the analysis. For example, if pk ∼ k, certain products and
sums in Eqs. (18), (19), and (20) can be analytically expressed
or approximated to derive variations to Eq. (22) and the
associated concentrations c

eq
k . Furthermore, for small numbers

of clusters, the mean-field results derived from the Becker-
Döring equations may deviate from the expected cluster-size
distributions arising from fully stochastic simulations [22]. We
expect our mean-field results to be qualitatively valid when
cluster correlations are included in the dynamics. A careful
quantitative investigation of stochastic effects will be included
in future work.
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