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Two-level system with a thermally fluctuating transfer matrix element: Application to the problem
of DNA charge transfer

Maria R. D’Orsogna and Joseph Rudnick
Physics Department, University of California, Los Angeles, California 90095-1547
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Charge transfer along the base-pair stack in DNA is modeled in terms of thermally assisted tunneling
between adjacent base pairs. The key element of the approach in this paper is the notion that this tunneling
between base pairs that fluctuate significantly from their nominal orientation is rate limited by the requirement
of optimal alignment. We focus on this aspect of the process by modeling two adjacent base pairs in terms of
a classical damped oscillator subject to thermal fluctuations as described by a Fokker-Planck equation. We find
that the process is characterized by two time scales, a result that is in accord with the experimental findings.
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I. INTRODUCTION

In spite of the fact that a decade has passed since the
definitive observation of charge transfer along the DN
base-pair stack@1#, the detailed properties of this proce
have not been definitively elucidated. This is partly due
the inherent complexity of the molecular structure of DN
and to the large number of external and intrinsic factors t
exert an influence on DNA structure and behavior. The c
rent unsettled situation also reflects the absence of an ov
agreement on the precise mechanism by which this ch
transport takes place. One of the key issues that awaits
illumination is the role of disorder—both static an
dynamic—on the propagation of charge along the base-
stack. A related, and quite fundamental, question is whe
charge transport is a coherent quantum-mechanical proc
such as conduction of electronic charge against a static
deformable, background, or whether it it takes place as f
damentally incoherent transport, as a variation of the rand
walk. The answers to these and other questions will hav
significant impact on both our understanding of the biolo
cal impact of charge transport in DNA and the developm
of applications based on this phenomenon.

Despite the often contradictory results of experimental
vestigations@2–6#, a few conclusions seem inescapable. T
first is that long-range charge transport along the base-
stack depends quite strongly on the sequence of the
pairs @7#. In addition, base-pair mismatches can have a
nificant deleterious effect on charge transport@8,9# ~see,
however, Ref.@10#!. Furthermore, strands of DNA displa
considerable disorder, both static@11# and dynamic@12–15#.
Finally, several sets of experiments on ensembles of s
DNA strands have uncovered an unusual two-step cha
transfer process@16,17#. These studies focus on fluoresce
charge donors intercalated in the DNA oligostrands. As
charge migrates towards the acceptor, the fluorescenc
quenched and the rate of migration is determined by
decaying fluorescence profile. The data reveal that this de
process occurs according to two characteristic time sc
that are separated by more than an order of magnit
@16,17#. Any model that purports to explain charge transp
must take all this into account.
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In this paper, we discuss a model for short-range cha
transport along a base-pair stack that undergoes substa
structural fluctuations. The process occurs via thermally
sisted quantum-mechanical tunneling of charge carriers f
one base pair to the next, under the assumption that
tunneling is properly characterized as occurring in the pr
ence of a dissipative environment. A key conjecture is t
charge transfer takes place only when the neighboring p
are in a state of optimal ‘‘alignment,’’ and that this alignme
is statistically unlikely in thermodynamic equilibrium. As w
will see, this conjecture leads in a natural way to a mo
exhibiting the dual-time-scale feature described above. Ad
tionally, the model generates predictions that can be rea
tested. We shall relate the problem at hand to the dynam
of a simple two-level system~TLS!, realized by a donor and
an acceptor state.

In Sec. II, we briefly recapitulate what is known about t
tunneling process in the presence of friction for a TL
system. We also quantify our notion of a coordinateu asso-
ciated with the ‘‘alignment’’ of adjacent base pairs and of t
influence of the dynamics of this new coordinate on cha
transfer.

Section III specifies the model for describing a gene
collection of TLS, initially in the donor state and characte
ized by a fluctuating alignment variableu. The probability

distribution of donor states,W(u,u̇ ,t), obeys a Kramers
equation with a sink term due to charge transfer to the
ceptor. The rate of charge transfer will be expressed by
fluctuating rateG~u!. This Kramers expression is recast in
the form of a Volterra equation with the use of a Lie-Algeb
approach defined on the Hilbert space of the eigenstate
the Kramers equation forG~u!50. We will discuss limiting
cases of the solution to obtain physical insight and to rev
the two-time-scale decay of the probability distribution d
to the sink term. We conclude in Sec. IV with a discussion
the possible application of our results to charge transfe
strands of DNA consisting of several base pairs.

The key result of our calculations lies in the determinati
of the probability distributionP(u* ,t), of donor states
evaluated at the optimal configurationu* and with the u̇
variable integrated out. Indeed, under the assumption tha
tunneling process is most effective atu;u* , this quantity is
©2002 The American Physical Society04-1
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directly related to the fluorescence intensityI (t) of the base-
pair complexes, as probed by Barton and co-workers@16,17#,
through the following:

I ~ t !5I 0F12GE
0

t

P~u* ,t8!dt8G . ~1!

The quantityI 0 of the above relationship is a proportionali
constant andG is the integrated rate of transfer to the acce
tor. We shall determine the double exponential characte
P(u* ,t), and hence ofI (t), in qualitative agreement with
the experimental findings. The conjectures made on the
istence of an optimal and unlikely configurationu* will be
crucial in obtaining the two-stage decay process, a result
justifies the assumptions made.

The model we shall construct is obviously not restrict
in application to DNA oligostrands. Using our results, w
may conclude that in an ensemble of generic systems
migration of a particle from donor to acceptor proceeds s
tistically as a two-time-scale process, provided the trans
ing process is of rare occurrence.

II. THE TUNNELING PROCESS

The process of charge transfer from a donor site to
acceptor site—a two-level system—is ubiquitous in b
chemical and physical phenomena@18#. It occurs under a
broad variety of spatiotemporal conditions. Chemical bo
formation or the adenosine triphosphate~ATP! production in
photosynthetic reactions, or the operation of semiconduc
devices, all involve the transfering of charges to and fr
specific sites, via thermal activation or quantum-mechan
tunneling through an energy barrier. Because of its intrin
nature, charge transfer via quantum-mechanical tunne
takes place on a length scale of up to tens of angstroms@19#;
larger distances are possible if other transport mechan
are involved. These include thermal hopping among si
which are typical in disordered systems, the creation of c
duction bands in metals, or of lattice distortions of polaro
type in specific systems.

Quantum-mechanical tunneling from a donor site to
acceptor site is quite simply represented by a TLS@20#. In
this description, the tunneling particle is limited to being
the donor or in the acceptor state, while the other degree
freedom of the system, nuclear for instance, describe
charge potential energy.

The energetic profile of the system is thus characteri
by a multidimensional surface of which the acceptor and
donor states constitute relative minima, separated by a
rier. Of the many existing degrees of freedom, it is oft
possible to identify a ‘‘reaction coordinate’’y such that the
energy barrier between donor and acceptor is minimi
along this specific direction. The progress of the reaction
then dominated by the evolution along this coordinate, a
the potential energy surface can be reduced to an effec
one-dimensional curve.

In certain systems, the physical interpretation of the re
tion coordinate is immediate: it may be the relative bo
length in two diatomic molecules, or solvent polarizati
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around the donors and acceptors@21#. It is not an easy task to
give a physical interpretation of the reaction coordinate
the case of DNA base pairs because of the many possibil
involved—intrabase distance, mobile counterion concen
tion, solvent concentration, or a combination of all t
above. A possibility is offered by Ref.@22# where it is sug-
gested that the most relevant quantity is the interaction of
charge with the polar water molecules of the solvent. In t
paper, we shall refer to the reaction coordinatey in most
general terms.

A common representation of tunneling with dissipation
through the spin-boson formalism@20#. The donor and ac-
ceptor states are represented by means of a pseudospin
points up when the charge is in the donor state and do
otherwise. The Hamiltonian of the system is given by

HET5tsx1
Py

2

2M
1V~y,sz!1Hbath, ~2!

where

V~y,sz!5
1

2
Mv2~y1y0sz!

21
1

2
esz ~3!

andsx,z are the Pauli matrices. The charge in the donor~up!
state corresponds to the potentialV(y,1), whose equilib-
rium reaction coordinate is2y0, and the converse state co
responds toV(y,2), whose stable minimum is aty0. The
Hbath term represents contributions to the Hamiltonian o
dissipative environment coupled to the reaction coordina
Figure 1 illustrates the meaning of the potentialV(y,sz) in

FIG. 1. This figure illustrates the nature of the tunneling tran
tion. The two parabolic curves shown correspond to the two v
sions of the potentialV(y,sz) in Eq. ~2!, one corresponding to the
‘‘donor’’ state in which the tunneling particle is on one site, and t
other to the ‘‘acceptor’’ state in which the particle is on the oth
one. The two energiesEf andEb5Ef2e referred to in the text are
the forward and backward barrier energies, respectively. The h
zontal axis corresponds to the reaction coordinate,y.
4-2
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the effective Hamiltonian of Eq.~2!. The curve markedA
corresponds to the potential term in the donor state, while
curve markedB represents the potential function in the a
ceptor state.

This model has been thoroughly analyzed by Garget al.
@23# based on earlier work by Caldeira and Leggett@24#. A
similar analysis, but within a more chemical framework,
presented by Marcus and Sutin@25#. Energy conservation
requires that charge transfer takes place only when the r
tion coordinate is close to the degeneracy pointy5y* for
which V(y* ,1)5V(y* ,2); once the degeneracy point
reached, charge transfer is possible only because of the
zero off-diagonal tunneling matrix elementst.

The tunneling rateG from donor to acceptor is calculate
in the above references. For moderate dissipation of the
action coordinate, it is given by

G5
t2

\ S p

ErkBTeff
D 1/2

~e2Ef /kBTeff1e2Eb /kBTeff!, ~4!

where the reorganization energyEr and the energy barrier
Ef andEb depend on the details of the potential described
the reaction coordinate. In the limit of high temperatures,Teff
reduces to the usual temperatureT; whereas in the opposit
limit the quantity is temperature independent.

The aspect explored in this paper is the introduction a
investigation of the effect of a second reaction coordinateu,
governing the charge transfer process and coupled not to
energy but to the off-diagonal tunneling elementt, hitherto
been treated as a constant, and which we now write ast(u).

This new coordinate reflects the conjecture that in
case of DNA the tunneling matrix element is highly sensit
to the donor-acceptor relative configuration. Charge trans
along DNA in fact occurs along the stacked base pairs
means of overlappingp orbitals, and, at room temperatur
these base pairs strongly fluctuate with respect to each o
through variations of the twist, tilt, and roll parameters@26#.
The existence of base-pair fluctuations for DNA in soluti
is very well established, and is corroborated by experime
@12# and molecular dynamics studies@13–15#. For such a
highly asymmetric system such as DNA, fluctuations in
relative orientation of donors and acceptors affect the m
nitude of the orbital overlap between pairs, and the new c
lective coordinateu embodies the effects of these fluctu
tions.

We will also assume that theu variable is slowly varying
compared to the motion of the reaction coordinatey, so as to
define the lowest energy scale of the system. We may t
separate the motion of the two reaction coordinates i
Born-Oppenheimer spirit. Charge transfer will be assume
be instantaneous once the optimalu5u* value is reached
and a purely classical framework will be utilized for theu
dynamics. The new reaction coordinateu need not necessar
ily be pictured as a geometrical one, although this is
framework we will be utilizing in this paper. Just as in th
case of they reaction coordinate,u may be associated to th
particular chemical environment of the molecule or to a
other quantity influencing the strength of the tunneling e
mentt between the donor and the acceptor sites.
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The Hamiltonian describing the system, thus, is a mo
fied version of the spin-boson Hamiltonian introduced in E
~2! with a t(u)sx off-diagonal term, as also described
earlier work@27#. In order for charge transfer to take plac
we will assume that the reaction coordinate coupled to
energy must be close to the degeneracy pointy5y* , and
also that theu coordinate must be in the neighborhood of
optimal valueu* , which maximizes the tunneling amplitude
The physical picture to associate to this requirement is
the relative ‘‘alignment,’’u, does not favor charge transfe
unless an optimal configuration is reached:t(u).0 unless
u.u* . This conjecture will prove to be crucial in yieldin
the two-time-scale charge transfer of Refs.@16,17#.

In analogy to the experimental work cited above, we co
sider a collection of such two-level systems, with the cha
initially located on the donor site. Each one of these syste
is associated to a particulart(u) and, through Eq.~4!, to a
particular G(u) rate. Our objective is to determine th
mechanisms of charge transfer taking into account theu time
evolution and theG(u) rates accordingly distributed. W
shall assume theu dynamics to be governed by sma
Langevin-type random fluctuations. Att50, when the exter-
nal charge is injected on the donor site, the distribution ou
values is the usual Boltzmann distribution. If the occurren
of the optimalu* configuration is relatively unlikely, we will
indeed be able to show that the transfer process is chara
ized by a two-time-scale migration of the initial donor pop
lation.

The emergence of two time scales in the transfer proc
can be physically explained as follows. The existence of
initial nonzero population of TLS presenting the optim
valueu* ensures rapid tunneling to the acceptor. Theu dis-
tribution is thus depleted of population at the special va
and other transitions are forbidden to take place. The o
TLS will tunnel to the acceptor only after the system h
re-equilibrated and repopulated the optimal configuration
process that is slow because of the assumption that the
mal configuration is a relatively unlikely one. Hence, t
existence of a fast initial decay followed by a slower dec
process.

III. THE TLS AND u FLUCTUATIONS

A. The model

Consider a collection of TLS which at the initial tim
t50 are all in the up-donor configuration, and characteriz
by the angular parameteru. Let us denote byW(u,u̇,t) the
TLS population remaining in the up-donor state at timet and
for which the collective angular variable and its velocity a
specified.

The physical requirement thatu should be randomly, clas
sically fluctuating in time translates into the fact th
W(u,u̇,t) must evolve according to a Fokker-Planck-ty
equation as dictated by standard Langevin theory. To
probability evolution equation we must add an addition
depleting term that represents tunneling to the donor site
given by theG(u) term discussed above.
4-3
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Different scenarios are possible for theu dependence oft
and hence ofG. As discussed in the preceding section,
shall focus on a particular situation in which tunneling
possible only for a very specific subset of energetically
favorableu values. In this picture, tunneling is allowed on
if donors and acceptors reach an optimal—but unlikely
orientation with respect to each other. By including the tu
neling term in the time evolution equation forW(u,u̇,t), we
obtain a modified Fokker-Planck equation that may be u
to approach any physical system in which the presence
depleting term competes with the usual Langevin fluct
tions. The most natural choice for theu motion, the one we
shall discuss in the remainder of this paper, is that o
damped harmonic oscillator. We shall see that starting fr
an initially equilibrated system in which theu distribution is
the Boltzmann one, the insertion of the tunneling term w
result in the emergence of the two time scales discus
above. We will refer to the time derivative of theu coordi-
nate asu. The rotational moment of inertia associated tou is
denoted byI and its rotational frequency byV.

The goal of the next sections will be to determi
W(u* ,u,t), and in particular its integration with respect
the u variable. As described in the Introduction in fact, it
this quantity that is directly related to the experiments
wish to model by means of Eq.~1!.

B. Kramers equation with a sink term

The generic damped harmonic oscillator subject to r
dom noise responds to the following Langevin-type eq
tions:

u̇5u; u̇52gu2V2u1h~ t !, ~5!

where the stochastic forceh(t) is assumed to be a zero-mea
Gaussian and whose correlation function is dictated by
fluctuation-dissipation theorem for classical variables:

^h~ t !h~ t8!&5
2gkBT

I
d~ t2t8!52qd~ t2t8!. ~6!

The corresponding Fokker-Planck equation may be writ
by identifying @28# the proper coefficients in the Kramer
Moyal expansion from Eq.~5! and is generally referred to a
the Kramers equation. This equation governs the time ev
tion of the distributionW(u,u,t) of an ensemble of system
obeying the equations of motion~5!. It takes the form

]W

]t
52u

]W

]u
1

]

]u
@~gu1V2u!W#1q

]2W

]u2
. ~7!

The above equation is thoroughly analyzed in Ref.@29#,
where assuming an initial probability distributio
W(u,u,0)5d(u2u8)d(u2u8), the probabilityW(u,u,t) as
well as other relevant statistical quantities are obtained
equilibrium Kramers equation is solved by the tim
independent Boltzmann distributionW(u,u,t)5c0,0(u,u)
with
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c0,0~u,u!5
gV

2pq
expF2

g

2q
~u21V2u2!G . ~8!

Under the assumptions discussed earlier, the probability
tribution function W(u,u,t) for a particle localized on the
donor site and describing an effective angleu with its neigh-
bor will be described by the time evolution equation for
collection of damped oscillators subject to a decay termG,
representing tunneling to the acceptor. The latter term is
preciable only for a specific value of theu coordinateu* :

dW

dt
5HW2G~u,u,t ! W. ~9!

The H term is the differential operator that stems from t
right hand side of Eq.~7!. We shall assume the decay term
be introduced at timet50, prior to which the system had
attained its equilibration state. In other words, we choose
initial distribution W(u,u,0) to be Boltzmann-like, as ex
pressed in Eq.~8!. For simplicity, we chooseG(u) to be
independent ofu and of t and to be a Gaussian centered
u* and with widths:

G~u!5
k

A2ps
expF2

~u2u* !2

2s G . ~10!

The coefficientk contains the physical parameters of tem
perature and energy as expressed in Eq.~4!. We also impose
the constraint that att50 the optimal valueu* carries a
small Boltzmann weight. This is equivalent to the physic
assumption that the occurrence of particle tunneling is
rather unlikely event, and that the system tends to relax tu
values that are far from the tunneling point. We also impo
the width of the decay GaussianAs, to be small compared to
u* , so thatG(u) is highly peaked around the optimal con
figuration valueu* : As!Aq/gV2!u* .

In the following sections we will solve Eq.~9! for the
early and long-time regimes. The general solution for ar
trary times is contained in the Appendix. The coupling of t
system to the orientational degree of freedom, along the li
discussed above, manifests itself very clearly in the unus
time dependence of the probability distribution. Two diffe
ent decay rates in fact arise with a rapid initial decay of
donor populationW(u,u,t) followed by a slower transfer
process. The ratio of these two time scales, and the m
result of this analysis is succinctly expressed by Eq.~28! in
terms of all the physical parameters of this system.

C. Short-time regime

In order to determine the asymptotic behavior
W(u,u,t) in the early time regime, we consider Eq.~9! with
the Gaussian choice ofG(u) and we perform a multiple
time-scale analysis@30#. This is carried out by introducing a
new ad hocvariablej5G(u)t into the probability distribu-
tion, and by seeking solutions in the formW(u,u,t)
5W0(u,u,t,j)1G(u)W1(u,u,t,j)1•••. The Fokker-
Planck equation is thus expanded in powers ofG(u), and for
the zeroth- and first-order terms, it yields
4-4
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]W0

]t
2HW050, ~11!

]W1

]t
2HW152F]W0

]j
1W0G1uG21

]G

]u
W1 . ~12!

Note that the partial derivative with respect tot in the above
equations treatsj as an independent variable. The solution
the first equation is expanded in terms of the complete se
functionsCm,n(u,u,t) that solve Eq.~11!—obtained in Eqs.
~A1! and ~A9! of the Appendix—with coefficientsAm,n that
depend onj; i.e.,

W0~u,u,t !5(
m,n

Am,n~j!cm,n~u,u!e2lm,nt. ~13!

Substituting this solution forW0 into Eq. ~12!, the inhomo-
geneous term in square brackets becomes

2(
m,n

F]Am,n

]j
1Am,nGcm,n~u,u!e2lm,nt. ~14!

If this were the only term present on the right hand side
Eq. ~12!, thenW1(u,u,t,j) would contain a secular term i
its solution of the type

W1~u,u,t !;2t(
m,n

F]Am,n

]j
1Am,nGcm,n~u,u!e2lm,nt.

~15!

Such a solution will eventually exceed the ‘‘leading orde
one. We determine the coefficientsAm,n by requiring that
there be no secular term in the solution to the equation.
precisely this constraint that constitutes the underlying i
of multiple scale analysis. The above condition transla
into requiring that the nonhomogeneous term within par
thesis in Eq.~12! or equivalently in Eq.~15! vanish:

]Am,n~j!

]j
52Am,n~j!. ~16!

We now solve for Am,n . Imposing the initial condition
W(u,u,0)5c0,0(u,u) and reinsertingj5G(u)t the solution
reads

W0~u,u,t !5c0,0~u,u!exp@2G~u!t#. ~17!

The above is a zeroth-order approximation to the full pro
lem presented in Eq.~12! to the extent that the effect ofH
acting ontG(u) can be neglected with respect toG(u) itself.
In other words, Eq.~17! is an approximate solution as lon
as

t!
G~u!

uuGu~u!u
5

s

uu~u2u* !u
. ~18!

This equation is valid only under the conditions expresse
Eq. ~18! and up tot.G21(u). For this time limitation to be
meaningful, it is necessary that the width of the decay te
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As be finite. In the limit that the width vanishes the abo
analysis fails, since the expansion parameter diverges
time t;0, we cannot approximateG(u) by a strictd func-
tion. Note that for the tunneling point (u;u* ), and for finite
u, the condition arising from the multiple scale analysist
.A2ps/k) is the most stringent one, and the probabil
distribution is approximated by

W~u* ,u,t !5c0,0~u* ,u!expF2
kt

A2ps
G . ~19!

We now perform an integration over theu variable on both
sides of Eq.~17! and obtain an approximation for the distr
bution probability functionP(u,t)5*2`

` W(u,u,t)du:

P~u,t !.c0~u!exp@2G~u!t#, ~20!

wherec0(u) is the Boltzmann distribution associated to t
u variable c0(u)5*2`

` c0,0(u,u)du. For small times,
P(u,t) retains its initial Gaussian shape with its amplitu
decreasing exponentially.

D. Long-time regime

In this section, we determine the long-time asympto
behavior ofW(u,u,t), utilizing some of the results obtaine
in the Appendix for arbitrary times. In particular, we ada
the kernel expansion of Eq.~A15! and Eq.~A16! to the long-
time regime. Differentiating Eq.~A15! with respect tot and
with the Gaussian choice forG(u), we obtain

]W

]t
52E

2`

` E
2`

`

du8du8c0,0
21~u8,u8!G~u8!

3FK~u,u8,u,u8,0!W~u8,u8,t !

1E
0

t

dt8
]K

]t8
~u,u8,u,u8,t8!W~u8,u8,t2t8!G .

~21!

The time derivative of the kernel in the last integral can
obtained with the use of the expression obtained in
~A16!, but with the summation restricted to nonzero valu
of the integersm andn. The contribution to the kernel of the
term associated withm5n50 is time independent, and i
has the formc0,0(u,u)c0,0(u8,u8). We then replace] t8K
with ] t8K8, whereK8 is defined as the kernel without th
first (m,n50) summand.

The functionK8 and its time derivative contain exponen
tially vanishing terms int. The time integrand in Eq.~21!
will therefore be appreciable only fort8<Vc

21 , whereVc is
a cutoff frequency of the order oful1,0u5V. For t@Vc

21 ,
we can approximateW(u8,u8,t2t8).W(u8,u8,t) and re-
strict the time interval from the origin toVc

21 . Integrating,
by parts, and using the above approximation forW(u8,u8,t),
the time integral yields
4-5
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]W

]t
52E E du8du8c0,0

21~u8,u8!G~u8!$W~u8,u8,t !

3@K~u,u8,u,u8,0!1K8~u,u8u,u8,Vc
21!

2K8~u,u8,u,u8,0!#%. ~22!

This equality is simplified by the fact thatK8 is negligible
for t5Vc

21 :

]W

]t
52E E du8du8c0,0

21~u8,u8!G~u8!$W~u8,u8,t !

3@K~u,u8,u,u8,0!2K8~u,u8,u,u8,0!#%. ~23!

Using the definition ofK8, we can now rewrite the righ
hand side of Eq.~23! as

]W

]t
52E E du8du8@c0,0

21~u8,u8!G~u8!

3c0,0~u,u! c0,0~u8,u8!W~u8,u8,t !#. ~24!

Since we are dealing with nonzero times, theu8 integration
can be performed under the assumption thatG(u8) is highly
peaked aroundu* andG(u).kd(u2u* ):

]W

]t
52kc0,0~u,u!E

2`

`

du8W~u* ,u8,t !. ~25!

A last integration in theu variable, performed on both side
of the equation, yields the probability distribution functio
for the u variable:

]P~u,t !

]t
52kc0~u!P~u* ,t !. ~26!

For u5u* , the above relationship yields a decay rate o
2k c0(u* ), and for arbitraryu values we obtain the its
behavior in the late time regime:

P~u,t !5P0c0~u!exp@2kc0~u* !t#. ~27!

E. The two time scales

As anticipated, two different scenarios forP(u* ,t)
emerge from the analysis carried out in the previous secti
From Eq.~20!, at early times, the decay to the acceptor st
is rapid, occurring at a rater 15k/A2ps, whereas at latter
times the rate is as given above:r 25kc0(u* ). The ratio
between the two is

r 1

r 2
5A kBT

sIV2
expF IV2

2kBT
~u* !2G@1, ~28!

as follows from the assumptions made on the Gaus
G(u). The initial decay is much faster than that at la
times.
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F. Numerical results

Based on the general solution of Eq.~A15!, we present a
numerical analysis of the distribution functionW(u,u,t) for
different choices of its arguments. In this equation the pr
ability distributionW(u,u,t) is cast in a Volterra-type formu
lation, for which solutions can be constructed iteratively
time. The probability distributionW(u,u,t) as expressed in
Eq. ~A15!, in fact, depends only on its previous history a
on the known propagator function.

For a numerical approach, it is necessary to discretize
u,u,t variables and keep track of the value ofW(u,u,t) for
every position and velocity at every temporal iteratio
While feasible, this approach is rather cumbersome, since
every time steptk5kDt we must create a newO(N2) matrix
W(u i ,uj ,tk),1< i , j <N, whereN is the number of spacing
for the position and velocity meshes. On the other hand,
evaluation ofW(u* ,uj ,tk), whereu* represents theu i in-
terval centered on the optimal valueu* , is greatly simplified
if the corresponding mesh is chosen so thatG(u) may be
replaced for all purposes by ad function at nonzero times
The recursive equations now involve only theO(N) element
vectorW(u* ,uj ,tk),1< j <N.

At t50, when the propagator itself is a point source, t
Gaussian shape forG(u) must be retained for finiteness, bu
the iteration at a time that is far from zero does not invo
values of the position that are significantly different fro
u* . Theu mesh is chosen withDu50.05 and the time inter-
val spacing isDt50.01.

In order to ensure consistency with the constraintAs
!Aq/gV2!u* , we choose the following parameters:s
51024, gV252q, and u* 51.5. Thea parameter for the
underdamped case is chosen asa50.02, whereask is fixed
at k50.4. The resulting probability distributionW(u* ,u,t)
is plotted in Fig. 2 as a function ofu for various time inter-
vals.

Two features of the evolving distribution are noteworth
The first is the depression aroundu50. The second is a clea

FIG. 2. The probability distribution at the optimal configuratio
W(u* ,u,t) for various time intervals. The top curve is evaluated
t50 and is the initial Boltzmann distribution, evaluated at the u
likely configurationu* . The remaining curves are its time evolutio
up to t55 of the lower curve.
4-6
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asymmetry in the velocity distribution, in that the distrib
tion for negative values of the velocityu is lower than for
positiveu values. The reason for the first feature is the f
that when the velocity is low, a pair will remain in a near
optimal configuration longer, and hence a tunneling eve
leading to depletion of the distribution, is more likely. Th
asymmetry can be ascribed to the fact that the optimal
entation is at positive values of the parameteru. The time
evolution equation encapsulates two mechanisms, one p
ing the distribution towards its Boltzmann limit, the oth
being the tunneling process that leads to depletion of
distribution at values ofu close tou* . In light of the trajec-
tory of the underdamped oscillation, a member of the
semble with negative velocityu is likely to be within a half
an oscillation period of having passed with a small veloc
through u* , which is positive, while a representative wi
positive u is more likely to have spent more then half a
oscillation period away from the optimal tunneling config
ration. This latter positiveu configuration will have had more
time to experience the ‘‘restorative’’ effects of the mech
nism that acts to generate the Boltzmann distribution.

It is also possible to perform au-variable integration and
obtain the time dependence ofP(u* ,t). The parameters ar
chosen as above, and the two-time-scale decay ofP(u* ,t)
can be clearly seen to occur with ratesr 1 andr 2 as described
in Eq. ~28!. The above results and the expressions forr 1 and
r 2 are not affected by changes in the damping variablea. As
anticipated, Fig. 3 clearly shows the double exponential
cay of P(u* ,t), in agreement with the experimental resu
of Refs.@16,17#.

IV. DISCUSSION

The model we have presented is expected to be of sig
cant relevance to charge transfer in DNA. Thermal fluct
tions strongly affect the structure of molecule, and an ac
rate description requires this motion to be taken into acco

Not only has the existence of fluctuations been exp

FIG. 3. P(u* ,t) for the parameters chosen in the text~dotted
curves!. The inset pertains to early times. The solid curves
drawn for comparison and are exponential decayse2rt , with a rate
r 15k/A2ps for the short times of the inset, andr 25kc0(u* ) for
the long-time regime. Note the two distinct time scales.
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mentally documented@12#, but it has also been suggeste
@15# that the motion that most affects the electronic coupl
between base pairs—what we have referred to ast(u)—is
their sliding with respect to each other. It must be pointed
that both these studies focus on DNA in solution, not on d
strands of DNA.

On the other hand, charge transport with more than
rate has been reported in the literature@16#. For an oligomer
with the ethedium molecule acting as the donor, charge tra
fer is found to occur along the same patterns as describe
our model, with two time scales of 5 and 75310212 sec.
Two-time-scale decays are also observed in a series of m
surements@17# performed on shorter strands of donor a
acceptor complexes~Ap-G!. In these experiments the Ap do
nor can be treated, for all practical purposes, as an intrin
purine base, and the ambiguity related to the choice of
extraneous donor~the ethedium of the previous reference! is
removed.

In both these experiments, an increase in the length res
in a competition between the fast and slow exponential
cays in favor of the slower time component. Increasing
length of the system diminishes the possibility that multip
base pairs simultaneously arrange in the configuration
facilitates rapid charge transfer. When the process of opti
alignment does occur~a relatively likely event only for a few
base pairs!, the tunneling might not even require localizatio
of the charge on each base pair, and superexchange can
place.

For long strands of DNA, thus, we expect the two intrin
sic rates associated to a single charge transfer to be aver
out in favor of the slower component. Traces of this unus
two-time-scale migration mechanism however, may be fou
in the fact that DNA conductivity is enhanced upon increa
ing the temperature@31#, presumably allowing for greate
base-pair motion. Charge transfer is also hindered by dis
tions to the stacking, which alter the base pair’s ability
find optimal transfer configurations, such as the insertion
bulges along the helix or of strong mismatches within t
base-pair stacking@32,33#, which are poorly compatible with
the intrinsic conformation of the aromatic pairs. Finally, it
noted that charge transfer effectiveness seems to be inve
proportional to the measured hypochromicity@34#, a quantity
that determines the ordering of base pairs along a cer
direction and defined as the reduction of absorption inten
due to interactions between neighboring electric dipol
From this data it is apparent that the higher the disorde
the system, the more efficient charge transfer is. It would
interesting to see how different solvent environments aff
conduction along the molecule in relation to their effect
structural fluctuations. More temperature-dependent exp
mental measures are desirable as well.

V. CONCLUSIONS

We have presented a model for a spin-boson TLS wh
tunneling matrix element depends on the structural con
mation of the donor with respect to the acceptor. In the lim
that the relative geometry between the two fluctuates in t
defining the lowest energy scale, we are led to a class

e

4-7
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problem that of a collection of damped harmonic oscillat
obeying a modified Fokker-Planck equation. If charge tra
fer proceeds only for specific orientations of the donor w
respect to the acceptors, the resulting rate for charge tran
is divided into a fast component at short times and a sub
quent slower one. These results agree with the experime
findings of two-time-scale charge transfer in the donor int
calated DNA complexes of Barton and co-workers@16,17#. It
must be noted that an implicit assumption of this work is t
for long-range DNA conduction, mediated by thermal flu
tuations, once the charge has undergone a transfer bet
base pairs it does not return to the pair at which it was or
nally localized. However, it is reasonable to assume that
transfer process will continue after this event has occur
and that subsequent events will, with some probability,
posit the charge at its point of origin at a later time. We ha
performed calculations on a two-time-scale hopping mo
based on the results obtained here@35#. In these calculations
the single set of two base pairs is replaced by a linear ar
We have determined the probability that the charge carrie
at its point of origin as a function of timet after it is been
placed there. We find that this probability exhibits two-tim
scale behavior, with an initial, brief, and rapid exponent
decay followed by a much slower power-law decay at la
times. The long-time asymptotics of this process are thos
a random walk.
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APPENDIX: GENERAL SOLUTION OF THE KRAMERS
EQUATION

We shall adopt a Lie-Algebra approach@36# to identify a
complete set of orthonormal functions that solve the hom
geneous problem in the general case of Eq.~7!, and through
them the general solution for the decay equation~9! will be
found.

Let us look for solutions of the following type, wherem
andn represent non-negative integers:

Cm,n~u,u,t !5cm,n~u,u!e2lm,nt. ~A1!

Upon insertion of the above expression in Eq.~7!, a time-
independent Schro¨dinger-like equation can be written as

2~lm,n1g!cm,n5H8cm,n , ~A2!

where

H8~u,u!5qpu
21gupu1V2upu2upu , ~A3!

and the subscripts represent derivatives,pu5]/]u . As ex-
pected, the time-independent Boltzmann distribution satis
the homogeneous equation, as can be verified by direct
stitution with l0,050. The physical requirement that solu
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tions must be well behaved ast→`, i.e., that thelm,n’s be
non-negative, suggest that this is the ground state:

Cground~u,u,t !5c0,0~u,u!. ~A4!

The other solutions are found by constructing the ladder
erators. For the underdamped case, we introduce thea vari-
able such that cosa5g/(2v) and impose that@H8,O#5 lO,
with l andO, respectively, complex variable and operator
be determined. In practice, the operatorO corresponds to
either a raising or a lowering operator. Two sets of solutio
exist for the following ‘‘quanta’’l 1,2:

l 15Ve2 ia, l 25Veia ~A5!

for which the associated raising and lowering operatorsR1,2
andL1,2 are

R1,252pu1 l 1,2 pu , ~A6!

L1,25V2u1
q

g
pu1 l 1,2S q

g
pu1uD . ~A7!

The commutation rules for the above operators can be ea
derived as

@Ri ,Rj #50, @Li ,L j #50, @R1 ,L2#50,

@R1 ,L1#5V2~e22ia21!,

@R2 ,L2#5V2~e12ia21!. ~A8!

The raising operators applied to the ground state yield the
of solutionscm,n for Eq. ~A2! with the associated eigenva
ueslm,n as follows:

cm,n~u,u!5R2
nR1

mc0,0~u,u!, ~A9!

lm,n5mVe2 ia1nVeia. ~A10!

It is worth noting that the HamiltonianH8 can also be refor-
mulated asH85(2V i sina)21@(L2R2)2(L1R1)#. In order to
construct solutions to the nonhomogeneous problem wi
the Hilbert space spanned by the set of solutio
$cm,n(u,u)%, it is necessary to determine the orthonormal
of those solutions. To this purpose, let us consider the
lowing $fm,n8 (u,u)%5$P2

nP1
mc0,0(u,u)%, whereP1,2 are op-

erators defined as

P1,252pu2 l 1,2pu . ~A11!

We can now prove an orthogonal relation between the
sets, using the commutation rules and and introduc
c0,0

21(u,u) as a weighting function:

E
2`

` E
2`

`

dudufm8,n8
8 ~u,u!c0,0

21~u,u!cm,n~u,u!

5Cm,ndm,m8dn,n8 . ~A12!
4-8
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The orthonormal set of eigenfunctions is thus expresse
$Cm,n

21 fm,n8 (u,u)%, to which we refer as$fm,n(u,u)%. The
constant of proportionalityCm,n is

Cm,n5m!n! S gV2

q D m1n

~12e22ia!m~12e2ia!n. ~A13!

Let us now look for the full solutionW(u,u,t) to Eq. ~9!,
posing it in the following form:

W~u,u,t !5(
m,n

hm,n~ t !cm,n~u,u!e2lm,nt. ~A14!

Thehm,n(t) functions are to be determined in analogy to t
scattering problem of particles in quantum mechanics. Le
assume that the decay term is introduced at timet50, and
that the initial distribution is the equilibrium solution to th
homogeneous problem, i.e., the ground state as express
Eq. ~8!. Inserting Eq.~A14! in Eq. ~9! and using the ortho-
normality relations, it is possible to find time evolution equ
tions forhm,n(t) and to write a recursion formula for the fu
solution:
t

:

04180
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W~u,u,t !5W~u,u,0!2E
0

t

dt8E
2`

`

du8E
2`

`

du8

3@K~u,u8,u,u8,t2t8!

3c0,0
21~u8,u8!G~u8,u8,t8!W~u8,u8,t8!#.

~A15!

Here, we have keptG a generic function of all variables an
the K function is the response kernel of the system:

K~u,u8,u,u8,t !5(
m,n

cm,n~u,u!fm,n~u8,u8!e2lm,nt.

~A16!

The productW8(u,u,t)5K(u,u8,u,u8,t)c0,0
21(u8,u8) is the

distribution function for the homogeneous system, under
initial conditions W8(u,u,0)5d(u2u8)d(u2u8). Its
asymptotic behavior reduces to the Boltzmann distributi
and apart fromt50, it is an analytical function in all its
variables. The explicit representation of the kernel may
written by inserting the expressions forcm,n(u,u) and
fm,n(u,u) in Eq. ~A16!:
he above
f Eq.
e kernel
Ku,u8,u,u8,t)5expFq~]u2Ve1 ia]u!~]u81Ve1 ia]u8!

gV2~12e12ia!
e2Ve1 iatG

3expFq~]u2Ve2 ia]u!~]u81Ve2 ia]u8!

gV2~12e22ia!
e2Ve2 iatGc0,0~u,u!c0,0~u8u8!, ~A17!

where the exponential terms are intended as operators acting on the ground state wave functions. As it is written, t
kernel is still expressed symbolically. In order to obtain its explicit form, it will suffice to perform a Fourier transform o
~A17! and then return to real space, a straightforward but tedious calculation that we omit. The complete solution for th
is given by@37#

K~u,u8,u,u8,t !5S gV

2pqD 2 1

ATG

3expH 2
g

4qT
@V2~12n!~u1u8!21~11 l !~u2u8!212mV~u1u8!~u2u8!#J

3expH 2
g

4qG
@V2~11n!~u2u8!21~12 l !~u1u8!212mV~u82u!~u1u8!#J . ~A18!
r

ear-
-

In order to keep a lighter notation, we have suppressed
time dependence of theT(t), G(t), l (t), m(t), n(t) func-
tions. They are defined as

l ~ t !sina5e2Vt cosasin~a1Vt sina!, ~A19!

m~ t !sina5e2Vt cosasin~Vt sina!, ~A20!

n~ t !sina5e2Vt cosasin~a2Vt sina!. ~A21!

The functionsT(t) andG(t) are combinations of the above
he T~ t !511 l ~ t !2n~ t !2n~ t !l ~ t !2m2~ t !, ~A22!

G~ t !511n~ t !2 l ~ t !2n~ t !l ~ t !2m2~ t !. ~A23!

In order to ensure integrability for Eq.~A15!, some limi-
tations are posed on the form of theG(u8,u8,t8) function.
For instance, the seemingly most natural choice, ad function
centered aroundu* , yields a nonintegrable expression fo
W(u,u,t) at small times, when the kernel is a product ofd
functions itself. Instead, the Gaussian choice introduced
lier, with its finite s, ensures integrability at all time re
gimes.
4-9
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