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Two-level system with a thermally fluctuating transfer matrix element: Application to the problem
of DNA charge transfer
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Charge transfer along the base-pair stack in DNA is modeled in terms of thermally assisted tunneling
between adjacent base pairs. The key element of the approach in this paper is the notion that this tunneling
between base pairs that fluctuate significantly from their nominal orientation is rate limited by the requirement
of optimal alignment. We focus on this aspect of the process by modeling two adjacent base pairs in terms of
a classical damped oscillator subject to thermal fluctuations as described by a Fokker-Planck equation. We find
that the process is characterized by two time scales, a result that is in accord with the experimental findings.
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[. INTRODUCTION In this paper, we discuss a model for short-range charge
transport along a base-pair stack that undergoes substantial
In spite of the fact that a decade has passed since the firstructural fluctuations. The process occurs via thermally as-
definitive observation of charge transfer along the DNAsisted quantum-mechanical tunneling of charge carriers from
base-pair stackl], the detailed properties of this processone base pair to the next, under the assumption that this
have not been definitively elucidated. This is partly due totunneling is properly characterized as occurring in the pres-
the inherent complexity of the molecular structure of DNA, ence of a dissipative environment. A key conjecture is that
and to the large number of external and intrinsic factors thatharge transfer takes place only when the neighboring pairs
exert an influence on DNA structure and behavior. The curare in a state of optimal “alignment,” and that this alignment
rent unsettled situation also reflects the absence of an overad statistically unlikely in thermodynamic equilibrium. As we
agreement on the precise mechanism by which this chargeill see, this conjecture leads in a natural way to a model
transport takes place. One of the key issues that awaits fuiixhibiting the dual-time-scale feature described above. Addi-
illumination is the role of disorder—both static and tionally, the model generates predictions that can be readily
dynamic_on the propagation of Charge a|ong the base-patﬁsted. We shall relate the problem at hand to the dynamics
stack. A related, and quite fundamental, question is whethe?f @ simple two-level systerlLS), realized by a donor and
charge transport is a coherent quantum-mechanical proces¥) acceptor state. . _
such as conduction of electronic charge against a static, or [N S€c. Il, we briefly recapitulate what is known about the
deformable, background, or whether it it takes place as funtUnneling process in the presence of friction for a TLS

damentally incoherent transport, as a variation of the randoryStem- We also guantify our notion of a coordingtasso-

walk. The answers to these and other questions will have gated with the “alignment" of adjacent base pairs and of the
significant impact on both our understanding of the biologi-Influence of the dynamics of this new coordinate on charge

. . ransfer.
cal |mp_act_of charge transp_ort in DNA and the developmen{ Section 1l specifies the model for describing a generic
of applications based on this phenomenon.

collection of TLS, initially in the donor state and character-

Despite the often contradictory results of experimental in4_. 4 pv a2 fluctuati i t variable Th babilit
vestigationg2-6|, a few conclusions seem inescapable. TheIze y @ fiuctuating alignment vana e The probability

first is that long-range charge transport along the base-paffiStribution of donor statesw(6,6,t), obeys a Kramers
stack depends quite strongly on the sequence of the ba&&uation with a sink term due to charge transfer to the ac-
pairs[7]. In addition, base-pair mismatches can have a sigt®Ptor. The rate of charge transfer will be expressed by the
nificant deleterious effect on charge transpf8t9] (see, fluctuating ratel’(6). This Kramers expression is recast into
however, Ref[10]). Furthermore, strands of DNA display the form of a Volterra equation with the use of a Lie-Algebra
considerable disorder, both stafid] and dynamid12—15. ~ @pproach defined on the Hilbert space of the eigenstates of
Finally, several sets of experiments on ensembles of shoff'€ Kramers equation fdr(¢)=0. We will discuss limiting
DNA strands have uncovered an unusual two-step charggdSes of the solution to obtain physical insight and to reveal
transfer procespl6,17. These studies focus on fluorescentthe two-time-scale decay of the probability distribution due
charge donors intercalated in the DNA oligostrands. As thd© the sink term. We conclude in Sec. IV with a discussion of
charge migrates towards the acceptor, the fluorescence {8€ Possible application of our results to charge transfer in
quenched and the rate of migration is determined by th&trands of DNA consisting of several base pairs.
decaying fluorescence profile. The data reveal that this decay The key result of our calculations lies in the determination
process occurs according to two characteristic time scalgdf the probability distributionP(6*,t), of donor states
that are separated by more than an order of magnitudevaluated at the optimal configuratiagif and with the #
[16,17. Any model that purports to explain charge transportvariable integrated out. Indeed, under the assumption that the
must take all this into account. tunneling process is most effective &t 6*, this quantity is
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directly related to the fluorescence intensify) of the base- V()
pair complexes, as probed by Barton and co-workeésl7],
through the following:

t
I(t)=|0{1—l“f P(6*,t)dt'|. (1)
0

The quantityl ; of the above relationship is a proportionality
constant and’ is the integrated rate of transfer to the accep-
tor. We shall determine the double exponential character of
P(6*,t), and hence of(t), in qualitative agreement with
the experimental findings. The conjectures made on the ex-
istence of an optimal and unlikely configuratiefi will be
crucial in obtaining the two-stage decay process, a result that
justifies the assumptions made.

The model we shall construct is obviously not restricted
in application to DNA oligostrands. Using our results, we
may conclude that in an ensemble of generic systems the y* y
migration of a particle from donor to acceptor proceeds sta-

ing process is of rare occurrence. tion. The two parabolic curves shown correspond to the two ver-

sions of the potentiaV(y,o,) in Eq. (2), one corresponding to the
“donor” state in which the tunneling particle is on one site, and the
Il. THE TUNNELING PROCESS other to the “acceptor” state in which the particle is on the other

ne. The two energieS; andE,=E;— € referred to in the text are

The process of charge transfer from a donor site to a . i . i
- . L . . _the forward and backward barrier energies, respectively. The hori-
acceptor site—a two-level system—is ubiquitous in bio- . . .
zontal axis corresponds to the reaction coordingate,

chemical and physical phenomef&8]. It occurs under a
broad variety of spatiotemporal conditions. Chemical bond .
formation or the adenosine triphosph&dP) production in around the donors and acceptf@d]. It is not an easy task to

hotosynthetic reactions, or the operation of semiconductin ve a physical interpretation of the reaction coordinate in
ge 'ceg all involve the ’transfer'np of charges to and from€ case of DNA base pairs because of the many possibilities

vices, all Involv Terng 9 .mi volved—intrabase distance, mobile counterion concentra-
specific sites, via thermal activation or quantum-mechanic

tunneling through an energy barrier. Because of its intrinsicion’ solvent concentration, or & combination of all the
9 9 9y : : > above. A possibility is offered by Ref22] where it is sug-
nature, charge transfer via quantum-mechanical tunnelin

8ested that the most relevant quantity is the interaction of the
takes place on a length scale of up to tens of angstfd : .
Iargerpdistances aregpossible if ort)her transportgmtgcﬁjasnis charge with the polar water molecules of the solvent. In this

are involved. These include thermal hopping among sites.oPc We shall refer to the reaction coordingté most
: ppIng 9 general terms.

e e e, e st o Cor ™A commonrresenaton of e with st i
’ P through the spin-boson formalisfi20]. The donor and ac-

type in specific systems. ceptor states are represented by means of a pseudospin that

Q“am”m""?ec“"’.‘”'ca.' tunneling from a donor site o arboints up when the charge is in the donor state and down
aqceptor S't‘? IS quite S|mp_ly repre_sent_ed_by a Tog]. .In . _otherwise. The Hamiltonian of the system is given by
this description, the tunneling particle is limited to being in '

the donor or in the acceptor state, while the other degrees of 2
freedom of th_e system, nuclear for instance, describe the Her= 1oy + ﬁ+v(y10—z)+Hbathv 2)
charge potential energy.
The energetic profile of the system is thus characterized
by a multidimensional surface of which the acceptor and th&/n€re
donor states constitute relative minima, separated by a bar-
rier. Of the many existing degrees of freedom, it is often V(y,o,)= EMwZ(y+y o )2+£60' ®)
possible to identify a “reaction coordinate/ such that the 2 0%zl T e

energy barrier between donor and acceptor is minimized
along this specific direction. The progress of the reaction isindo, , are the Pauli matrices. The charge in the daiugm
then dominated by the evolution along this coordinate, andtate corresponds to the potentialy,+), whose equilib-
the potential energy surface can be reduced to an effectivéum reaction coordinate isy,, and the converse state cor-
one-dimensional curve. responds tovV(y,—), whose stable minimum is at,. The

In certain systems, the physical interpretation of the reacH, term represents contributions to the Hamiltonian of a
tion coordinate is immediate: it may be the relative bonddissipative environment coupled to the reaction coordinate.
length in two diatomic molecules, or solvent polarization Figure 1 illustrates the meaning of the potentidly, o) in
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the effective Hamiltonian of Eq(2). The curve marked\ The Hamiltonian describing the system, thus, is a modi-
corresponds to the potential term in the donor state, while théed version of the spin-boson Hamiltonian introduced in Eq.
curve markedB represents the potential function in the ac-(2) with a 7(6) o, off-diagonal term, as also described in
ceptor state. earlier work[27]. In order for charge transfer to take place,
This model has been thoroughly analyzed by Getr@l. e will assume that the reaction coordinate coupled to the
[23] based on earlier work by Caldeira and Legdei]. A energy must be close to the degeneracy pgiaty*, and
similar analysis, but within a more chemical framework, is 5/5g that thed coordinate must be in the neighborhood of an

presented by Marcus and Sufi@S]. Energy conservation o qima values*, which maximizes the tunneling amplitude.

requires th_at chz_;lrge transfer takes place only V_Vhei‘ the r€a%he physical picture to associate to this requirement is that
tion coordinate is close to the degeneracy pgirty* for

which V(y*,+)=V(y*,—): once the degeneracy point is the relative “alignment,”d, does not favor charge transfer
' o . unless an optimal configuration is reached)=0 unless
reached, charge transfer is possible only because of the nog; o Thi act " 0 b alin vieldi
zero off-diagonal tunneling matrix elements - 1 TiS conjecture will prove 1o be crucialin yielding
The tunneling ratd” from donor to acceptor is calculated the two-time-scale charge transfer of Reft5,17.

in the above references. For moderate dissipation of the re- In analogy FO the experimental work cited ab_ove, we con-
action coordinate, it is given by sider a collection of such two-level systems, with the charge

initially located on the donor site. Each one of these systems
- 1/2 is associated to a particula(§) and, through Eq(4), to a
W) (e Ei'/keTet+ e Ev/keTey  (4)  particular I'(#) rate. Our objective is to determine the
reBTeff mechanisms of charge transfer taking into accoundttime
evolution and thel'(#) rates accordingly distributed. We
hall assume the& dynamics to be governed by small,
angevin-type random fluctuations. A+ 0, when the exter-
nal charge is injected on the donor site, the distributiom of
values is the usual Boltzmann distribution. If the occurrence
c?f the optimal#* configuration is relatively unlikely, we will
indeed be able to show that the transfer process is character-
'éed by a two-time-scale migration of the initial donor popu-
ation

7_2

=%

where the reorganization enery and the energy barriers
E: andE, depend on the details of the potential described byQ‘
the reaction coordinate. In the limit of high temperatufies, L
reduces to the usual temperatrewhereas in the opposite
limit the quantity is temperature independent.

The aspect explored in this paper is the introduction an
investigation of the effect of a second reaction coordirgate
governing the charge transfer process and coupled not to t

he off-di | li I hith . .
energy but to the off-diagonal tunneling elementhitherto The emergence of two time scales in the transfer process

been treated as a constant, and which we now write{ 85 can be physically explained as follows. The existence of an
This new coordinate reflects the conjecture that in the phy y exp ’

case of DNA the tunneling matrix element is highly sensitiveInltlal honzero population of TLS presenting the optimal

* H H T
to the donor-acceptor relative configuration. Charge transpo alue 9 ensures rapid tunneling to the acceptor. Theis

slong DNA in fac occurs along the stacked base pais by U41or 15 U depleted ofpopulatn 1 he spec vae
means of overlappingr orbitals, and, at room temperature, P )

these base pairs strongly fluctuate with respect to each oth-el—lLS W.'I.I tunnel to the acceptor only after the system has
through variations of the twist, tilt, and roll parametg2s]. re-equilibrated and repopulated the optimal configuration, a

The existence of base-pair fluctuations for DNA in solutionP'O¢€sS that is slow because of the assumption that the opii-

is very well established, and is corroborated by experimentarlnal configuration is a relatively unlikely one. Hence, the

[12] and molecular dynamics studié$3—15. For such a existence of a fast initial decay followed by a slower decay
highly asymmetric system such as DNA, fluctuations in thePrOcess:
relative orientation of donors and acceptors affect the mag-
nitude of the orbital overlap between pairs, and the new col-
lective coordinated embodies the effects of these fluctua- Ill. THE TLS AND @ FLUCTUATIONS
tions. A. The model

We will also assume that the variable is slowly varying . . , o
compared to the motion of the reaction coordinateo as to Consider a collection of TLS which at the initial time
define the lowest energy scale of the system. We may theti= 0 are all in the up-donor configuration, and characterlzed
separate the motion of the two reaction coordinates in ®Y the angular parameté. Let us denote byV(6,6,t) the
Born-Oppenheimer spirit. Charge transfer will be assumed td LS population remaining in the up-donor state at tinaed
be instantaneous once the optinta 6* value is reached, for which the collective angular variable and its velocity are
and a purely classical framework will be utilized for tige  specified.
dynamics. The new reaction coordinateeed not necessar-  The physical requirement thatshould be randomly, clas-
||y be pictured as a geometrica| one, a|th0ugh this is th§lca”y fluctuating in time translates into the fact that
framework we will be utilizing in this paper. Just as in the W(#6,6,t) must evolve according to a Fokker-Planck-type
case of they reaction coordinated may be associated to the equation as dictated by standard Langevin theory. To this
particular chemical environment of the molecule or to anyprobability evolution equation we must add an additional
other quantity influencing the strength of the tunneling ele-depleting term that represents tunneling to the donor site as
ment r between the donor and the acceptor sites. given by thel'(6) term discussed above.
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Different scenarios are possible for thelependence of ¥ Y
and hence of". As discussed in the preceding section, we Yo 6,u)= ﬁexl{ - E(U2+9292)
shall focus on a particular situation in which tunneling is
possible only for a very specific subset of energetically unnder the assumptions discussed earlier, the probability dis-
favorable# values. In this picture, tunneling is allowed only tribution functionW(6,u,t) for a particle localized on the
if donors and acceptors reach an optimal—but unlikely—donor site and describing an effective anglwith its neigh-
orientation with respect to each other. By including the tunhor will be described by the time evolution equation for a
neling term in the time evolution equation f&/(4,0,t), we  collection of damped oscillators subject to a decay t&rm
obtain a modified Fokker-Planck equation that may be usedepresenting tunneling to the acceptor. The latter term is ap-
to approach any physical system in which the presence of preciable only for a specific value of thecoordinate6*:
depleting term competes with the usual Langevin fluctua-
tions. The most natural choice for tlfemotion, the one we d_VV_ HW—T(6,u,t) W 9
shall discuss in the remainder of this paper, is that of a dt (0., '
damped harmonic oscillator. We shall see that starting from
an initially equilibrated system in which thedistribution is ~ The H term is the differential operator that stems from the
the Boltzmann one, the insertion of the tunneling term will right hand side of Eq(7). We shall assume the decay term to
result in the emergence of the two time scales discussele introduced at timeé=0, prior to which the system had
above. We will refer to the time derivative of thecoordi-  attained its equilibration state. In other words, we choose the
nate asu. The rotational moment of inertia associatedgtis ~ initial distribution W(6,u,0) to be Boltzmann-like, as ex-
denoted byl and its rotational frequency b§. pressed in Eq(8). For simplicity, we choosd’(6) to be

The goal of the next sections will be to determine independent ofi and oft and to be a Gaussian centered on
W(6*,u,t), and in particular its integration with respect to ¢* and with widtho
the u variable. As described in the Introduction in fact, it is

. (8

this quantity that is directly related to the experiments we (g)= K _ (6—6%)2 (10
wish to model by means of Eql). (0)= P mo ex 20 |’
B. Kramers equation with a sink term The coefficientx contains the physical parameters of tem-

The generic damped harmonic oscillator subject to ranperature anq energy as expresset_j in (@p.We also "‘.‘Pose
g P ) the constraint that at=0 the optimal valued* carries a

;jigrrgnmse responds to the following Langevin-type equa-sma” Boltzmann weight. This is equivalent to the physical

assumption that the occurrence of particle tunneling is a
h=u; U=—yu—Q20+ (1), (5) rather unlikely event, and that the system tends to re!a§< to
values that are far from the tunneling point. We also impose

where the stochastic foreg(t) is assumed to be a zero-mean 1€ Width of the decay Gaussiafwr, to be small compared to

Gaussian and whose correlation function is dictated by thd” » SO thatl'(6) s highly peaked aiound the optimal con-
fluctuation-dissipation theorem for classical variables: figuration valued™: \/;< ValyQT< ™.
In the following sections we will solve Eq9) for the
2ykeT early and long-time regimes. The general solution for arbi-
(n(t)n(t"))= I S(t—t")=2qdé(t—t"). (6) trary times is contained in the Appendix. The coupling of the
system to the orientational degree of freedom, along the lines
. ) ~discussed above, manifests itself very clearly in the unusual
The corresponding Fokker-Planck equation may be writteRime dependence of the probability distribution. Two differ-
by identifying [28] the proper coefficients in the Kramers- ent decay rates in fact arise with a rapid initial decay of the
Moyal expansion from Eq5) and is generally referred to as donor populationW(é,u,t) followed by a slower transfer
the Kramers equation. This equation governs the time evoluprocess. The ratio of these two time scales, and the main
tion of the dlSt”bUtlon\N( 0,U,t) of an ensemble of systems result of this ana|ysis is Succinct|y expressed by E@) in

obeying the equations of motid®). It takes the form terms of all the physical parameters of this system.
OW oW d 9>W C. Short-time regime
= Ut (U Q2OWI . (7) _ g _ _
ot d6  ou au In order to determine the asymptotic behavior of

W(#0,u,t) in the early time regime, we consider E) with
The above equation is thoroughly analyzed in R@9], the Gaussian choice df(¢) and we perform a multiple
where assuming an initial probability distribution time-scale analysig30]. This is carried out by introducing a
W(6,u,0)=35(6—6")5(u—u’), the probabilit®w(6,u,t) as  newad hocvariableé=T(0)t into the probability distribu-
well as other relevant statistical quantities are obtained. Ation, and by seeking solutions in the foriW/(6,u,t)

equilibrium Kramers equation is solved by the time-=Wy(60,u,t,&)+T(Wq(0,u,t,&)+---. The Fokker-
independent Boltzmann distributiodV(6,u,t)= o o 6,u) Planck equation is thus expanded in power$ @), and for
with the zeroth- and first-order terms, it yields
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W, Vo be finite. In the limit that the width vanishes the above
.~ HWo=0, (1) analysis fails, since the expansion parameter diverges. At
time t~0, we cannot approximatB(6) by a stricts func-
ar tion. Note that for the tunneling poing¢- 6* ), and for finite
+uF*1%W1. (12 u, the condition arising from the multiple scale analydis (
=\2molk) is the most stringent one, and the probability

Note that the partial derivative with respectttin the above  distribution is approximated by
equations treat§ as an independent variable. The solution to

IWo

Y 1 +Wp

the first equation is expanded in terms of the complete set of " B " o«
functions¥ ,, ,(6,u,t) that solve Eq(11)—obtained in Egs. W™ ,u,t) = ool 67, U)X L2ra| (19
(A1) and(A9) of the Appendix—with coefficients, , that

depend or¢; i.e., We now perform an integration over thevariable on both

sides of Eq(17) and obtain an approximation for the distri-
Wo( g,u,t)zz Ann(€) ,r/,m’n(g,u)e*hm,nt. (13 bution probability functionP(6,t)= [~ _W(6,u,t)du:
m,n

P(6,t)=up(0 -T'(o)t], 20
Substituting this solution foW, into Eg. (12), the inhomo- (0.0=do(O)exd ~T(O)] 20

geneous term in square brackets becomes

-2

m,n

where o( ) is the Boltzmann distribution associated to the
6 variable o(0)=["_¢o0,u)du. For small times,
Ymn(O,u)e” *mat, (14 P(6,t) retains its initial Gaussian shape with its amplitude
decreasing exponentially.

JA
(92’” +Amn

If this were the only term present on the right hand side of

Eg. (12), thenW,(6,u,t,&) would contain a secular term in D. Long-time regime
its solution of the type In this section, we determine the long-time asymptotic
JA behavior ofW(6,u,t), utilizing some of the results obtained
W, (6,u,t)~ _tz m,n A (6,u)e Mt in the Appendix for arbitrary times. In particular, we adapt
mn | d¢ ' ’ the kernel expansion of E¢A15) and Eq.(A16) to the long-

(15  time regime. Differentiating Eq(A15) with respect ta and

. . . with the Gaussian choice fdf(#), we obtain
Such a solution will eventually exceed the “leading order” (6)

one. We determine the coefficienés, , by requiring that JW ol ,
there be no secular term in the solution to the equation. Itis ~ —— =~ J_ f_ do'du’ g (6",u")(0")
precisely this constraint that constitutes the underlying idea

of multiple scale analysis. The above condition translates
into requiring that the nonhomogeneous term within paren- X| K(6,0",u,u’" ,00W(6',u’,t)
thesis in Eq(12) or equivalently in Eq(15) vanish:
9Am n(€) f e oK
— = + | dt'—(6,6",u,u’ ,t")W(O",u",t—t")|.
5 Amn(£). (16) L YW( )
We now solve forA, ,. Imposing the initial condition (21)
W(6,u,0)= o o(6,u) and reinsertingg=I"(6)t the solution . o . ,
reads The time derivative of the kernel in the last integral can be
obtained with the use of the expression obtained in Eq.
Wo(6,u,t)= i o 6,u)exd — T (6)t]. (170 (A16), but with the summation restricted to nonzero values

of the integersn andn. The contribution to the kernel of the
The above is a zeroth-order approximation to the full probterm associated wittm=n=0 is time independent, and it
lem presented in E¢12) to the extent that the effect 81 has the formyqg o(6,u) o 6',u’). We then replaces; K
acting ontI'(#) can be neglected with respectlig) itself.  with ¢,,K’, whereK’ is defined as the kernel without the
In other words, Eq(17) is an approximate solution as long first (m,n=0) summand.
as The functionK’ and its time derivative contain exponen-
tially vanishing terms int. The time integrand in Eq21)
(< reey o 19 will therefore be appreciable only fot<Q_*, whereQ, is
Ul o) Ju(o—6*)| a cutoff frequency of the order di, =0Q. Fort>Q_.*,
we can approximat&V(6’,u’,t—t')=W(6',u’,t) and re-
This equation is valid only under the conditions expressed irstrict the time interval from the origin t6_ *. Integrating,
Eq. (18) and up tot=I""1(#). For this time limitation to be by parts, and using the above approximationViér’ ,u’ ,t),
meaningful, it is necessary that the width of the decay ternthe time integral yields
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—ffdwdw%aauwnwnwwzwn
X[K(8,6",u,u’,0)+K'(6,0'u,u’ Q")

—-K’(6,6",u,u’,0)]}. (22

This equality is simplified by the fact tha€’ is negligible
fort=Q_":

&W

i f fda du’ 4/;00(0’ uHIr(o" ){w(e',u’,t)

X[K(6,6",u,u’",00—K’(6,6",u,u’,0)]}. (23

Using the definition ofK’,
hand side of Eq(23) as

we can now rewrite the right

8W
~ [ [ doautpadiowircey

Xihoo O,U) ool 6 ,u)W(E",u",1)]. (24
Since we are dealing with nonzero times, #eintegration
can be performed under the assumption 1h@d") is highly

peaked around* andI'(6)=«d5(0— 6*):

IW

e (25

— koo a,u)ﬁ:du’W( 0*,u’t).

A last integration in theu variable, performed on both sides
of the equation, yields the probability distribution function
for the @ variable:

IP(6,t)
at

=~ kio(H)P(6,1). (26)

For 6= 6*, the above relationship yields a decay rate of
— Kk Yp(6*), and for arbitrary® values we obtain the its
behavior in the late time regime:

(27)

P(6,t)=Potho( 0)exd — kifo( 0 )t].

E. The two time scales

As anticipated, two different scenarios fd?(a* t)

From Eq.(20), at early times, the decay to the acceptor stat
is rapid, occurring at a rate;= /2o, whereas at latter
times the rate is as given abovei= kiy(6*). The ratio
between the two is

| 2

2KgT

M

[ kgT F{
— = ex
al Q?

(28)

= (G*V}>1,
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0.04

0.02 |

W(6*,u,t)

0.0
u (arb. units)

2.0 4.0

FIG. 2. The probability distribution at the optimal configuration
W( 6*,u,t) for various time intervals. The top curve is evaluated at
t=0 and is the initial Boltzmann distribution, evaluated at the un-
likely configuration6* . The remaining curves are its time evolution
up tot=5 of the lower curve.

F. Numerical results

Based on the general solution of E&15), we present a
numerical analysis of the distribution functiaM(6,u,t) for
different choices of its arguments. In this equation the prob-
ability distributionW( 6,u,t) is cast in a Volterra-type formu-
lation, for which solutions can be constructed iteratively in
time. The probability distributioW(#6,u,t) as expressed in
Eqg. (A15), in fact, depends only on its previous history and
on the known propagator function.

For a numerical approach, it is necessary to discretize the
6,u,t variables and keep track of the valueWwf 6,u,t) for
every position and velocity at every temporal iteration.
While feasible, this approach is rather cumbersome, since for
every time steph,=kAt we must create a ne®(N?) matrix
W(#6;,u;,t),1=<i,j<N, whereN is the number of spacings
for the position and velocity meshes. On the other hand, the
evaluation ofW(6#*,u;,t,), where 6* represents the, in-
terval centered on the optimal val@é, is greatly simplified
if the corresponding mesh is chosen so th@p) may be
replaced for all purposes by & function at nonzero times.
The recursive equations now involve only tB¢N) element
vectorW(6*,u; ,t),1<j<N.

At t=0, when the propagator itself is a point source, the
Gaussian shape fdr(#) must be retained for finiteness, but
the iteration at a tlme that is far from zero does not involve

. Theu mesh is chosen withu=0.05 and the time inter-
val spacing isAt=0.01.

In order to ensure consistency with the constrajfat
<.g/yQ?<6*, we choose the following parameters:
=104, yQ2=2q, and #* =1.5. Thea parameter for the
underdamped case is chosenaas0.02, whereax is fixed
at k=0.4. The resulting probability distributiow/(6* ,u,t)
is plotted in Fig. 2 as a function af for various time inter-

as follows from the assumptions made on the Gaussiawmals.

I'(6). The initial decay is much faster than that at later

times.

Two features of the evolving distribution are noteworthy.
The first is the depression aroune-0. The second is a clear
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1 . : mentally documentedi12], but it has also been suggested
r, 10 [15] that the motion that most affects the electronic coupling
r, between base pairs—what we have referred to(@—is

their sliding with respect to each other. It must be pointed out

P(©"t)

0.8 that both these studies focus on DNA in solution, not on dry
= strands of DNA.
*é 05 g On the other hand, charge transport with more than one
o time (arb.units) rate has been reported in the literat{ité]. For an oligomer

with the ethedium molecule acting as the donor, charge trans-
fer is found to occur along the same patterns as described by
our model, with two time scales of 5 and ¥3.0™ 12 sec.
Two-time-scale decays are also observed in a series of mea-
. X surementd 17] performed on shorter strands of donor and
0 200 400 600 acceptor complexep-G). In these experiments the Ap do-
time (arb. units) nor can be treated, for all practical purposes, as an intrinsic
purine base, and the ambiguity related to the choice of an
FIG. 3. P(6*,t) for the parameters chosen in the tédbtted  extraneous dondthe ethedium of the previous reference
curves. The inset pertains to early times. The solid curves areremoved.

drawn for comparison and are exponential decay$, with a rate In both these experiments, an increase in the length results
ry=«/y2mo for the short times of the inset, amg=«yo(6*) for  in a competition between the fast and slow exponential de-
the long-time regime. Note the two distinct time scales. cays in favor of the slower time component. Increasing the

asymmetry in the velocity distribution, in that the distribu- length Of the'system diminishes the 'pOSSIblllty t'hat multlple
base pairs simultaneously arrange in the configuration that

tion for negative values of the velocity is lower than for facilitates rapid charge transfer. When the process of optimal
positive u values. The reason for the first feature is the fact P g : P P

that when the velocity is low, a pair will remain in a nearly ggggmZﬂ;iﬂgifgﬁgﬁnreIr?]tilvﬁmgl:eelzeenvfgt&?éylgcé;ﬁ;;i\'\gn
optimal configuration longer, and hence a tunneling event P g mig d

leading to depletion of the distribution, is more likely. The of the charge on each base pair, and superexchange can take

; . place.
asymmetry can be ascribed to the fact that the optimal ori For long strands of DNA, thus, we expect the two intrini-

entation is at positive values of the paramefierThe time ic rates associated to a single charge transfer to be averaged
evolution equation encapsulates two mechanisms, one pusﬁl—ﬂ in favor of the slower congn onen% Traces of this unusugl
ing the distribution towards its Boltzmann limit, the other gwo-time-scale migration mechpanism.however may be found
being the tunneling process that leads to depletion of thln the fact that DNA conductivity is enhanced upon increas-

distribution at values of close to#*. In light of the trajec- ing the temperaturé31], presumably allowing for greater
tory of the underdamped oscillation, a member of the en- N P P Y 9 9

) . e e base-pair motion. Charge transfer is also hindered by disrup-
semble with negative velocity is likely to be within a half . . - .
o . . X .. tions to the stacking, which alter the base pair’s ability to
an oscillation period of having passed with a small velocity,. . . ) ; :
" S - ; . - 2 find optimal transfer configurations, such as the insertion of
through 6*, which is positive, while a representative with ; : .
o . ; bulges along the helix or of strong mismatches within the
positive u is more likely to have spent more then half an ! . . . .
I : ) . .~ base-pair stackinf32,33, which are poorly compatible with
oscillation period away from the optimal tunneling configu-

ration. This latter positive confiauration will have had more the intrinsic conformation of the aromatic pairs. Finally, it is
. ) erp " gul ” noted that charge transfer effectiveness seems to be inversely
time to experience the “restorative” effects of the mecha-

nism that acts to generate the Boltzmann distribution. propornonal_to the measurgd hypochromm{@ﬂ], aquantity
. . ; . : that determines the ordering of base pairs along a certain

It is also possible to perform avariable integration and directi d defined he reducti f ab 9 ° ;
obtain the time dependence Bf * ,t). The parameters are Irection and defined as the reduction of absorption Intensity
chosen as above. and the two-tirhe;scale decap (F ) due to interactions between neighboring electric dipoles.

n be clear] ’nt r with ratesandr ? ri’b d From this data it is apparent that the higher the disorder of
paE 6(208?6‘_”3]/ SEE 0 occult q ?hqsa 2 as desc 3 the system, the more efficient charge transfer is. It would be
n 4. - 1€ above results and he exprgssmnqjoan interesting to see how different solvent environments affect
r, are not affected by changes in the damping variablas

ticioated. Fia. 3 clearlv sh the doubl tial d conduction along the molecule in relation to their effect on
anticipate . \g. S clearly shows the double exponential d€gy o ra| fluctuations. More temperature-dependent experi-
cay of P(#*,t), in agreement with the experimental results

mental measures are desirable as well.
of Refs.[16,17.

IV. DISCUSSION V. CONCLUSIONS

The model we have presented is expected to be of signifi- We have presented a model for a spin-boson TLS whose
cant relevance to charge transfer in DNA. Thermal fluctuatunneling matrix element depends on the structural confor-
tions strongly affect the structure of molecule, and an accumation of the donor with respect to the acceptor. In the limit
rate description requires this motion to be taken into accounthat the relative geometry between the two fluctuates in time

Not only has the existence of fluctuations been experidefining the lowest energy scale, we are led to a classical
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problem that of a collection of damped harmonic oscillatorstions must be well behaved &s-«, i.e., that thex, ,'s be
obeying a modified Fokker-Planck equation. If charge transnon-negative, suggest that this is the ground state:

fer proceeds only for specific orientations of the donor with

respect to the acceptors, the resulting rate for charge transfer W ground 0, U,1) = o o 6,U). (A4)

is divided into a fast component at short times and a subse-

quent slower one. These results agree with the experimentdihe other solutions are found by constructing the ladder op-
findings of two-time-scale charge transfer in the donor inter£rators. For the underdamped case, we introducex thari-
calated DNA complexes of Barton and co-workgts,17]. It ~ able such that cos= y/(2w) and impose thatH’,0]=10,
must be noted that an implicit assumption of this work is thatvith | andO, respectively, complex variable and operator to
for long-range DNA conduction, mediated by thermal fluc-be determined. In practice, the operafrcorresponds to
tuations, once the charge has undergone a transfer betweetther a raising or a lowering operator. Two sets of solutions
base pairs it does not return to the pair at which it was origi€Xist for the following “quanta’ ,:

nally localized. However, it is reasonable to assume that the ) )

transfer process will continue after this event has occurred l1=0e™'*,  1,=0¢€* (A5)

and that subsequent events will, with some probability, de- , , . i

posit the charge at its point of origin at a later time. We have©" Which the associated raising and lowering operakys
performed calculations on a two-time-scale hopping modefndL12are

based on the results obtained hg3B]. In these calculations,

the single set of two base pairs is replaced by a linear array. Ri2=—Potliz Pu, (A6)
We have determined the probability that the charge carrier is

at its point of origin as a function of timeafter it is been Ly =020+ —pyt1i4 —py+ul. (A7)
placed there. We find that this probability exhibits two-time- ' Y Ayt

scale behavior, with an initial, brief, and rapid exponential ) )
decay followed by a much slower power-law decay at later] N€ commutation rules for the above operators can be easily

times. The long-time asymptotics of this process are those dférved as

a random walk.
[Rile]:Ov [Ll,LJ]:O, [Rl,Lz]:O,
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We acknowledge many useful conversations with Profes-
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sor R. Bruinsma and Professor T. Chou. [Rz,Lo]=Q%(e 1. (A8)

The raising operators applied to the ground state yield the set
APPENDIX: GENERAL SOLUTION OF THE KRAMERS of solutionsyr,, , for Eq. (A2) with the associated eigenval-
EQUATION ueshp,, as follows:

We shall adopt a Lie-Algebra approaf6] to identify a

— phpm
complete set of orthonormal functions that solve the homo- tm,n(0,U) =R3R7 o o 6,1), (A9)
geneous problem in the general case of &g. and through _ “ia i@
them the general solution for the decay equati@nwill be Amn=mae 4+ nher. (AL0)
found. , . It is worth noting that the Hamiltoniall’ can also be refor-

Let us look for solut|on§ of.the following type, where . /|ated asH’ = (2Qi sin @) [ (L,Ry)—(L;R)]. In order to
andn represent non-negative integers: construct solutions to the nonhomogeneous problem within
N the Hilbert space spanned by the set of solutions
Wi n(0,U,1) =y n(6,u)e "mnt, (A1) {yn(6,U)}, itis necessary to determine the orthonormality

of those solutions. To this purpose, let us consider the fol-
Upon insertion of the above expression in K@), a time-  lowing {¢,;,n(a,u)}={ngT¢0,o(a,u)}, whereP, , are op-
independent Schdinger-like equation can be written as erators defined as

(Nt YV mn=H"¢mn, (A2) Pio=—pg—l1Py- (Al11)
where We can now prove an orthogonal relation between the two
sets, using the commutation rules and and introducing
H' (6,u) = QP2+ yup,+ Q26p,—up,, (A3) ¥o0(6,u) as a weighting function:

and the subscripts represent derivativegs d/d,. As ex- o , 1

pected, the time-independent Boltzmann distribution satisfies f_wf_mdUd0¢m',n'( 0.U)0,0(0,1) thim,n(6,1)

the homogeneous equation, as can be verified by direct sub-

stitution with g c=0. The physical requirement that solu- =CmnOmm Onn - (A12)
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The orthonormal set of eigenfunctions is thus expressed as t o o
{Crhdhn(8,u)}, to which we refer ag ¢, o(6,u)}. The W(9,U,t):W(9,U-0)—Jodt'f_xdﬁ'f_mdu'
constant of proportionalit, , is
X[K(6,6",u,u’,t—t")
’}’QZ m+n ) )
Cm,n:m!n!(T (1_e—2|a)m(1_e2la)n‘ (A13) ><¢&é(9’,u’)F(0’,u’,t’)W(0’,u’,t’)].

(A15)

Let us now look for the full solutiolWW(6,u,t) to Eq. (9), . . .
posing it in the following form: Here, we have kedf a generic function of all variables and

the K function is the response kernel of the system:

W(tsv,u,t)=§,n hinn(D) $ma( ,u)e Mmat. (A14) K(0.0' ' )= e (B.U) b (6 U7 )e Amit,

Thehy, 1(t) functions are to be determined in analogy to the (A16)
scattering problem of particles in quantum mechanics. Let u$he productW’(6,u,t)= K(a,a’,u,u’,t)lpaé(e’,u’) is the
assume that the decay term is introduced at tim®, and  distribution function for the homogeneous system, under the
that the initial distribution is the equilibrium solution to the initial conditions W'(6,u,0)=48(6—6")S(u—u'). lts
homogeneous problem, i.e., the ground state as expressedasymptotic behavior reduces to the Boltzmann distribution,
Eqg. (8). Inserting Eq.(A14) in Eq. (9) and using the ortho- and apart fromt=0, it is an analytical function in all its
normality relations, it is possible to find time evolution equa-variables. The explicit representation of the kernel may be
tions forh, ,(t) and to write a recursion formula for the full written by inserting the expressions fap, ,(6,u) and
solution: ém.n(6,u) in Eq. (A16):

99— Qe (9 + Qe g, »
K0,0’,u,u’,t)=ex;{q( 0 w9 u )e—ne“ t]

,yQZ(l_ e+2ia)

o) —ia 4+ Q —ia , Cia
Xexp{q(ﬂ" & "0y +0e (9“)e*Qe Yo 6,U) ho o 0'U"), (A17)

’yQZ(l_ e—2ia)

where the exponential terms are intended as operators acting on the ground state wave functions. As it is written, the above
kernel is still expressed symbolically. In order to obtain its explicit form, it will suffice to perform a Fourier transform of Eq.
(A17) and then return to real space, a straightforward but tedious calculation that we omit. The complete solution for the kernel
is given by[37]

yQ\?2 1
2q

JTG

xex;){ - %[Qz(l—n)(ﬁw 0')2+ (1+1)(u—u’)2+2mAO 0+ 0’)(u—u’)]]

K(0,0’,u,u’,t)=(

xexp{ - 4qLG[QZ(1+ n)(6—6")%+(1—1)(u+u’)2+2mQ(0’ — 0)(u+u’)]] . (A18)
|
In order to keep a lighter notation, we have suppressed the T(t)=1+1(t)—n(t)—n(t)I(t) —m3(t), (A22)
time dependence of thg(t), G(t), I(t), m(t), n(t) func-
tions. They are defined as G(t)=1+n(t)—I()—n(HI(t)—m*(t).  (A23)

In order to ensure integrability for EGA15), some limi-
tations are posed on the form of th&6’,u’,t’) function.
For instance, the seemingly most natural choicé fanction
centered around*, yields a nonintegrable expression for
W(#6,u,t) at small times, when the kernel is a productéf

n(t)sina=e *%sin(@—Otsine).  (A21)  functions itself. Instead, the Gaussian choice introduced ear-
lier, with its finite o, ensures integrability at all time re-

The functionsT(t) andG(t) are combinations of the above: gimes.

[(t)sina=e" tcoSesin o+ Ot sina), (A19)

m(t)sina=e 2 Ssin Ot sina), (A20)
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