
Mathematical Biosciences 372 (2024) 109184

A
0
n

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original research article

A probabilistic model of relapse in drug addiction
Sayun Mao a, Tom Chou a, Maria R. D’Orsogna a,b,∗

a Department of Computational Medicine, UCLA, Los Angeles, 90095-1766, CA, USA
b Department of Mathematics, California State University at Northridge, Los Angeles, 91330, CA, USA

A R T I C L E I N F O

Keywords:
Drug addiction
Mood dynamics
Positive/negative activation
Relapse
Peak-end rule

A B S T R A C T

More than 60% of individuals recovering from substance use disorder relapse within one year. Some will
resume drug consumption even after decades of abstinence. The cognitive and psychological mechanisms that
lead to relapse are not completely understood, but stressful life experiences and external stimuli that are
associated with past drug-taking are known to play a primary role. Stressors and cues elicit memories of
drug-induced euphoria and the expectation of relief from current anxiety, igniting an intense craving to use
again; positive experiences and supportive environments may mitigate relapse. We present a mathematical
model of relapse in drug addiction that draws on known psychiatric concepts such as the ‘‘positive activation;
negative activation’’ paradigm and the ‘‘peak-end’’ rule to construct a relapse rate that depends on external
factors (intensity and timing of life events) and individual traits (mental responses to these events). We analyze
which combinations and ordering of stressors, cues, and positive events lead to the largest relapse probability
and propose interventions to minimize the likelihood of relapse. We find that the best protective factor is
exposure to a mild, yet continuous, source of contentment, rather than large, episodic jolts of happiness.
1. Introduction

Illicit drug abuse remains a major problem in the United States.
Despite decades of research and the implementation of policies ranging
from harm reduction to punitive measures, drug overdose deaths have
increased dramatically over the past 40 years, surpassing 107,000 fatal-
ities in 2022 [1]. According to the 2021 National Survey on Drug Use
and Health (NSDUH) about 3.3% of the population aged 12 and above
misused opioids in 2021, the latest year for which data is available [2].

Our understanding of substance abuse has also evolved in the
past 40 years: addiction, once viewed as a lifestyle choice, is now
considered a chronic brain disease characterized by the compulsive
seeking and using of drugs despite harmful consequences. Drugs change
the neurocircuitry of the brain reward system leading to distortions
in how non-drug rewards are processed, diminished self-control, in-
creased sensitivity to stressful events, and the prioritization of drug
consumption above all. Over time, tolerance emerges so that for plea-
surable sensations to persist or for withdrawal symptoms to dampen,
one must increase dosage or intake frequency. Since drug-induced
damage to the brain is long-lasting and structural, treatment is a com-
plex process, spanning several years and necessitating behavioral and
pharmacological approaches [3]. While detoxification requires a few
weeks, remaining sober over a lifetime is challenging: according to the
National Institute of Drug Abuse (NIDA) more than 60% of those with
substance use disorder relapse within one year [4–6]. The likelihood of
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relapse is highest in the first months after detoxification [7]; however,
relapse is possible even after many years of abstinence [8]. Since those
in recovery may have lost their previously built tolerance, de-novo
consumption, even in smaller amounts than during active use, may
cause overdoses.

Given the severity of the problem, it is important to understand the
psychological, behavioral and environmental factors that characterize
drug use [9–11]. Many studies have been developed over the years to
illustrate the process of addiction, utilizing psychiatric concepts, brain
imaging studies, and behavioral surveys [12–19]. Forecasting tools and
data analyses have also been presented [20–22]. There is however
no explicit quantitative framework to describe the cognitive processes
behind relapsing, although the presence of emotional stressors and
sensory cues are known to be major influences [23–28].

Among the most vivid memories of addicts (and former addicts)
is the pleasure associated with the first time drugs were consumed,
often the most euphoric part of the drug-taking experience. ‘‘Chasing
the first high’’ is a common refrain, regardless of how far in the past
the first high occurred. This aligns with the so-called ‘‘peak-end’’ rule
according to which the memory of a past experience is biased by
its most emotionally intense period (the high in this case), and its
ending [29]. Other less intense periods, or even the entire duration
of the experience, do not carry as much mnemonic weight [30]. Re-
lapses may be triggered by stressful events that lead to the retrieval
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of euphoric drug-related memories, such as the first high, and to the
anticipation of future euphoria if drugs are consumed again [31]. Drugs
are viewed as a way to alleviate the negative affects induced by current
stressors and to increase short term wellbeing [32]. External cues such
as persons, objects, locations, situations connected to past drug use may
also evoke memories associated with prior drug consumption and plea-
sure [33,34]. When stressors and/or cues are present, the associations
between drug use and pleasure (or mitigation of pain) may lead to
intense cravings and relapse [35]. The goal of this work is to create a
mathematical framework whereby the relapse likelihood is described as
a function of quantities that represent life stressors occurring at various
times and with varying intensity, cues and memories related to the
previous drug addiction experience, and changes to the neurocircuitry
of the former user.

In the next section, we introduce our mathematical model in which
the relapse rate is framed in terms of the mental state of the user,
drug availability and the presence of cues. Known psychological and
behavioral processes associated with addiction, such as reward col-
lection, tolerance, adaptation, and decision-making [17–19,36–38] are
integrated into a probabilistic model of relapse events. Most critical of
these components is a ‘‘mental state’’ that is driven by positive life
experiences, stressors and cues. Predictions of our model, subject to
different sequences of positive events, stressors, and cues are shown in
Section 3. We end with further discussion and conclusions in Section 4.

2. Dynamical systems model for relapse

2.1. Relapse rates and probabilities

We begin by assuming that drug consumption has ceased and that
the individual started recovery at time 𝑡 = 0. At any time 𝑡 > 0 of the
recovery phase, the probability per unit time of relapse, defined as the
instant the individual breaks sobriety by drug intake, is assumed to be
driven by the user’s mental state 𝑀(𝑡), which can be either positive
or negative, the influence 𝐶(𝑡) of any external cues that remind the
ser of past drug taking euphoria, and the current availability of drugs,
(𝑡). Positive values of the mental state 𝑀(𝑡) indicate well-being and

optimism, and negative values represent discontent and malaise. Drug
availability can be described by a continuous variable that represents
the ease with which drugs are acquired and consumed. For simplicity,
we binarize 𝐼(𝑡) so that 𝐼(𝑡) = 1 indicates that drugs are readily
available and 𝐼(𝑡) = 0 that they cannot be procured. Finally, cues are
ssumed to amplify the relapse rate via a non-negative motivation term
(𝑡) ≥ 0. Together, we let 𝑀(𝑡), 𝐶(𝑡) and 𝐼(𝑡) shape the rate of relapse

𝑅(𝑡) via

𝑅(𝑡) = 𝐼(𝑡)𝑅0𝑒
𝐶(𝑡)𝑒−𝑀(𝑡). (1)

n this model, 𝑅(𝑡)d𝑡 can be interpreted as the probability that the
elapse event (first use of drugs after 𝑡 = 0) occurred between 𝑡 and 𝑡+d𝑡.
ven though the instantaneous relapse rate does not explicitly depend
n history or memory, it depends on 𝐶(𝑡) and 𝑀(𝑡) which dynamically
volve, implicitly imparting event histories into the current relapse
ate. Eq. (1) indicates that if the drug supply is unrestricted (𝐼(𝑡) = 1),
o cues are present (𝐶(𝑡) = 0), and an individual is under a ‘‘neutral’’
ental state (𝑀(𝑡) = 0) the rate of relapse is given by a reference

aseline 𝑅(𝑡) = 𝑅0. Negative values of the mental state 𝑀(𝑡) < 0
ncrease the relapse rate, conversely 𝑅(𝑡) vanishes in the case of a
trongly positive mental state 𝑀(𝑡) ≫ 1. An alternative model for 𝑅(𝑡)
ay include a maximal saturated value 𝑅max, representing the fastest
ossible rate of acquiring and consuming drugs and that is attained
hen 𝐶(𝑡)−𝑀(𝑡) surpasses a positive threshold. Finally, the probability
f relapsing by time 𝑇 , 𝑃 (𝑇 ), can be written in terms of the survival

(against relapse) probability up to time 𝑇 , 𝑆(𝑇 ) given by

𝑆(𝑇 ) = 𝑒− ∫ 𝑇
0 𝑅(𝑡)d𝑡, 𝑃 (𝑇 ) = 1 − 𝑆(𝑇 ). (2)

Next, we describe an event-based model for the dynamics of the mental
state 𝑀(𝑡).
2

.2. The PA/NA mental state model

The so-called ‘‘Positive Activation, Negative Activation’’ (PA/NA)
odel posits that affects arising from positive and negative experi-

nces are not coupled [39–41] and might be processed on different
eural substrates [42,43]. Thus a realistic representation of the mental
tate 𝑀(𝑡) is as a sum of two contributions, 𝑀(𝑡) = 𝑀a(𝑡) + 𝑀b(𝑡),

where positive events affect 𝑀a(𝑡), negative ones affect 𝑀b(𝑡), and the
two evolve independently. Negative events, or stressors, are known
to impact one’s mental state more than positive ones, a neurological
phenomenon known as the ‘‘negativity bias’’ [44]; recent studies also
show that stressors tend to affect drug users more than the general
population [45,46], and that drug abuse produces hypersensitivity to
negative emotional distress [25,47,48]. Note that the exponential term
𝑒−𝑀(𝑡) in Eq. (1) weights negative mental states more than positive ones,
in accordance with negativity bias [44]. We model the dynamics of 𝑀a
and 𝑀b using different processing rates 𝜅a(𝑡) and 𝜅b(𝑡) as
d𝑀a
d𝑡

= − 𝜅a(𝑡)𝑀a +
∑

𝑖,𝑡≥𝑡a𝑖

𝐴𝑖𝛿(𝑡 − 𝑡a𝑖 ), (3a)

d𝑀b
d𝑡

= − 𝜅b(𝑡)𝑀b −
∑

𝑗,𝑡≥𝑡b𝑗

𝐵𝑗𝛿(𝑡 − 𝑡b𝑗 ). (3b)

In Eq. (3a) 𝐴𝑖 > 0 is the intensity of positive life event 𝑖, as
experienced by the individual in recovery, occurring at time 𝑡a𝑖 and
𝜅a(𝑡) > 0 is the processing rate that returns 𝑀a(𝑡) to steady state.
Similarly for −𝐵𝑗 < 0, 𝑡b𝑗 and 𝜅b(𝑡) in Eq. (3b). Since 𝑀a and 𝑀b are
decoupled and 𝜅a(𝑡) ≠ 𝜅b(𝑡), Eqs. (3a) and (3b) are our mathematical
representation of the PA/NA model. We solve them assuming that there
are no initial affects, 𝑀a(𝑡 = 0) = 𝑀b(𝑡 = 0) = 0 and that 𝜅a(𝑡) = 𝜅a
nd 𝜅b(𝑡) = 𝜅b are time-independent. Non-zero initial affects can be
ncorporated by setting 𝐴1 = 𝑀a(𝑡 = 0) at 𝑡a𝑖=1 = 0 or 𝐵1 = −𝑀b(𝑡 = 0)
t 𝑡b𝑗=1 = 0 in the sequence of positive or negative life events. Time-
ependent 𝜅a(𝑡), 𝜅b(𝑡) are discussed in the Appendix. We solve Eqs. (3a)
nd (3b) under the above approximations to find

a(𝑡) =
∑

𝑖,𝑡≥𝑡a𝑖

𝐴𝑖𝑒
−𝜅a(𝑡−𝑡a𝑖 ), 𝑀b(𝑡) =

∑

𝑗,𝑡≥𝑡b𝑗

𝐵𝑗𝑒
−𝜅b(𝑡−𝑡b𝑗 ). (4)

he mental state integrated up to time 𝑇 after 𝑛a positive and 𝑛b
egative life events, such that 𝑡a𝑛a ≤ 𝑇 ≤ 𝑡a𝑛a+1 and 𝑡b𝑛b ≤ 𝑇 ≤ 𝑡b𝑛b+1,
s thus given by

∫

𝑇

0
𝑀(𝑡)d𝑡 =∫

𝑇

0

(

𝑀a(𝑡) +𝑀b(𝑡)
)

d𝑡

= 1
𝜅a

𝑛a
∑

𝑖=1
𝐴𝑖

(

1 − 𝑒−𝜅a(𝑇−𝑡
a
𝑖 )
)

− 1
𝜅b

𝑛b
∑

𝑗=0
𝐵𝑗

(

1 − 𝑒−𝜅b(𝑇−𝑡
b
𝑗 )
)

.
(5)

he effects of a sequence of 𝑛a events defined by {𝐴𝑖, 𝑡a𝑖 } on the
ntegrated mental state in Eq. (5) can be reproduced by a single event
f amplitude 𝑍a at specific time 𝑡a

a =
𝑛a
∑

𝑖=1
𝐴𝑖, 𝑡a =

1
𝜅a

ln

[
∑𝑛a

𝑖=1 𝐴𝑖𝑒
𝜅a𝑡a𝑖

∑𝑛a
𝑖=1 𝐴𝑖

]

. (6)

Similarly, a sequence of 𝑛b events {−𝐵𝑗 , 𝑡b𝑗 } generates an integrated
mood that can be reproduced by single event

𝑍b =
𝑛b
∑

𝑗=1
𝐵𝑗 , 𝑡b =

1
𝜅b

ln
⎡

⎢

⎢

⎣

∑𝑛b
𝑗=0 𝐵𝑗𝑒

𝜅b𝑡b𝑗

∑𝑛b
𝑖=0 𝐵𝑗

⎤

⎥

⎥

⎦

. (7)

Thus far, we have modeled the dynamics of positive and negative men-
tal state variables. Included in the relapse rate 𝑅(𝑡) is also a dependence
on random cues that trigger the memory of drug-induced euphoria. The
model for cues shares many features of the negative mood variable and
is described below.
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Table 1
Relevant quantities and parameter ranges for the relapse models presented in Eqs. (1), (3a), (3b) (distinct mental state
neurocircuitry for few positive and negative events, no cues); Eqs. (1), (19), (common mental state neurocircuitry for
random, Gaussian distributed positive and negative events, no cues); Eqs. (1), (9), (36), (37) (distinct mental state
neurocircuitry for uniform, positive events, subject to Poisson distributed drug-related cues) and time-dependent forms
for the processing rates.

Symbol Quantity Range

𝑀a positive activity of the mental state ∼10
𝑀b negative activity of the mental state ∼ −10

𝐶 mental response to cues ∼1
𝜅a , 𝜅b equilibration values of the mental state processing rates ∼1/day
𝜅a,0 , 𝜅b,0 onset values of the mental state processing rates 0.6 ∼ 0.8𝜅a,b [49]
𝛾a , 𝛾b recovery rates for 𝜅a(𝑡) and 𝜅b(𝑡) 0.002 ∼0.02/day [49]
𝜅c processing rates of drug-related cues and memories ∼10/day
𝑅0 rate of relapse in the neutral mental state (without inputs) ∼10−3/day
𝐴𝑖 intensity of positive life event i ∼1
𝐵𝑗 intensity of negative life event j ∼1
𝑤peak intensity of most pleasurable drug-taking reward response ∼1
𝑡a𝑖 time of occurrence of positive life event i ∼day
𝑡b𝑗 time of occurrence of negative life event j ∼day
𝑡q𝓁 time of occurrence of cue 𝓁 ∼day
𝜆𝑞 Poisson process rate for the occurrence of cues ∼1/day
𝑌 continuous input to the mental state
𝜅 mental state processing rate for 𝜅a = 𝜅b
𝜆 Gaussian noise intensity in the OU process for the mental state
I
𝑈
r

𝐵
t
d
c
T
∫

2.3. External cues

Here we discuss representations for 𝐶(𝑡) ≥ 0. External cues can
trigger memories of the pleasurable feelings associated with drug tak-
ing [50,51]. We model these memories as impulses occurring at times
𝑡c𝓁 whose effects decay with rate 𝜅c. Thus, the dynamics of 𝐶(𝑡), the
verall motivation from cues, is given by
d𝐶
d𝑡

= −𝜅c(𝑡)𝐶 +
∑

𝓁,𝑡≥𝑡c
𝓁

𝐶𝓁𝛿(𝑡 − 𝑡c𝓁). (8)

The amplitude 𝐶𝓁 represents the mnemonic strength of a given cue.
By the peak-end rule, we assume that the most intense memory is
proportional to 𝑤peak > 0, the largest reward response during addiction,
and set 𝐶𝓁 = 𝑤peak for all 𝓁. We also assume the decay rate 𝜅c(𝑡)
associated with the permanence of the cue in one’s memory is a
constant, 𝜅c(𝑡) = 𝜅c, and that there are no initial cues, 𝐶(𝑡 = 0) = 0,
which leads to

𝐶(𝑡) = 𝑤peak
∑

𝓁,𝑡≥𝑡c
𝓁

𝑒−𝜅c(𝑡−𝑡
c
𝓁
). (9)

3. Results

We now study how external stimuli and intrinsic traits affect the
relapse probability 𝑃 (𝑇 ). External factors include specific realizations of
the {𝐴𝑖, 𝑡a𝑖 } and {−𝐵𝑗 , 𝑡b𝑗 } sequences, cue occurrence times {𝑡c𝓁} and drug
availability profile 𝐼(𝑡). The intrinsic characteristics of an individual
include how his or her mental state is affected by stressors, joyous
events, and cues, the processing rates for positive and negative events,
𝜅a and 𝜅b, for cues, 𝜅c, and the intensity of the first high 𝑤peak . Relevant
parameter ranges are listed in Table 1. Specifically, we measure time
in units of days and fix 𝑅0 = 10−3/day consistent with known relapse
rates of roughly 40 to 60 percent among opioid abuse disorder patients
one year after treatment [52]. We assume drugs are always available
and set 𝐼(𝑡) = 1 throughout the remainder of this work. Relapse is not
possible if drugs are not available.

3.1. Dynamics without cues

We begin by studying the case of no cues and an unimpeded drug
supply so that 𝐶(𝑡) = 0 and 𝐼(𝑡) = 1. We first analyze the simple case
3

𝐵

of a single life event and later consider sequences of multiple negative
and positive ones. Our goal is to identify which combination of events
(intensity and timing) leads to the smallest relapse likelihood.

3.1.1. Longer-lasting stressors increase the relapse probability; longer-lasting
positive events decrease it

We consider a single stressor that is processed at three different rates
𝜅b. Fig. 1 shows that the longer the stressor affects one’s mental state
(i.e. the lower 𝜅b), the larger the relapse probability 𝑃 (𝑇 ). Correspond-
ing results are shown for a positive experience processed at various
rates 𝜅a: lower values of 𝜅a result in smaller relapse likelihoods, as the
effects of the positive event are retained for a longer time. Due to the
exponential term in the relapse rate, stressors result in higher relapse
likelihoods compared to positive ones of the same amplitude.

3.1.2. Clustered stressors increase the relapse probability more than disperse
ones

We now include multiple life events and study how their timing
affects the likelihood of relapse. Let us start with two negative events,
{−𝐵1, 𝑡b1} and {−𝐵2, 𝑡b2}, that define the time interval 𝛥b = 𝑡b2 − 𝑡b1 ≥ 0.
We then define the effective time 𝑈 (𝑇 ) given by

𝑈 (𝑇 ) ≡ −
ln𝑆(𝑇 )
𝑅0

= ∫

𝑇

0
𝑒−𝑀(𝑠)d𝑠

= 𝑡b1 +∫

𝛥b

0
𝑒𝐵1𝑒−𝜅b𝑠d𝑠 +∫

𝑇−𝑡b1

𝛥b
𝑒
(

𝐵1+𝐵2𝑒𝜅b𝛥b
)

𝑒−𝜅b𝑠d𝑠.
(10)

f 𝐵1, 𝐵2 = 0 (as in the ‘‘neutral’’ case or baseline) Eq. (10) gives
(𝑇 ) = 𝑇 ; finite values of 𝐵1, 𝐵2 lead to 𝑈 (𝑇 ) > 𝑇 , increasing the

elapse probability 𝑃 (𝑇 ) = 1 − 𝑆(𝑇 ) above that of the baseline.
We now consider the family of paired events where the amplitudes

1, 𝐵2 are fixed and where 𝑡b1, 𝑡
b
2 are chosen such that for 𝑇 > 𝑡b2 the

wo events yield the same integrated mood as the single event {𝑍b, 𝑡b}
efined in Eq. (7). This implies that 𝐵1𝑒

𝜅b𝑡b1 + 𝐵2𝑒
𝜅b𝑡b2 ≡ 𝐻b must be a

onstant, leaving one degree of freedom, which we choose to be 𝛥b.
he above constraints also impose that the integrated mental state,
𝑇
0 𝑀(𝑠)d𝑠 is invariant for all paired events within the family defined by
, 𝐵 ,𝐻 . We may now ask: within this family of paired events, where
1 2 b
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Fig. 1. Mental state at time 𝑡,𝑀(𝑡), and the probability of relapse before time 𝑇 , 𝑃 (𝑇 ), upon exposure to a single stressor {−𝐵1 , 𝑡b1} or to a single positive event {𝐴1 , 𝑡a1} for three
processing rates 𝜅b or 𝜅a = 2, 1, 0.5/day with 𝐵1 = 𝐴1 = 4, 𝑡b1 , 𝑡

a
1 = 7 days, 𝑅0 = 10−3/day, 𝑀0 = 0. The relapse probability decreases with 𝜅b so that the longer a stressor impacts

one’s mental state, the larger the likelihood of relapse. The opposite is true for positive events, for which the longer memory of a positive event is retained, the less likely relapse
is. Note the more pronounced effect of the negative mental state 𝐵1, compared to the positive one 𝐴1 under the same processing rate despite their amplitudes being the same.
The mental state 𝑀(𝑡) = 𝑀a(𝑡) +𝑀b(𝑡) is given by Eqs. (4); the relapse probability 𝑃 (𝑇 ) by Eqs. (1) and (2).
Fig. 2. Top row: Mental state 𝑀(𝑡) and relapse probability 𝑃 (𝑇 ) upon exposure to two stressors {−𝐵1 , 𝑡b1} and {−𝐵2 , 𝑡b2} separated by lag times 𝛥b = 𝑡b2 − 𝑡b1 = 0, 1, 2, 4 days and
obtained using Eqs. (1), (2), (4), and (12). Parameters are 𝜅b = 1/day, 𝐵1 = 𝐵2 = 4, 𝑅0 = 10−3/day, 𝑀0 = 0. All stressor pairs define the same integrated mental state defined in
Eq. (5) and are equivalent to the single event {−𝑍b , 𝑡b} shown in the red curve. For each 𝛥b, the corresponding 𝑡b1 is derived from the constraint 𝐻b = 𝐵1𝑒𝜅b 𝑡

b
1 + 𝐵2𝑒𝜅b (𝑡

b
1+𝛥b ) where

𝐻b = 𝑍b𝑒𝜅b 𝑡b , 𝑍b = (𝐵1 +𝐵2), and 𝑡b = 7 days. Notice that 𝑃 (𝑇 ) decreases with 𝛥b, implying that stressors should be as spaced apart as possible to decrease the likelihood of relapse
in accordance with our analytical findings. Bottom row: Corresponding plots for two positive events, {𝐴1 , 𝑡a1} and {𝐴2 , 𝑡a2} separated by lag times 𝛥a = 𝑡a2 − 𝑡a1 = 0, 1, 2, 4 days with
𝐴1 = 𝐴2 = 4 and all other parameters the same as above. The constraint can be obtained by setting a → b in the two-stressor constraint expression, with 𝑡a = 7 days. Here, 𝑃 (𝑇 )
decreases with 𝛥a, implying that the best protection against relapse is by experiencing well-spaced positive events rather than large clustered ones. Small, repeated joys and small,
repeated unpleasant events are better than large a jolt of happiness or catastrophe.
the integrated mental state is fixed, which choice of 𝛥b minimizes the

relapse probability at any time 𝑇 > 𝑡b2? We first express 𝑡b1 in terms of

𝐻b and 𝛥b,

𝑡b1 =
1 ln

(

𝐻b
)

, (11)
4

𝜅b 𝐵1 + 𝐵2𝑒𝜅b𝛥b
and make the dependence of 𝑈 (𝑇 ) on 𝛥b explicit so that 𝑈 (𝑇 ) →
𝑈 (𝑇 ;𝛥b) and

𝜅b𝑈 (𝑇 ;𝛥b) = ln
( 𝐻b

𝐵1 + 𝐵2𝑒𝜅b𝛥b

)

+ Ei(𝐵1) − Ei
(

𝐵1𝑒
−𝜅b𝛥b

)

( −𝜅 𝛥 ) ( −𝜅 𝑇 )

(12)
+ Ei 𝐵1𝑒 b b + 𝐵2 − Ei 𝐻b𝑒 b ,
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Fig. 3. Top row: Mental state 𝑀(𝑡) and relapse probability 𝑃 (𝑇 ) upon exposure to 𝑛b = 1, 2, 4 negative events {−𝐵𝑖 , 𝑡b𝑖 } and a continuum of stressors. All curves are obtained using
Eqs. (1), (2), (4), and (12). Sequences define the same integrated mental state defined in Eq. (5) and are equivalent to the single event {−𝑍b , 𝑡b} shown in the red curve, where
𝑍b = 8 and 𝑡b = 7 days. Within each sequence, events carry the same amplitude 𝐵𝑖 and are separated by the same time interval 𝛥b = 3.5 days (𝑛b = 2, black curve), 2 days (𝑛b = 4,
blue curve), and 0.1 days (continuum, green curve). Other parameters are 𝜅b = 1/day, 𝑅0 = 10−3/day, 𝑀0 = 0. Bottom row: Corresponding plots for sequences of equivalent
positive events with 𝑍a = 8 and 𝑡a = 7 days with 𝜅a = 1/day and 𝛥a = 3.5 days (𝑛a = 2, black curve), 2 days (𝑛a = 4, blue curve), and 0.1 days (continuum, green curve). Notice
that for both positive and negative events the relapse probability is lowest for small events of limited magnitude.
where the exponential integral Ei(𝑥) ≡ ∫ 𝑥
−∞ 𝑡−1𝑒𝑡d𝑡. Since 𝐵1, 𝐵2,𝐻b are

fixed, the extrema of 𝑈 (𝑇 ;𝛥b) with respect to 𝛥b at any time 𝑇 are given
by the zeros of

𝜅b
𝜕𝑈 (𝑇 ;𝛥b)

𝜕𝛥b
= (1 − 𝐵2)𝑒𝐵1𝑒−𝜅b𝛥𝑏 + 𝑒𝐵2𝑒𝐵1𝑒−𝜅b𝛥𝑏 − 1

1 + 𝐵1
𝐵2

𝑒−𝜅b𝛥b
. (13)

Regardless of 𝐵1, 𝐵2, 𝜅b, the left hand side of Eq. (13) is a negative
function of 𝛥b, implying that 𝑈 (𝑇 ;𝛥b) has a maximum at 𝛥b → 0. Since
𝑃 (𝑇 ) = 1 − 𝑆(𝑇 ) = 1 − 𝑒−𝑅0𝑈 (𝑇 ;𝛥b), we conclude that the largest relapse
probability also occurs at 𝛥b → 0; that is, the relapse likelihood is
largest when the two negative events occur simultaneously. In the top
row of Fig. 2 we show the relapse probability 𝑃 (𝑇 ) upon exposure to
pairs of stressors that belong to the same family of events with fixed
𝐵1, 𝐵2,𝐻b and different timings 𝛥b. The relapse probability is indeed
largest when the time lag between the two stressors is smallest, 𝛥b → 0.
We can apply the same arguments to more than two events and show
that as the number of stressors increases, so does the likelihood of
relapse. Given a negative integrated mental state generated by a set
of 𝑛b negative events occurring within time 𝑇 , the relapse likelihood
is largest when stressors are coincident, and is reduced when stressors
are spread out. Fig. 3 shows the relapse probability for 𝑛b = 1, 2, 4 and
a continuum of negative events. In our model, relapse after a single
catastrophic event is more likely than after a series of smaller stressors
which cumulatively yield the same integrated negative mental state as
the single catastrophic stressor.

3.1.3. Dispersed positive events decrease the relapse probability more than
clustered ones

We can derive similar expressions to Eq. (10) for two positive life
events for which the corresponding 𝑈 (𝑇 ) is obtained by substituting
5

𝐵1,2 → −𝐴1,2, and 𝑡b1, 𝛥b, 𝜅b → 𝑡a1, 𝛥a, 𝜅a, respectively. Using the same
methods as for pairs of negative events, we can show that the occur-
rence of two positive events decreases the likelihood of relapse the most
when the two events are well spaced out. Results are shown in the bot-
tom row of Fig. 2 for pairs of positive events with fixed 𝐴1, 𝐴2,𝐻a and
different timings. The smallest likelihood of relapse occurs when the
time lag between positive events 𝛥a is large, conversely, the likelihood
of relapse is most pronounced for 𝛥a → 0. In the case of multiple,
positive life events, as with the findings described for negative life
events, the likelihood of relapse decreases the most when an individual
experiences many distributed but moderately happy events, compared
to a much larger but isolated positive episode that carries the same
overall impact as the distributed ones. Results for sequences of multiple
events belonging to the same family are shown in the bottom row
of Fig. 3 for 𝑛a = 1, 2, 4 where events are equally spaced and for
a continuum of episodes. As expected, the lowest relapse probability
occurs for a uniform distribution of positive events. A modest but
continuous source of support is more protective against relapse than
a very intense yet short-lived positive experience.

3.1.4. Relapse is least likely if a positive experience occurs immediately after
a stressor

We now examine the case of a stressor {−𝐵1, 𝑡b1} followed by a
positive event {𝐴2, 𝑡a2}, where 𝑡a2 > 𝑡b1. We label the positive event 𝐴2
rather than 𝐴1 so that it is clear that the positive event occurs after the
negative one. Given an integrated mental state ∫ 𝑇

0 𝑀(𝑡′)d𝑡′ and values
for 𝐵1, 𝐴2, the goal is to establish the lag time between the two events
that minimizes the likelihood of relapse. The general case of different
processing rates 𝜅a ≠ 𝜅b does not allow for easy generalization, so we
set 𝜅 = 𝜅 = 𝜅 to simplify our analysis. We write 𝑈 (𝑇 ) = − ln𝑆(𝑇 )∕𝑅
a b 0
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Fig. 4. Top row: Mental state 𝑀(𝑡) and relapse probability 𝑃 (𝑇 ) upon exposure to a stressor {−𝐵1 , 𝑡b1} followed by a positive event {𝐴2 , 𝑡a2}. The two events are separated by lag
times 𝛥ba = 𝑡a2 − 𝑡b1 = 0, 0.2, 0.4, 0.6 hours. All curves are obtained using Eqs. (1), (2), (4), and (14). Parameters are 𝜅b = 𝜅a = 𝜅 = 1/day, 𝐵1 = 4, 𝐴2 = 2, 𝑅0 = 10−3/day, 𝑀0 = 0 and
by setting 𝐻 = 2𝑒7. All event pairs define the same integrated mental state defined in Eq. (5) for 𝑇 > 𝑡a2. Notice that 𝑃 (𝑇 ) increases with 𝛥ba, implying that given a stressor, the
likelihood of relapse is lowest the earlier a counteracting positive event occurs, in accordance with our analytical findings. Bottom row: Corresponding plots for a positive event
{𝐴1 , 𝑡a1} followed by a stressor {−𝐵2 , 𝑡b2} with lag times 𝛥ab = 𝑡b2 − 𝑡a1 = 0, 1, 2, 4 days with 𝐴1 = 2, 𝐵2 = 4 and all other parameters are the same as above. Here, 𝑃 (𝑇 ) also increases
with 𝛥ab and is smallest for 𝛥ab → 0.
in terms of 𝛥ba = 𝑡a2− 𝑡b1 and make the dependence on 𝛥ba explicit in the
expression for 𝑈 (𝑇 ;𝛥ba) as follows

𝜅𝑈 (𝑇 ;𝛥ba) = ln
(

𝐻
𝐵1 − 𝐴2𝑒𝜅 𝛥ba

)

+ Ei(𝐵1) − Ei(𝐵1𝑒
−𝜅𝛥ba )

+ Ei(𝐵1𝑒
−𝜅𝛥ba − 𝐴2) − Ei(𝐻𝑒−𝜅𝑇 ),

(14)

where 𝐻 ≡ 𝐵1𝑒
𝜅𝑡b1 − 𝐴2𝑒

𝜅𝑡a1 is a constant that ensures ∫ 𝑇
0 𝑀(𝑡′)d𝑡′ is

independent of 𝛥ba. We can thus write

𝜅
𝜕𝑈 (𝑇 ;𝛥ba)

𝜕𝛥ba
= 𝐴2𝑒

𝐵1𝑒−𝜅𝛥ba
(1 − 𝑒−𝜅𝐴2

𝐴2
+ 𝑒−𝐵1𝑒−𝜅𝛥ba − 𝑒−𝜅𝐴2

𝐵1𝑒−𝜅𝛥ba − 𝐴2

)

. (15)

The left hand side of Eq. (15) is a positive function of 𝛥ba regardless
of 𝐴1, 𝐵2, 𝜅; as a consequence, for 𝑇 > 𝑡a2, 𝑈 (𝑇 ;𝛥ba) is an increasing
function of 𝛥ba and attains its lowest value at 𝛥ba = 0. Thus, the
relapse probability is also the lowest for 𝛥ba = 0. Once a negative
life event occurs, the way to minimize the occurrence of relapses is
for the individual to experience a healing, positive experience as soon
as possible. Similar results hold in the case of a positive event {𝐴1, 𝑡a1}
followed by a negative event {𝐵2, 𝑡b2}; the relapse probability is lowest
when the time lag between the two events is shortest.

In Fig. 4 we show the relapse probability for equivalent pairs of
events {−𝐵1, 𝑡b1} and {𝐴2, 𝑡a2} that define a fixed 𝐻 ≡ 𝐵1𝑒

𝜅𝑡b1 −𝐴2𝑒
𝜅𝑡a2 for

𝜅a = 𝜅b = 𝜅. For large enough 𝑇 , 𝑃 (𝑇 ) decreases with 𝛥ba, confirming
our analytic predictions. The same finding arises for equivalent pairs of
events {𝐴1, 𝑡a1} and {−𝐵2, 𝑡b2} that define a fixed 𝐻 ≡ −𝐴1𝑒

𝜅𝑡a1+𝐵2𝑒
𝜅𝑡b2 for

𝜅a = 𝜅b = 𝜅. To derive the mathematical results presented for pairs of
events of amplitude (𝐴 ,𝐴 ), (𝐵 ,𝐵 ), (𝐵 ,𝐴 ) and (𝐴 ,𝐵 ) we assumed
6

1 2 1 2 1 2 1 2
that no other prior events occurred; however, it is possible to show that
our findings remain valid in the presence of earlier events. For example,
given the events {𝐴1, 𝑡a1}, {−𝐵2, 𝑡b2}, {−𝐵3, 𝑡b3} with 𝑡b3 ≥ 𝑡b2 ≥ 𝑡a1 processed
at the same rate 𝜅a = 𝜅b = 𝜅 one can show that the relapse probability
is still maximized upon clustering the two negative events (𝐵2, 𝐵3) and
setting 𝛥b = 𝑡b3 − 𝑡b2 → 0.

We now consider the general case 𝜅a ≠ 𝜅b. In Fig. 5 we show
results for pairs of events {𝐴1, 𝑡a1} and {−𝐵2, 𝑡b2} where 𝐴1 = 𝐵2 and
𝛥ab ≡ 𝑡b2 − 𝑡a1, and for pairs of events {−𝐵1, 𝑡b1} and {𝐴2, 𝑡a2} where
𝐵1 = 𝐴2 and 𝛥ba ≡ 𝑡a2 − 𝑡b1. The long-term relapse probability 𝑃 (𝑇 ) is
largely insensitive to the absolute timing of the pair of events, as long
as 𝑇 − 𝑡a,b2 ≫ 𝜅−1a , 𝜅−1b ; however, it strongly depends on the event order
and the magnitude of the time lag 𝛥ab or 𝛥ba. For a fixed 𝛥ab = 𝛥ba,
𝑃 (𝑇 ) may depend significantly on the order of events. In general, the
larger 𝜅a𝛥ab and 𝜅b𝛥ba, the less sensitive the relapse probability is to the
order of events as shown by comparing the cases 𝛥ab = 𝛥ba = 4 days
with 𝛥ab = 𝛥ba = 1 day in Fig. 5. Note that since 𝜅a ≠ 𝜅b it is impossible
for the pairs of events in Fig. 5 to define the same integrated mental
state ∫ 𝑇

0 𝑀(𝑡′)d𝑡′ for any given 𝑇 .
Finally, given a stressor {−𝐵1, 𝑡b1} which is processed at a rate 𝜅b we

determine which later event {𝐴2, 𝑡a2} processed at rate 𝜅a will yield the
same relapse probability as the baseline case, where no events occur.
To do this, we note that under the baseline, 𝑈 (𝑇 ) = 𝑇 and that since
it is not possible to define a single event as in Eq. (14) for 𝜅a ≠ 𝜅b, we
must write 𝑈 (𝑇 ;𝛥ba) in its general form

𝑈 (𝑇 ;𝛥ba) = 𝑡b1 + ∫

𝛥ba

0
𝑒𝐵1𝑒−𝜅b 𝑡d𝑡 + ∫

𝑇−𝑡b1

𝛥ba
𝑒𝐵1𝑒−𝜅b 𝑡

′
−𝐴2𝑒−𝜅a(𝑡

′−𝛥ba)d𝑡′, (16)
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Fig. 5. Top row: Mental state 𝑀(𝑡) and relapse probability 𝑃 (𝑇 ) upon exposure to two events of opposite sign {𝐴𝑖 , 𝑡a𝑖 } and {−𝐵𝑗 , 𝑡b𝑗 } for 𝜅a = 2/day and 𝜅b = 1/day where 𝑖 = 1, 𝑗 = 2
or 𝑗 = 1, 𝑖 = 2. All curves are obtained using Eqs. (1), (2), (4), and (14). Events carry the amplitudes 𝐴𝑖 = 𝐵𝑗 = 4; the other parameters are set at 𝑀0 = 0, 𝑅0 = 10−3. Lag times
are evaluated by setting 𝑡b𝑗 = 7 days where 𝑗 = 1 for lag times 𝛥ba = 𝑡a2 − 𝑡b1 and 𝑗 = 2 for lag times 𝛥ab = 𝑡b2 − 𝑡a1. For large enough 𝛥ab = 𝛥ba = 4 days the relapse probability is
independent of the order of events; however, for smaller lag times 𝛥ab = 𝛥ba = 1 day, the order of events matters and the relapse probability is lower when the positive event
{𝐴1 , 𝑡a1} occurs prior to the stressor {−𝐵2 , 𝑡a2}. If the two events are concurrent and 𝛥ab = 𝛥ba = 0 the total input to the mental state is negative since 𝜅b < 𝜅a and the effects of the
stressor are retained for a longer time than those of the positive event. Bottom row: Corresponding plots for 𝜅a = 1/day and 𝜅b = 2/day with all other parameters and events the
same as those of the top row, and where the ordering of positive and negative events is reversed. Here, the order of events plays an even more crucial role when the time lag
𝛥ab = 𝛥ba = 1 as the relapse probability is much lower when the positive event {𝐴1 , 𝑡a1} occurs prior to the stressor {−𝐵2 , 𝑡a2}. Since 𝜅b ≠ 𝜅a it is not possible for the pairs of events
to define the same mental state for all values of 𝑡.

Fig. 6. Long-term percentage changes in the relapse probability after one negative and one positive event relative to the neutral scenario of no events occurring. For
𝛥 = 𝛥ba = 𝑡a2 − 𝑡b1 > 0, the stressor {−𝐵1 , 𝑡b1} is followed by a positive event {𝐴2 , 𝑡a2} where 𝐵1 = 2, 𝑡b1 = 12 days and 𝐴 = 𝐴2 is determined from Eq. (17) at 𝑇 = 30 days.
The color shading represents the percentage change of 𝑃 (𝑇 = 30) assuming the two events have occurred relative to the neutral case. The black curve represents the amplitude of
𝐴2 that yields the same relapse probability as the neutral case effectively neutralizing the effects of the stressor. For 𝛥 = −𝛥ab = 𝑡a1 − 𝑡b2 < 0 the positive event {𝐴1 , 𝑡a1} is followed
by a stressor {−𝐵2 , 𝑡b2} where 𝐵2 = 2, 𝑡b2 = 12 days. Here, the black curve tracks the amplitude of a preemptive positive event 𝐴1 that would neutralize the future 𝐵2 = 2 stressor
at 𝑇 = 30 days as determined from Eq. (17). In panel (a) we set 𝜅a = 2/day, 𝜅b = 1/day; in panel (b) we set 𝜅a = 𝜅b = 1/day; and in panel (c) we set 𝜅a = 1/day, 𝜅b = 2/day. The
asymmetry between the positive and negative values of 𝛥 underlines the importance of event order. For a given 𝛥 = 𝛥ba > 0, the value of 𝐴2 necessary to balance 𝐵1 = 2 is larger
than the value of 𝐴1 necessary to balance 𝐵2 = 2 when 𝛥 = −𝛥ab = −|𝛥ba| < 0. Upon comparing the black lines in the three panels for fixed 𝛥 = 𝛥ba > 0 the value of 𝐴2 necessary
to neutralize the 𝐵1 stressor is larger when 𝜅a is larger or 𝜅b is lower, i.e. under fast processing of positive events or longer-lasting stressors. Similar considerations apply when
𝛥 = 𝛥ab < 0.
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where 𝛥ba = 𝑡a2− 𝑡b1. To find the value of 𝐴2 that balances 𝑈 (𝑇 ;𝛥ba) with
the baseline 𝑈 (𝑇 ) = 𝑇 , we must solve

𝑈 (𝑇 ;𝛥ba) = 𝑡b1 +
1
𝜅b

[

Ei(𝐵1) − Ei
(

𝐵1𝑒
−𝜅b𝛥ba

)]

+ 1
𝜅a

[

Ei(−𝐴2) − Ei
(

−𝐴2𝑒
−𝜅a(𝑇−𝑡b1−𝛥ba)

)

]

=𝑈 (𝑇 ) = 𝑇 .

(17)

nder the assumption 𝜅a𝛥ba, 𝜅b𝛥ba ≫ 1, and using the identity lim𝑥→0
i(𝑥) = ln |𝑥| + 𝛾, where 𝛾 is the Euler–Mascheroni constant, Eq. (17)
an be simplified to

i(−𝐴2) − 𝛾 − ln(𝐴2) =
𝜅a
𝜅b

[

ln(𝐵1) + 𝛾 − Ei(𝐵1)
]

. (18)

Eq. (18) yields the value of 𝐴2 that neutralizes the effects of a stressor
of amplitude 𝐵1 so that at long times the relapse rate is the same
s if neither event occurred. It is straightforward to show that upon
ubstituting 𝐵1 → −𝐴1 and 𝐴2 → −𝐵1 Eq. (18) still holds when
he order of events is reversed and the positive event occurs prior
o the negative one. The black curves in Fig. 6 trace the values of

= 𝐴2 that balance a stressor of amplitude 𝐵1 given a lag time
= 𝛥ba > 0 for various choices of 𝜅a and 𝜅b. These results correspond

o positive values of 𝛥. Vice-versa, the amplitude of a protective event
= 𝐴1 that can balance a later stressor of amplitude 𝐵2 are shown

or negative values of 𝛥 = −𝛥ab < 0. The asymmetry between positive
nd negative values of 𝛥 for all choices of 𝜅a and 𝜅b implies that a
odest amplitude of the positive event is required to balance a fixed

tressor, regardless of whether the positive event occurs before or after
he stressor. The other color-coded regions in Fig. 6 show the percent
ncrease (or decrease) of the relapse probability 𝑃 (𝑇 ) compared to the
eutral case of no negative or positive life event, for specific values of
1, 𝐴2, 𝐵1, 𝐵2, 𝑡a1, 𝑡

b
1, 𝑡

a
2, 𝑡

b
2, 𝑇 , 𝜅a, 𝜅b.

.1.5. A constant source of positivity can offset the random lows of life
We now study the scenario in which there is a constant input

to the mental state which may represent a continuous stressor or
ource of support. We also assume that positive and negative life events
ccur randomly and are processed at rates 𝜅a = 𝜅b = 𝜅. Under these
ssumptions we describe the dynamics for 𝑀 = 𝑀a +𝑀b as
d𝑀
d𝑡

= −𝜅𝑀 + 𝑌 + 𝜉(𝑡), (19)

where 𝜉(𝑡) is a Gaussian white noise term that represents the random,
positive and negative, life events. We set the general initial mental state
value 𝑀(𝑡 = 0) = 𝑀0 and write the mean and correlation function of
𝜉(𝑡) as

⟨𝜉(𝑡)⟩ = 0,

⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 2𝜆𝛿(𝑡 − 𝑡′).
(20)

Eq. (20) defines an Ornstein–Uhlenbeck stochastic process, a classic
paradigm in statistical mechanics [53–56]. The relapse rate of the
neutral case, where there are no life events or continuous inputs to
perturb an individual’s mental state and 𝑌 = 𝜉(𝑡) = 0, is given by

𝑅d(𝑡) = 𝑅0𝑒
−𝑀0𝑒−𝜅𝑡 . (21)

If 𝑌 ≠ 0 and 𝜉(𝑡) ≠ 0, Eq. (19) can be solved as

(𝑡) = 𝜇m(𝑡) + ∫

𝑡

0
𝑒−𝜅(𝑡−𝑡

′)𝜉(𝑡′)d𝑡′,

𝜇m(𝑡) ≡
𝑌
𝜅

+
(

𝑀0 −
𝑌
𝜅

)

𝑒−𝜅𝑡.
(22)

ssociated with Eqs. (19) and (20) is a Fokker–Planck equation govern-
ng the dynamics of the probability density function 𝑃m(𝑀, 𝑡) [54,55]

𝜕𝑃m(𝑀, 𝑡)
= 𝜕 (

(𝜅𝑀 − 𝑌 )𝑃
)

+ 𝜆
𝜕2𝑃m . (23)
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𝜕𝑡 𝜕𝑀 m 𝜕𝑀2 d
The solution to Eq. (23) and the initial condition 𝑃 (𝑀, 𝑡 = 0) = 𝛿(𝑀 −
0) is

m(𝑀, 𝑡) = 1
√

2𝜋𝜎2m(𝑡)
𝑒
− (𝑀−𝜇𝑀 (𝑡))2

2𝜎2m(𝑡) , 𝜎2m(𝑡) ≡
𝜆
𝑘
(1 − 𝑒−2𝑘𝑡). (24)

n the limit 𝑡 → ∞, Eq. (24) defines a steady state Gaussian distribu-
ion centered at 𝑌 ∕𝜅 with variance 𝜆∕𝜅. The expected time-dependent
elapse rate is given by

𝑅(𝑡)⟩ = 𝑅0⟨𝑒
−𝑀(𝑡)

⟩ = 𝑅0∫

∞

−∞
𝑒−𝑀𝑃 (𝑀, 𝑡)d𝑀, (25)

hich is explicitly expressed as

⟨𝑅(𝑡)⟩ = 𝑅0 exp
[

−𝜇m(𝑡) +
1
2
𝜎2m(𝑡)

]

, (26a)

𝑅(𝑡 → ∞)⟩ = 𝑅0 exp
[ (𝜆 − 2𝑌 )

2𝜅

]

. (26b)

he relapse rate in Eq. (26b) can be compared with the equivalent
xpression obtained in the absence of noise, i.e. for 𝑌 ≠ 0 and 𝜉(𝑡) =
= 0
⟨𝑅(𝑡 → ∞)⟩

𝑅(𝑡 → ∞; 𝜉(𝑡) = 0)
= 𝑒𝜆∕2𝜅 > 1. (27)

ince the above 𝜆-independent ratio is always larger than one, Eq. (27)
mplies that unbiased noise, where positive and negative life events are
qually likely in frequency and magnitude, results in a larger relapse
ate than the noise-free case, regardless of the sign of 𝑌 . Mathemat-
cally, this result stems from the asymmetry in 𝑅0𝑒−𝑀(𝑡) where the

increase due to a stressor is much larger than the decrease following
a positive fluctuation of similar amplitude, consistent with the brain’s
negativity bias [44]. We can also compare the general case 𝑌 ≠ 0 and
(𝑡) ≠ 0 with the neutral case 𝑌 = 𝜉(𝑡) = 0 yielding
⟨𝑅(𝑡 → ∞)⟩
𝑅d(𝑡 → ∞)

= exp
[ (𝜆 − 2𝑌 )

2𝜅

]

. (28)

The values of 𝑌 , 𝜆 in Eq. (28) can be tuned so that the driving term and
the noise balance each other. Specifically, for the long term expected
relapse rate in the presence of noise to be less than the relapse rate
in the absence of any external input, the constant input 𝑌 must obey
𝑌 > 𝜆∕2. Given the form for 𝑃 (𝑇 ) in Eq. (2), we can write the expected
elapse probability as

𝑃 (𝑇 )⟩ = 1 −
⟨

exp
[

−𝑅0 ∫

𝑇

0
𝑒−𝑀(𝑡)d𝑡

]

⟩

(29)

nd approximate it in the 𝜅𝑇 ≫ 1 limit by

𝑃 (𝑇 )⟩ ≈ 1 − exp
[

−𝑅0 ∫

𝑇

0
⟨𝑒−𝑀(𝑡)

⟩d𝑡
]

≈ 1 − exp
[

−𝑒
𝜆−2𝑌
2𝜅 𝑅0𝑇

]

.
(30)

In the Appendix we discuss Eq. (29) and cases where the approximation
in Eq. (30) fails, namely in the 𝜅 → 0 limit. Fig. 7 shows the expected
relapse rate ⟨𝑅(𝑡)⟩ as 𝜅, 𝑌 , 𝜆 are varied. Results derived from 100,000
simulations of the stochastic process in Eq. (19) are compared with pre-
dictions from the analytical result (Eq. (26a)). We also show the relapse
rate for the baseline given by 𝑅d(𝑡) = 𝑅0. The expected relapse rate
increases with the noise amplitude 𝜆 and decreases with the magnitude
of the positive experience 𝑌 and with the processing rate 𝜅. Lower 𝜅
values imply longer processing times for all events; however, since the
asymmetry in 𝑅(𝑡) assigns more weight to negative occurrences, a larger
likelihood of relapse is observed as 𝜅 → 0. The corresponding values of
the expected relapse probability ⟨𝑃 (𝑇 )⟩ obtained from simulations and
rom the analytical approximation in Eq. (30) are shown in Fig. 8.

Finally, we evaluate the first passage statistics to a given mental
tate 𝑀th < 0. Although the threshold level value can be arbitrary, we
et it to be negative to represent a critically unhappy mental state. The

ynamics of the mean first passage time 𝑇m(𝑀) to reach 𝑀th starting
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Fig. 7. Dynamics of ⟨𝑅(𝑡)⟩ averaged over 100,000 realizations of the Ornstein–
Uhlenbeck described by Eq. (19) and the analytical expression for ⟨𝑅(𝑡)⟩ in Eq. (26a).
Parameters are 𝑀0 = 0, 𝑅0 = 10−3/day. Values in the legend are in units of /day. For
𝜆 = 2𝑌 the 𝑡 → ∞ relapse rate in Eq. (26b) ⟨𝑅(𝑡 → ∞)⟩ = 𝑅0 matches the neutral case
of no exposure to any positive or negative life event.

from a given mental state 𝑀 > 𝑀th can be derived from the backward
Kolmogorov equation associated with Eq. (23)

𝜆
d2𝑇m
d𝑀2

− (𝜅𝑀 − 𝑌 )
d𝑇m
d𝑀

= −1 (31)

along with absorbing boundary conditions 𝑇 (𝑀th) = 0 and 𝑇m (𝑀 →
∞) = 0. Eq. (31) can be solved using standard methods to yield

𝑇m(𝑀) =

√

𝜋
𝜅 ∫

√ 𝜅
2𝜆 (𝑀−𝑌 ∕𝜅)

√ 𝜅
2𝜆 (𝑀th−𝑌 ∕𝜅)

𝑒𝑧
2
erfc(𝑧)d𝑧, (32)

where erfc(𝑥) is the complementary error function erfc(𝑥) = 1 − erf(𝑥).
Since the argument of the integrand is a positive, decreasing function
of 𝑧, Eq. (32) implies that 𝑇m(𝑀) is increasing in 𝑌 ,𝑀 and decreasing
in 𝜆,𝑀th. This is to be expected, given that large values of 𝑌 ,𝑀 tend to
shift the mental state away from the lower negative threshold 𝑀th, and
given that large 𝜆 values lead to larger fluctuations that are more likely
to reach the negative 𝑀th. However, 𝑇m(𝑀) is non-monotonic with 𝜅
as shown in the top row of Fig. 9. Here we plot 𝑇m(𝑀 = 0) as derived
from Eq. (32) and denote it as 𝑇m(𝑀 = 0 → 𝑀 = 𝑀th) for clarity.
Note that 𝑇m(𝑀 = 0) decreases with increasing 𝜅 at low values of 𝜅
and increases with 𝜅 at large 𝜅. To understand this non-monotonicity,
note that the mental state 𝑀 will be restored towards 𝑌 ∕𝜅 within a
time frame 𝜅−1 after any random fluctuation. As 𝜅 → ∞, this implies
that after each random event, 𝑀 → 0 very quickly and that cumulative
effects of multiple past random events will be very limited. As a result,
increasing 𝜅 when 𝜅 is already large will make reaching 𝑀th less likely
and thus, the mean first passage time will increase.

On the other hand, when 𝜅 ≈ 0, 𝑀 will grow approximately linearly
away from 𝑀th driven by the 𝑌 input while being subject to noise.
Whatever the initial value of 𝑀 , for large enough values of 𝑌 and
𝜆, 𝑀 will most likely become positive before one, or a sequence of,
negative random events will lead it close to 𝑀th. Increasing 𝜅 > 0 will
now lessen any positive values of 𝑀 , and thus accelerate reaching the
𝑀th threshold. Any negative values of 𝑀 will instead increase as 𝜅 is
increased, and this will cause a delay in hitting 𝑀th. However, given
the negative value of the threshold, excursions in the 𝑀 > 0 space
will be much longer than those in the 0 < 𝑀 < 𝑀th space, so that
acceleration in reaching 𝑀th will dominate. As a result, increasing 𝜅
when 𝜅 is small will lead to a shorter mean first passage time. This
effect will be more pronounced for large values of 𝑌 , 𝜆 as the excursion
to, and permanence in, the 𝑀 > 0 space will be more sustained in
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these cases. When 𝑌 , 𝜆 are small and especially if the initial 𝑀 value
is negative, decreases in 𝑇m(𝑀) as 𝜅 is increased for small values of 𝜅
will be much less evident, as excursions to the 𝑀 > 0 plane will be
rare. An alternate representation of Eq. (32) is given by expanding the
integrand via a Taylor series and evaluating the integral, leading to

𝑇m(𝑀) = 𝜋
2𝜅

erf i(𝑧in) −
𝑧2in
𝜅 2𝐹2

(

1, 1; 3
2
, 2; 𝑧2in

)

− 𝜋
2𝜅

erf i(𝑧eg) +
𝑧2eg
𝜅 2𝐹2

(

1, 1; 3
2
, 2; 𝑧2eg

)

,

(33)

where 2𝐹2 is the generalized hypergeometric function and

𝑧in =
√

𝜅
2𝜆

(

𝑀 − 𝑌
𝜅

)

, 𝑧eg =
√

𝜅
2𝜆

(

𝑀th −
𝑌
𝜅

)

. (34)

Eqs. (32) and (33) are the mean time 𝑇m(𝑀) for an initial mental
state 𝑀 to first reach the threshold 𝑀th; one may similarly determine
the mean first time to relapse 𝑇rel using Eq. (2)

𝑇rel = ∫

∞

0
⟨𝑆(𝑇 )⟩d𝑇 ≈ 𝑒

2𝑌−𝜆
2𝜅

𝑅0
. (35)

The last relationship arises from Eq. (30) and is valid for 𝜅𝑇 ≫ 1.
We show 𝑇rel as a function of 𝜅 in the bottom row of Fig. 9, using the
same parameters chosen for 𝑇m(𝑀). The mean first time to relapse is
an increasing function of 𝑌 and a decreasing function of 𝜆, indicating
that positive continuous inputs and exposure to relatively small noise
amplitudes can act as protective factors. These trends are consistent
with those observed for 𝑇m(𝑀).

3.2. The presence of cues

In this section, we study how cues affect the mental state and
the likelihood of relapse. According to Eqs. (1) and (9) sensory cues
are mathematically represented as a stressor of fixed amplitude 𝑤peak
occurring at times 𝑡c𝓁 . This description is consistent with psychiatric
studies that have identified overlaps in the neural circuits that process
stress and drug-related cues and that have found that both lead to
cravings and heightened susceptibility to relapse [50,57]. As mentioned
earlier, we assume that cues always bring back memories of the first
high so that the amplitude 𝑤peak is fixed. As a result, findings illustrated
in Sections 3.1.1 and 3.1.4 still hold upon substituting 𝐵𝑖 → 𝑤peak for all
𝑖 and 𝜅b → 𝜅c. In particular, relapse is less likely if a positive experience
occurs immediately after being exposed to a drug-related cue and one
can still utilize the results shown in Fig. 6 to determine the magnitude
and timing of the positive experience necessary to balance exposure to
a cue. Values of 𝜅c will be chosen such that 𝜅c > 𝜅b, as we expect the
time to process a drug-related cue to be less than the time to overcome
a stressor.

Consider the case in which an individual is randomly exposed,
through a Poisson process with rate 𝜆c, to cues that elicit the memory
of the first high. The individual thus experiences, with probability
𝑃c(𝑛c, 𝑡) = (𝜆c𝑡)𝑛c𝑒−𝜆c𝑡∕𝑛c!, 𝑛c cues within a time interval 𝑡. The mean
time between successive cues is 1∕𝜆c. Given the equivalence between
cues and stressors, these results may also be interpreted as the response
to an identical stressor presented at random, Poisson-distributed times.
The dynamics of the cue-induced motivation is thus

d𝐶
d𝑡

= −𝜅c𝐶 +𝑤peak

𝑛c
∑

𝓁=1;𝑡≥𝑡c
𝓁

𝛿(𝑡 − 𝑡c𝓁), (36)

where 𝑛c are the Poisson-distributed number of events that have oc-
curred until time 𝑡. We also assume that there is a counteracting source
of support 𝑌 > 0 to the mental state so that

𝑀(𝑡) = 𝑀a(𝑡) =
𝑌
𝜅a

(

1 − 𝑒−𝜅a𝑡
)

. (37)

We solve Eq. (36) with the initial condition 𝐶(𝑡 = 0) = 0. The resulting
expression for 𝐶(𝑡) can be used to write the relapse rate 𝑅(𝑡) in Eq. (1)
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Fig. 8. Expected relapse probability ⟨𝑃 (𝑇 )⟩ as derived from averaging over 5000 realizations of the Ornstein–Uhlenbeck process in Eq. (19) and the analytical approximation in
Eq. (30) for the baseline 𝑌 = 𝜆 = 0 with 𝑅0 = 10−3 , 𝜅 = 1/day. Values of 𝜆, 𝑌 displayed along the curves are in units of /day. In panel (a) we set 𝑌 = 1/day; as 𝜆 is increased
⟨𝑃 (𝑇 )⟩ also increases. For 𝜆 = 2𝑌 results from the baseline are recovered. Small values of 𝜆 < 2𝑌 decease ⟨𝑃 (𝑇 )⟩ below the baseline, whereas large fluctuations 𝜆 > 2𝑌 increase
⟨𝑃 (𝑇 )⟩ beyond the baseline. In panel (b) we set 𝜆 = 2/day and allow 𝑌 to be negative, representing constant negative experiences that increase ⟨𝑃 (𝑇 )⟩. These results indicate that
sustained, large enough positive experiences may neutralize a series of random, potentially large stressors.

Fig. 9. Top row: Mean first passage time 𝑇m(𝑀 = 0 → 𝑀 = 𝑀th) for an initial mental state 𝑀 = 0 to reach the negative threshold 𝑀th = −2 as a function of the decay rate 𝜅.
Results follow from the random process in Eq. (19) and the analytical form in Eq. (32). For large 𝜅, each random fluctuation dissipates quickly so that the effects of multiple
inputs to the mental state do not accumulate appreciably, hence 𝑇m(𝑀) increases with 𝜅. Increasing 𝜅 for small values of 𝜅 will reduce the likelihood of positive values of the
mental state thus shortening the time to reach 𝑀th as discussed in the text. These two trends lead to the observed non-monotonic behavior, which is most pronounced for large
𝑌 , 𝜆. In (a) we set 𝜆 = 2/day and vary the constant input 𝑌 ; in (b) we set 𝑌 = 0 and vary the noise amplitude 𝜆. Bottom row: Mean first passage time 𝑇rel to relapse computed
from the approximation in Eq. (35) and shown as a function of the decay rate 𝜅. In panel (c) we set 𝜆 = 2/day and vary the constant input 𝑌 ; in panel (d) we set 𝑌 = 0 and vary
the noise amplitude 𝜆.
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Fig. 10. Relapse probability 𝑃 (𝑇 = 100) following exposure to a single, randomly drawn sequence of sensory cues occurring at times generated according to a Poisson process of
rate 𝜆c. The corresponding relapse rate is evaluated through Eq. (38) and the relapse probability at 𝑇 = 100 days, 𝑃 (𝑇 = 100), is evaluated using Eqs. (2). The red curves depict
the analytical approximation obtained for ⟨𝑃 (𝑇 = 100)⟩ = 0.5 calculated using Eqs. (40) and (41). We do not include any positive, continuous form of support so that 𝑌 = 0 and
results are independent of the processing rate 𝜅a. In panel (a) we fix 𝑤peak = 4; in panel (b) we fix 𝜅c = 5/day; in panel (c) we fix 𝜆c = 2/day. Collectively, the panels show that
the likelihood of relapse increases with increases in the amplitude 𝑤peak , the frequency of cue occurrences 𝜆c, or the typical cue processing time 1∕𝜅c.
using the mental state 𝑀(𝑡) = 𝑀a(𝑡) given in Eq. (37) and under the
assumption that drugs are fully available 𝐼(𝑡) = 1. We find

𝑅(𝑡)
𝑅0

= 𝑒−
𝑌
𝜅a
(1−𝑒−𝜅a 𝑡)

𝑛c
∏

𝓁=1;𝑡≥𝑡c
𝓁

𝑒𝑤peak𝑒
−𝜅c

(

𝑡−𝑡c
𝓁

)

. (38)

Using well known properties of the Poisson process shown in the
Appendix we estimate the expected value of the relapse rate for any
number of events occurring within time 𝑡 as
⟨

𝑅(𝑡)
𝑅0

⟩

= exp
(

−𝜆c𝑡 −
𝑌
𝜅a

(1 − 𝑒−𝜅a𝑡)
)

× exp
[

𝜆c ∫

𝑡

0
𝑒𝑤peak𝑒

−𝜅c(𝑡−𝑡′) d𝑡′
]

.
(39)

In the 𝜅a𝑡, 𝜅c𝑡 ≫ 1 limit Eq. (39) can be approximated by

ln
⟨𝑅(𝑡)

𝑅0

⟩

≈ − 𝑌
𝜅a

+
𝜆c
𝜅c

(

Ei(𝑤peak ) − ln(𝑤peak ) − 𝛾
)

, (40)

where 𝛾 is the Euler–Mascheroni constant. We use the approximation
in Eq. (40) to evaluate the relapse rate 𝑅(𝑡) in Eq. (2), leading to an
approximate expression for ⟨𝑃 (𝑇 )⟩, valid for 𝜅a𝑇 , 𝜅c𝑇 ≫ 1

⟨𝑃 (𝑇 )⟩ = 1 − ⟨𝑒− ∫ 𝑇
0 𝑅(𝑡)d𝑡

⟩ ≈ 1 − 𝑒−𝑅0𝑇 𝑒𝑄c , (41)

where

𝑄c ≡ − 𝑌
𝜅a

+
𝜆c
𝜅c

(

Ei(𝑤peak ) − ln(𝑤peak ) − 𝛾
)

. (42)

In Fig. 10, we evaluate the probability of relapse at given values
𝜅c, 𝜆c, 𝑤peak . We do this by first drawing a sequence of cues that occur
according to a Poisson process of rate 𝜆c. Then, using this specific
sequence of cues, we compute the relapse rate given in Eq. (38). Finally,
we determine the survival probability and the relapse probability at a
fixed time 𝑇 = 100 days using Eq. (2). The results in Fig. 10 are obtained
under the assumption of no positive input, 𝑌 = 0. For comparison we
use the analytical approximation given in Eqs. (40) and (41) to find the
parameter curve corresponding to ⟨𝑃 (𝑇 = 100)⟩ = 0.5.

In the baseline case, where there are no cues or external stimuli,
𝑅(𝑡) = 𝑅0, hence the positive support 𝑌 will balance or alleviate the
cue-induced drive to take drugs only if it satisfies

𝑌 ≥
𝜆c𝜅a
𝜅c

(

Ei(𝑤peak ) − ln(𝑤peak ) − 𝛾
)

. (43)

Thus, to be effective, the counterbalancing source of support 𝑌 must
increase with the intensity of the memory of the first high 𝑤peak , the
rate of exposure to the cues 𝜆c, the duration of the cue 1∕𝜅c and the
processing rate of the positive events 𝜅 .
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4. Conclusions

We presented a mathematical model for the probability of relapse
in drug addiction. Our model incorporates dynamics that reflect psy-
chiatric concepts such as the positive activation, negative activation
(PA/NA) model and the peak-end rule.

Addiction research, like other studies that focus on learning, mem-
ory, rewards and synaptic plasticity, relies on neuroimaging methods to
understand how the brain and its neurocircuitry adapt to short- or long-
term drug use and ensuing behavioral changes. It is well documented
that drug users and former users display dysregulation in their brain
reward system, heightened reactivity to drug-related cues and stressors,
less inhibitory self-control, and a tendency to engage in compulsive
behaviors. It is also well established that the process of physical detox-
ification is a relatively short one, but cravings and relapse can occur
even long after cessation of drug use. Relapse is often triggered by
exposure to stressors or drug-related cues that the former user is unable
to manage. Among the biggest limitations of neuroimaging studies and
clinical trials are the need to control for individual predispositions and
external circumstances, high costs, difficulties in recruiting volunteers
with substance use disorder especially in longitudinal studies.

Given the complexities of addiction and the practical limitations in
obtaining comprehensive data, simple and analytically tractable math-
ematical models may be helpful to understand how the brain responds
to drugs and their absence. Decision-making and many psychiatric
disorders, including addiction, have been described using quantitative
mathematical models in recent years [58–63]. In our work, we con-
sidered the response of the brain to a series of inputs representing
positive and negative events, and how their amplitude, timing and
ordering affect the likelihood that a person in recovery will use again.
By construction, and mirroring the PA/NA model, negative events
increase the likelihood of relapse more than positive ones of the same
magnitude. We find that clustering positive or negative events is gen-
erally detrimental. For a fixed, mental state activity integrated over a
fixed time frame and imparted by an arbitrary number of negative (or
positive) events, the best way of distributing these events is through
a continuum of moderate negativity (or positivity), rather than as a
large jolt of catastrophe (or happiness) occurring at all once. On the
other hand, once an individual is exposed to a stressor, a positive event
occurring immediately afterward can act as a protective factor. We also
found that a constant source of positive input can balance the negativity
arising from a series of random events that may include large stressors.
Since the mathematical representation of sensory cues in our work is
akin to that of stressors, the above considerations remain valid for
exposure to drug-related cues.
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The effect of different environments and user profiles may be stud-
ied by tuning relevant parameters. By changing 𝜅a, 𝜅b, 𝜅c and 𝑤peak we
can represent users who respond differently to life experiences and
whose memories of the ‘‘first high’’ vary in intensity. Similarly, the
amplitudes 𝐴𝑖, 𝐵𝑗 , the Gaussian noise 𝜆 and the Poisson parameter
𝜆c can represent different risk levels in the social environment of the
recovering addict. Finally, although developed in the context of relapse,
our model can be used to also study the driving and protective factors
that lead a non-user to try drugs for the first time. In this case, 𝐶(𝑡) = 0
s there are no sensory cues related to past use, but 𝑀(𝑡) can represent

external stimuli that induce an individual to use drugs for the first time.
How do we translate these findings into practice? How to experience

continuous positivity? Certainly, it is important to seek out positive,
fulfilling experiences, embodied by the 𝐴𝑖 events discussed in this work.
However, the continuous sources of positivity we introduced, such as
the green curves in Fig. 3 and the 𝑌 term in Eq. (19), represent inputs to
the mental state. One may interpret these inputs as arising not just from
actual events, but also as imparted from a positive attitude towards
life, for example through support from family and friends, finding
satisfaction in one’s work, hobbies and social life. A positive attitude
can also be developed through cognitive behavioral therapy, individual
or group counseling or psychotherapy which are known to be effective
in helping manage life’s challenges without recourse to drugs.
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Appendix A. Time-dependent processing rates 𝜿𝐚(𝒕) and 𝜿𝐛(𝒕)

Time-dependent processing rates 𝜅a(𝑡), 𝜅b(𝑡) are included in our
mathematical representations of the PA/NA model in Eqs. (3a) and
(3b) to allow for neuroadaptive changes after cessation of drug use.
Assuming that at the beginning of the recovery phase at 𝑡 = 0 there are
no negative or positive affects so that 𝑀a(𝑡 = 0) = 𝑀b(𝑡 = 0) = 0, the
general solution is

𝑀a(𝑡) =
∑

𝑖,𝑡≥𝑡a𝑖

𝐴𝑖𝑒
− ∫ 𝑡

𝑡a𝑖
𝜅a(𝑠′)d𝑠′ , (A.1a)

𝑀b(𝑡) = −
∑

𝑗,𝑡≥𝑡b𝑗

𝐵𝑗𝑒
− ∫ 𝑡

𝑡b𝑗
𝜅b(𝑠′)d𝑠′

. (A.1b)

Drug addiction is known to attenuate the pleasure stemming from
positive stimuli, leading to anhedonia [27]. It is thus reasonable to
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a

assume that after cessation of drug use, positive experiences will return
to being more pleasurable. This is supported by experimental evidence
that dopamine transporter loss in former methamphetamine users can
recover after a sufficiently long period of abstinence [49]. Plausible
forms for 𝜅a(𝑡) include monotonically decreasing functions that start at
𝜅a(𝑡 = 0) = 𝜅a,0 and that descend towards the standard value at full
recovery 𝜅a(𝑡 → ∞) = 𝜅∗

a < 𝜅a,0. Within this scenario, positive events
occurring well into the recovery phase elevate one’s mental state for
a longer period compared to positive events occurring at the onset of
the recovery phase. Similarly, since drug abuse is known to exacerbate
negative emotional distress [25,47,48,64], we can assume that 𝜅b(𝑡) is

monotonically increasing function with 𝜅b(𝑡 = 0) = 𝜅b,0 that increases
towards 𝜅b(𝑡 → ∞) = 𝜅∗

b > 𝜅b,0. In this case, negative affects linger less
in the minds of former users as recovery continues. We mathematically
represent the processing rates 𝜅a(𝑡), 𝜅b(𝑡) during abstinence as

𝜅a(𝑡) = 𝜅a,0𝑒
−𝛾a𝑡 + 𝜅a∗ (1 − 𝑒−𝛾a𝑡), (A.2a)

b(𝑡) = 𝜅b,0𝑒
−𝛾b𝑡 + 𝜅b∗ (1 − 𝑒−𝛾b𝑡), (A.2b)

where 𝛾−1a , 𝛾−1b are typical time scales associated with neuroadaptive
changes to the processing rates and where 𝜅a,0 > 𝜅∗

a and 𝜅b,0 < 𝜅∗
b . The

ositive affect 𝑀a(𝑡) in Eq. (A.1a) can thus be written as

a(𝑡) =
∑

𝑖,𝑡≥𝑡a𝑖

𝐴𝑖𝑒
−𝜅∗a (𝑡−𝑡

a
𝑖 ) exp

[ (𝜅∗
a − 𝜅a,0)
𝛾a

(

𝑒−𝛾a𝑡
a
𝑖 − 𝑒−𝛾a𝑡

)

]

. (A.3)

or 𝑀b(𝑡) in Eq. (A.1b) instead we find

b(𝑡) = −
∑

𝑗,𝑡≥𝑡b𝑗

𝐵𝑗𝑒
−𝜅∗b (𝑡−𝑡

b
𝑗 ) exp

[

(𝜅∗
b − 𝜅b,0)
𝛾b

(

𝑒−𝛾b𝑡
b
𝑗 − 𝑒−𝛾b𝑡

)

]

. (A.4)

If the restoring, neuroadaptive changes to 𝜅a(𝑡) occur over short time
scales such that 𝛾a𝑡a𝑖 ≫ 1, then 𝜅a(𝑡) can be approximated by its
equilibration value 𝜅∗

a . Conversely, for longer lived changes scales such
that 𝛾a𝑡a𝑖 ≪ 1, then 𝜅a(𝑡) can be approximated by its initial condition 𝜅a,0.
In either of these two limits, 𝜅a(𝑡) can be approximated by a constant,
𝜅a. Similar considerations hold for 𝜅b(𝑡) that in the same limits can be
modeled as a constant 𝜅b. We can thus write

𝑀a(𝑡) =
∑

𝑖,𝑡≥𝑡a𝑖

𝐴𝑖𝑒
−𝜅a(𝑡−𝑡a𝑖 ), 𝑀b(𝑡) = −

∑

𝑗,𝑡≥𝑡b𝑗

𝐵𝑗𝑒
−𝜅a(𝑡−𝑡b𝑗 ), (A.5)

where 𝜅a = 𝜅a,0 or 𝜅∗
a depending on the proper limit (and similarly for

𝜅b) and use the results for the constant 𝜅a, 𝜅b cases discussed in Eq. (4).
Instead of considering a sequence of positive or negative events,

for simplicity, we now assume there is a constant negative input 𝑌 =
−0.5/day and that there are no random events. In this scenario, the
ideal case of an individual who has never used drugs is represented by
the negative mental state 𝑀(𝑡) = 𝑀b(𝑡) given by

𝑀(𝑡) = 𝑌
𝜅∗
b
(1 − 𝑒−𝜅

∗
b 𝑡), (A.6)

nd obtained using the standard processing rate 𝜅∗
b . We identify the

cenario of a recovering addict processing events with the same rates
s if drugs were never used, as a proxy for full recovery. A patient still in
ecovery on the other hand processes events at the time-dependent rate
b(𝑡) given by Eq. (A.2b). For this individual, the same circumstances
ield the following negative mental state

(𝑡) = 𝑌 𝑒− ∫ 𝑡
0 𝜅b(𝑡′)d𝑡′

∫

𝑡

0
𝑒∫

𝑡′
0 𝜅b(𝑡′′)d𝑡′′d𝑡′. (A.7)

q. (A.7) reduces to Eq. (A.6) under no recovery, when 𝛾b = 0 in
q. (A.7), provided 𝜅∗

b is replaced by 𝜅b,0 in Eq. (A.6).
In Fig. A.11 we consider a dynamically varying 𝜅b(𝑡) and plot the

ental state 𝑀(𝑡) and relapse probability 𝑃 (𝑡) for an initial processing
ate 𝜅0,b = 1/day and the recovered, standard processing rate 𝜅∗

b =
/day. The initially large value of 𝜅0,b implies that right after cessation
f drug use the neurocircuitry of the individual is still compromised,
nd any life event is processed quickly. We also set 𝛾 = 0.002/day,
b
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Fig. A.11. Dynamics of 𝑀(𝑡) and ⟨𝑃 (𝑇 )⟩ under a continuous negative input 𝑌 = −0.5/day, an initial processing rate 𝜅b,0 = 1/day, a fully recovered processing rate 𝜅∗
b = 2/day, and

𝑅0 = 10−3. Recovery rates are given by 𝛾b = 0.002, 0.005, 0.01/day. The black dashed curve is the ideal case of the individual never having used drugs, or having fully recovered
(Eq. (A.6)), and the dotted curve is the no recovery case (𝛾b = 0 in Eq. (A.7)). Intermediate curves show patients in recovery who tend to approach the ideal case of never having
drugs after a long enough recovery time.
𝛾b = 0.005/day and 𝛾b = 0.01/day, corresponding to recovery times
from 𝜅0,b to 𝜅∗

b ranging from three months to one and half years,
approximately.

The mental states 𝑀(𝑡) in each of these scenarios are shown in
Fig. A.11(a). In Fig. A.11(b) we show the corresponding expected
relapse probability, ⟨𝑃 (𝑇 )⟩. Here, the state of no exposure to drugs
(Eq. (A.6)) is represented by the lower-bounded curve and the state
of no recovery from drugs (Eq. (A.7) with 𝛾b = 0) is represented
by the upper-bounded one. All other curves correspond to Eq. (A.7)
with finite, non-zero values of the recovery rate 𝛾b. As can be seen,
the latter are all initially closer to the upper bound, as the recovery
effects are minimal at the onset. However, as the recovery process
continues, the curves start approaching the lower curve corresponding
to the ideal case of the individual never having used drugs in the first
place. Finally, faster recovery processes (larger values of 𝛾b) yield lower
relapse probabilities.

Appendix B. Estimating the relapse probability

Here, we consider approximations to the expected relapse probabil-
ity ⟨𝑃 (𝑇 )⟩ as given by Eq. (29)

⟨𝑃 (𝑇 )⟩ = 1 − ⟨𝑆(𝑇 )⟩ = 1 −
⟨

exp
[

−𝑅0 ∫

𝑇

0
𝑒−𝑀(𝑡′)d𝑡′

]⟩

. (B.1)

We first expand the exponential in Eq. (B.1) in a Taylor series

⟨𝑆(𝑇 )⟩ =
∞
∑

𝑛=0

𝑅𝑛
0

𝑛!
(−1)𝑛 ∫

𝑇

0
⋯∫

𝑇

0
⟨𝑒−𝑀(𝑡(1))⋯ 𝑒−𝑀(𝑡(𝑛))

⟩d𝑡(1)⋯ d𝑡(𝑛) (B.2)

and note that upon neglecting correlations we can approximate the
expectation of the products of 𝑒−𝑀(𝑡) in Eq. (B.2) as products of expec-
tations so that

∫

𝑇

0
⋯∫

𝑇

0
⟨𝑒−𝑀(𝑡(1)) ⋯ 𝑒−𝑀(𝑡(𝑛))

⟩d𝑡(1)⋯ d𝑡(𝑛) ≈
[

∫

𝑇

0
⟨𝑒−𝑀(𝑡)

⟩d𝑡
]𝑛

, (B.3)

leading to

⟨𝑃 (𝑇 )⟩ ≈ 1 − exp
[

−𝑅0 ∫

𝑇

0
⟨𝑒−𝑀(𝑡)

⟩d𝑡
]

. (B.4)

We now evaluate the integral for the 𝑛 = 1 summand in Eq. (B.2), for
which Eq. (B.3) is exact. We find

⟨𝑒−𝑀(𝑡)
⟩ = ∫

∞

−∞
𝑒−𝑀𝑃m(𝑀, 𝑡) d𝑀

= exp
(𝜆 − 2𝑌

2𝜅

)

exp
[

−
(

𝑀0 −
𝑌
𝜅

)

𝑒−𝜅𝑡 − 𝜆
2𝜅

𝑒−2𝜅𝑡
]

.
(B.5)

We now consider the 𝑛 = 2 summand in Eq. (B.2) to determine
the conditions under which the approximation in Eq. (B.3) fails and
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correlations must be taken into account. Our goal is thus to evaluate
⟨𝑒−𝑀(𝑡(1))𝑒−𝑀(𝑡(2))

⟩ ≡ ⟨𝑒−𝑀(𝑡′)𝑒−𝑀(𝑡′′)
⟩. To do this, we must consider the

joint probability density 𝑃m(𝑀1,𝑀2, 𝑡′, 𝑡′′) of finding the mental state
𝑀1 at time 𝑡′ and of finding the mental state 𝑀2 at time 𝑡′′ > 𝑡′,
conditioned on the previous value 𝑀1 at time 𝑡′ This is given by

𝑃m(𝑀1,𝑀2, 𝑡
′, 𝑡′′) = 𝑃m(𝑀2, 𝑡

′′
|𝑀1, 𝑡

′)𝑃m(𝑀1, 𝑡
′), (B.6)

where 𝑃m(𝑀1, 𝑡′) is the probability density of finding 𝑀1 at 𝑡′, with the
given initial conditions, and where 𝑃m(𝑀2, 𝑡′|𝑀1, 𝑡′) is the probability
density of finding 𝑀2 at 𝑡′′, conditioned on having 𝑀1 at 𝑡′. The two
quantities evolve according to the Fokker–Planck equation shown in
Eq. (23) and lead to

⟨𝑒−𝑀(𝑡′)𝑒−𝑀(𝑡′′)
⟩

= ∫

∞

−∞ ∫

∞

−∞
𝑒−𝑀1𝑒−𝑀2𝑃m(𝑀2,𝑀1, 𝑡

′, 𝑡′′)d𝑀1d𝑀2

= ∫

∞

−∞ ∫

∞

−∞
𝑒−𝑀1𝑒−𝑀2𝑃m(𝑀2, 𝑡

′′
|𝑀1, 𝑡

′)𝑃m(𝑀1, 𝑡
′)d𝑀1d𝑀2,

(B.7)

where
𝑃m(𝑀1, 𝑡

′) ∼
(

𝜇1(𝑡′), 𝜎2(𝑡′)
)

,

𝑃m(𝑀2, 𝑡
′′
|𝑀1, 𝑡

′) ∼
(

𝜇2(𝑡′′ − 𝑡′), 𝜎2(𝑡′′ − 𝑡′)
)

,
(B.8)

and  (𝜇, 𝜎) is the normal distribution of mean 𝜇 and variance 𝜎. The
values 𝜇1, 𝜇2, 𝜎 are given by

𝜇1(𝑡′) =
𝑌
𝜅

+
(

𝑀0 −
𝑌
𝜅

)

𝑒−𝜅𝑡
′
,

𝜇2(𝑡′′ − 𝑡′) = 𝑌
𝜅

+
(

𝑀1 −
𝑌
𝜅

)

𝑒−𝜅(𝑡
′′−𝑡′),

𝜎2(𝑡) = 𝜆
𝜅
(1 − 𝑒−2𝜅𝑡).

(B.9)

We now evaluate Eq. (B.7) to find

⟨𝑒−𝑀(𝑡′)𝑒−𝑀(𝑡′′)
⟩ = ⟨𝑒−𝑀(𝑡′)

⟩⟨𝑒−𝑀(𝑡′′)
⟩𝑒

2𝜆
𝜅 𝑒−𝜅𝑡′′ sinh(𝜅𝑡′), (B.10)

where ⟨𝑒−𝑀(𝑡′)
⟩ is given in Eq. (B.5). Given that 𝑡′′ > 𝑡′, the exponential

term in Eq. (B.10) will tend towards unity as 𝜅 → ∞, implying
correlations can be neglected. The 𝜅 → ∞ limit corresponds to a
relatively short processing time, consistent with the notion that the
decay of random events is fast and do not allow for strong correlations.
Conversely, if 𝜅 → 0 we find

lim
𝜅→0

exp
( 2𝜆
𝜅
𝑒−𝜅𝑡

′′
sinh(𝜅𝑡′)

)

= 𝑒2𝜆𝑡
′
, (B.11)

which can be quite large for even moderate values of 𝜆 at large times.
Finally, note that if we set 2𝜆 = 𝛼𝜅 where 𝛼 is a proportionality
constant, then

lim exp
(

𝛼𝑒−𝜅𝑡
′′
sinh(𝜅𝑡′)

)

= 1, (B.12)

𝜅→0
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Fig. B.12. Expected relapse probability ⟨𝑃 (𝑇 )⟩ as determined from 5000 trajectories of the Ornstein–Uhlenbeck process with 𝑀0 = 0 and various parameters 𝑌 , 𝜆, 𝜅 and the
analytical estimate given by Eqs. (30) and (26a). The ratio 𝜆 = 2𝑌 is kept for all parameter combinations, leading to the expectation ⟨𝑃 (𝑇 )⟩ ≈ 1 − exp(𝑅0𝑇 ), according to Eq. (30).
In panel (a) we fix 𝑌 = 1/day and 𝜆 = 2/day. Results from the numerical simulations match the analytical estimate only for large values of 𝜅 as illustrated in the text, when
correlations can be neglected. In panel (b) we fix 2𝜆 = 𝛼𝜅, with 𝛼 = 8 to show that under this assumption correlations play a less prominent role in the limit 𝜅 → 0.
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suggesting that an alternative way of neglecting correlations in the
small 𝜅 limit, when the processing time is large, is to instead modulate
the amplitude of the noise 𝜆 to be comparable to 𝜅. The evaluation of
igher order correlations 𝑛 > 2 in Eq. (B.2) is a more tedious calcula-
ion, but we expect that in the 𝜅 → ∞ limit the same considerations
ill apply and that correlations can also be neglected. In Fig. B.12 we
lot the expected relapse probability ⟨𝑃 (𝑇 )⟩ obtained by averaging over
,000 runs of the Ornstein–Uhlenbeck process for several values of 𝜅

and other parameters. We show that the analytical approximation in
Eq. (30) holds only for sufficiently large values of 𝜅.

ppendix C. Deriving the average relapse rate for Poisson dis-
ributed cues

We now derive Eq. (39) assuming cues affect the mental state 𝑀
hrough events of amplitude 𝑤peak that are Poisson distributed with rate
c. According to Eq. (38), assuming that within time 𝑡 there have been
c Poisson distributed cues, the relapse rate is given by

𝑅(𝑡)
𝑅0

= exp
[

− 𝑌
𝜅a

(

1 − 𝑒−𝜅a𝑡
)

] 𝑛c
∏

𝓁=1;𝑡≥𝑡c
𝓁

exp
[

𝑤peak𝑒
−𝜅c

(

𝑡−𝑡c
𝓁

)]

. (C.1)

For a general function 𝑓 (𝑦) one can show that given 𝑛c events within
time 𝑡 that are Poisson distributed, the following holds
⟨ 𝑛c
∏

𝓁=1
𝑓 (𝑡c𝓁)

⟩

|

|

|

|

|

|𝑛c

=
[

1
𝑡 ∫

𝑡

0
𝑓 (𝑦)d𝑦

]𝑛c
, 𝑛c ∼ Poisson(𝜆c, 𝑡). (C.2)

e will show the validity of this expression below. For now, assuming
q. (C.2) holds, we write
⟨

𝑅(𝑡)
𝑅0

⟩

|

|

|

|

|𝑛c

= exp
[

− 𝑌
𝜅a

(

1 − 𝑒−𝜅a𝑡
)

] [

1
𝑡 ∫

𝑡

0
exp

[

𝑤peak𝑒
−𝜅c(𝑡−𝑡′)

]

d𝑡′
]𝑛c

.

(C.3)

We can now average over the likelihood of having 𝑛c events within 𝑡
by weighting Eq. (C.3) by the Poisson distribution to obtain
⟨

𝑅(𝑡)
𝑅0

⟩

=exp
[

− 𝑌
𝜅a

(

1 − 𝑒−𝜅a𝑡
)

]

×
∞
∑

𝑛c=0

(𝜆c𝑡)𝑛c𝑒−𝜆c𝑡

𝑛c!

[

1
𝑡 ∫

𝑡

0
exp

[

𝑤peak𝑒
−𝜅c(𝑡−𝑡′)

]

d𝑡′
]𝑛c

.
(C.4)

pon evaluating the integral above we write

𝑅(𝑡)
⟩

= exp
[

−𝜆c𝑡 −
𝑌 (

1 − 𝑒−𝜅a𝑡
)

+ 𝜆c
𝑡
𝑒𝑤peak𝑒

−𝜅c(𝑡−𝑡′) d𝑡′
]

, (C.5)
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𝑅0 𝜅a ∫0
which, for 𝜅a𝑡, 𝜅c𝑡 ≫ 1 can be simplified to

lim
𝑡→∞

ln
⟨

𝑅(𝑡)
𝑅0

⟩

= − 𝑌
𝜅a

+
𝜆c
𝜅c

(

Ei(𝑤peak ) − ln(𝑤peak ) − 𝛾
)

, (C.6)

where 𝛾 is the Euler–Mascheroni constant. To show the validity of
Eq. (C.2) we take a general Poisson process of rate 𝜂 and for which
𝑝(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛) is the probability density of 𝑛 events occurring within
time 𝑡 ordered such that 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛. In a Poisson process, the
possibility of an event occurring in [𝑡, 𝑡 + d𝑡] is always 𝜂d𝑡, which does
ot correlate with time, so we can divide the time period 𝑡 equally into

segments of length d𝑡 with 𝑀 ≫ 1 so that 𝑡 = 𝑀d𝑡. We label them
[𝑇1, 𝑇1+d𝑡], [𝑇2, 𝑇2+d𝑡],… , [𝑇𝑀 , 𝑇𝑀 +d𝑡]}. Since each event 𝑡1 ≤ 𝑡𝑘 ≤ 𝑡𝑛
ill fall into one of the above segments we can write

(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛)(d𝑡)𝑛

= P(𝑇1 < 𝑡1 < 𝑇1 + d𝑡,… , 𝑇𝑛 < 𝑡𝑛 < 𝑇𝑛 + d𝑡)

= P({[𝑇1, 𝑇1 + d𝑡],… , [𝑇𝑛, 𝑇𝑛 + d𝑡]}),

(C.7)

here the last equality implies that one can simply pick the 𝑛 ∈ 𝑀
egments corresponding to the 𝑡1 ≤ 𝑡𝑘 ≤ 𝑡𝑛 events. Since these intervals
re equiprobable, and

(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛)(d𝑡)𝑛 =
(

𝑀
𝑛

)−1
=

𝑛!(𝑀 − 𝑛)!
𝑀!

≈ 𝑛!
𝑀𝑛 .

Using 𝑀 = 𝑡∕d𝑡, this becomes 𝑝(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛) = 𝑛!
𝑡𝑛 . An alternative

way to obtain this is result is to use the explicit form for the Poisson
distribution

𝑝(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛) =
𝑝(𝑡1,… , 𝑡𝑛, 𝑁 = 𝑛)

𝑃 (𝑁 = 𝑛)

=
𝑒−𝜂(𝑇−𝑡𝑛) ⋅ 𝜂𝑒−𝜂(𝑡𝑛−1−𝑡𝑛) ⋯ 𝜂𝑒−𝜂(𝑡1−𝑡2) ⋅ 𝜂𝑒−𝜂𝑡1

(𝜂𝑇 )𝑛𝑒−𝜂𝑇
𝑛!

=
𝜂𝑛𝑒−𝜂𝑇
(𝜂𝑇 )𝑛𝑒−𝜂𝑇

𝑛!

= 𝑛!
𝑇 𝑛 .

(C.8)

Finally, for a generic function 𝑓 (𝑡) and for a series of 𝑛 Poisson-
distributed events occurring at times 0 < 𝑡1 < ⋯ < 𝑡𝑛 < 𝑡 we can
write
⟨ 𝑛
∏

𝑗=1
𝑓 (𝑡𝑗 )

⟩

|

|

|

|

|

|𝑛

= ∫

[ 𝑛
∏

𝑗=1
𝑓 (𝑡𝑗 )𝑝(𝑡1,… , 𝑡𝑛|𝑁 = 𝑛)

]

d𝑡1 ⋯ d𝑡𝑛

= 𝑛!
𝑡𝑛 ∫

[ 𝑛
∏

𝑗=1
𝑓 (𝑡𝑗 )

]

d𝑡1 ⋯ d𝑡𝑛 =
𝑛!
𝑡𝑛 ∫

[ 𝑛
∏

𝑗=1
𝑓 (𝑡𝑗 )d𝑡𝑗

]

,

where the multidimensional time integrals are constrained by 0 < 𝑡1 <
⋯ < 𝑡 < 𝑡. We now eliminate the ordering of the sequence 𝑡 ,… , 𝑡 ,
𝑛 1 𝑛
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and divide the integral by the number of permutations to obtain
⟨ 𝑛
∏

𝑗=1
𝑓 (𝑡𝑗 )

⟩

|

|

|

|

|

|𝑛

= 1
𝑡𝑛

[ 𝑛
∏

𝑗=1
∫0<𝑡𝑗<𝑡

𝑓 (𝑡𝑗 )d𝑡𝑗

]

=
𝑛
∏

𝑗=1

[

∫

𝑡

0
𝑓 (𝑡𝑗 )

d𝑡𝑗
𝑡

]

= 1
𝑡

[

∫

𝑡

0
𝑓 (𝑦)d𝑦

]𝑛

,

which is Eq. (C.2).
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