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Abstract—How to allocate limited resources to projects that
will yield the greatest long-term benefits is a problem that
often arises in decision-making under uncertainty. For exam-
ple, organizations may need to evaluate and select innovation
projects with risky returns. Similarly, when allocating resources
to research projects, funding agencies are tasked with identifying
the most promising proposals based on idiosyncratic criteria.
Finally, in participatory budgeting, a local community may need
to select a subset of public projects to fund. Regardless of
context, agents must estimate the uncertain values of a potentially
large number of projects. Developing parsimonious methods to
compare these projects, and aggregating agent evaluations so
that the overall benefit is maximized, are critical in assembling
the best project portfolio. Unlike in standard sorting algorithms,
evaluating projects on the basis of uncertain long-term benefits
introduces additional complexities. We propose comparison rules
based on Quicksort and the Bradley–Terry model, which connects
rankings to pairwise “win” probabilities. In our model, each
agent determines win probabilities of a pair of projects based
on his or her specific evaluation of the projects’ long-term
benefit. The win probabilities are then appropriately aggregated
and used to rank projects. Several of the methods we propose
perform better than the two most effective aggregation methods
currently available. Additionally, our methods can be combined
with sampling techniques to significantly reduce the number of
pairwise comparisons. We also discuss how the Bradley–Terry
portfolio-selection approach can be implemented in practice.

Index Terms—Portfolio selection, participatory budgeting,
preference aggregation, Bradley–Terry model, social choice.

I. INTRODUCTION

THE problem of allocating limited resources to select
projects that offer the greatest benefit to stakeholders

arises in many decision-making tasks. One of the main issues
in project selection under uncertainty that it is often difficult
to estimate the long-term benefit (or “value”) of any given
project, resulting in a large heterogeneity of estimates when
multiple agents are queried. One example is project selection
in organizational contexts, where multiple members are called
to evaluate a number of innovation projects with uncertain re-
turns [1], [2]. The goal is to select the most promising options
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while balancing the diverse member inputs. A related example
is participatory budgeting [3]–[6], where communities must
choose which public projects should receive funding. Regard-
less of the specific context, agents must evaluate the benefit
associated with each of a large set of projects under conditions
of uncertainty. Given the uncertain and heterogeneous inputs
from various stakeholders, devising effective comparison and
aggregation methods is crucial for reducing cognitive load on
agents while selecting an optimal portfolio.

Prior research has examined the effectiveness of various
aggregation methods, such as voting, averaging, and delegation
to experts. An existing model of organizational decision-
making [1] assumes that agents evaluate and approve one
project at a time, without comparisons. Projects are char-
acterized by both type and intrinsic value, while agents’
evaluations depend on their specific expertise with regard to
the project types. This model has been extended in [2] to
address portfolio selection under budget constraints. Evalu-
ating multiple projects with uncertain values and choosing a
subset considered most valuable by agents is closely related
to the multiwinner voting problem within the field of social
choice [7], [8]. Similar to the favorable properties of the Borda
method [8], [9] in multiwinner voting, it also performs well
in portfolio selection when project costs are uniform [10].
One challenge in portfolio selection is that agents may need
to compare a potentially large number of projects, especially
when ranking them as is done in Borda counting. Although this
is an important problem in a variety of applications, to date
there has been little research on aggregation methods based
on pairwise comparisons, which provide a more practical
approach to ranking items.

Pairwise comparisons can help mitigate the cognitive burden
associated with directly ranking a large number of projects.
The human short-term memory is limited to processing around
seven items at once (“Miller’s law”) [11], making ranking
tasks inefficient as the number of projects increases. Addition-
ally, pairwise comparisons have proven valuable in eliciting
preferences and are essential in cases where direct estimation
of project value is difficult due to psychological factors [12].
In machine learning, pairwise comparison is a well-studied
problem, with research focusing on reducing the complexity
of comparisons needed to recover a full ranking of n items. For
example, comparison methods that achieve an expected lower
bound of Ω(n) comparisons under certain conditions have
been proposed [13]. Additionally, active-learning techniques
that require no more than O(n polylog(n)) queries have been
introduced [14].

Most existing research on sorting assumes that comparison
results are consistent with the true underlying rankings. There
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has been relatively little work on deriving rankings from
noisy information, such as in portfolio selection, where agents
provide imprecise estimates of project values. The authors
of [15], [16] were among the first to discuss algorithms for
sorting based on noisy information. These methods were later
extended in [17] to enable parallel processing. In this paper, we
propose pairwise-comparison rules based on the Bradley–Terry
model [18], [19], which links rankings to win probabilities.

In Section II, we give an overview of related work, while
in Section III, we present the Bradley–Terry model and
describe recent advances in its algorithmic development. In
Section IV, we connect the Bradley–Terry model to portfolio-
selection theory and describe various methods, including a
Quicksort approach, for aggregating project evaluations from
different agents in Section V. In Section VI, we examine
the performance of these aggregation methods to show that
several of the methods we propose perform better than existing
aggregation methods. We also demonstrate how our approach
can be integrated with sampling techniques to reduce the
number of comparisons, alleviating cognitive load on agents.
Finally, in Section VII, we summarize our findings and discuss
our results.

II. RELATED WORK

a) Bradley–Terry model: The Bradley–Terry model is a
statistical method used to rank n items based on repeated
pairwise comparisons. The model was introduced in 1929
by Zermelo to study tournament outcomes [18] and re-
introduced in 1952 by the eponymous Bradley and Terry [19].
A common application is ranking chess players according
to their results in matches against one another. Due its ver-
satility, the Bradley–Terry model has also been applied to
sports rankings, electoral preferences, social choice modeling,
psychological and healthcare studies, and to other settings
where relative comparisons are more practical than isolated
evaluations. Many iterative algorithms have been proposed to
determine the maximum likelihood estimator parameters that
can best fit existing data [20], [21] and to accelerate algorithm
convergence, such as Newman’s iteration [22].

Extensions include including ties between items, incorporat-
ing ordering-based advantages (such as playing on one’s home-
field in sports), or multiple (instead of pairwise) comparisons
[23]–[27]. Bradley–Terry models are also used in machine
learning and reinforcement learning, as useful tools in ranking,
preference learning, learning from feedback, reward shaping,
and other problems involving human choices [28]–[30]. They
are also used to compare and rank large language models
(LLMs) through crowdsourced open platforms, or other expert
evaluators. Since direct pairwise LLM comparisons involve
computations that are O(n2), novel comparison methods that
use only a subset of Bradley–Terry type pairings have been
recently introduced [31]. Other modern applications include
comparing the ideological positions of US politicians using
specifically tuned LLMs [32] and ranking video-game players
based on skill so they can be properly paired in virtual
matches. For example, the proprietary TrueSkill ranking sys-
tem utilizes a Bayesian framework based on the Bradley–Terry

model to incorporate uncertainties in player skills. It can also
be applied to matches with more than two players [33], [34].

b) Group decisions and portfolio selection: A common
problem in decision-theory is how to effectively aggregate
many individual inputs into a collective output. This issue
arises in voting systems, social choice problems, and organiza-
tional decision-making. Typical aggregation methods include
treating all inputs equally (e.g., by using the arithmetic mean),
delegating to specific individuals (at random or based on given
criteria), using majority rules, or biasing the outcome in favor
of specific subgroups [35]. Hierarchical team-decision making
assumes distributed expertise among tiered group members
whose judgment is aggregated using probabilistic methods
[36]. In addition to developing computationally efficient aggre-
gation methods, research has also focused on other important
aspects such as the legitimacy of voting systems [37] and their
capacity to mitigate polarization [38].

A decision problem that frequently arises in organizational
settings is that groups are tasked with selecting a subset of
projects from a portfolio. To model organizational decision-
making, agents can be considered as having specific expertise,
while projects are characterized by an intrinsic value (repre-
senting their long-term benefit and assumed to be ground truth)
and a defining type [1]. Agents do not know this intrinsic
value and must evaluate it; the larger the discrepancy between
project type and agent expertise, the larger the uncertainty
in the evaluation. This model has been extended to include
project costs and budget limitations, and has been applied to
social choice problems [2], [10].

c) Sorting methods: Developing robust algorithms that
operate effectively despite unreliable or noisy information,
without removing specific noisy elements, is a problem that
arises in many computing applications [39]. Unlike standard
sorting algorithms that focus on ordering a list of precisely
known values [40], comparing items with values affected by
various sources of uncertainty requires adapted sorting ap-
proaches [15]–[17]. Several strategies have been developed to
improve on these so-called “dirty” comparisons, for example
using the inaccurate results in parallel with a subset of exact,
“clean” comparisons to improve efficiency. The number of the
required clean comparisons can be tuned based on the accuracy
of the dirty comparisons [41]–[43]. In some applications,
it may be sufficient to use a relatively small number of
pairwise comparisons to obtain an approximate ranking. A
lower bound on the number of necessary pairwise comparisons
has been derived in [44]. Related work has also considered
problems like computing a longest increasing subsequence
associated with a given sequence of elements in the presence
of comparison errors [45], [46].

III. THE BRADLEY–TERRY MODEL

Here, we discuss the Bradley–Terry model in more mathe-
matical detail. The goal is to assign “strength” parameters to
all players and rank them accordingly. The strength parameters
determine the probability of a win, tie, or loss when two
players are placed in competition. Specifically, if πi and πj

represent the strengths of competitors i and j, respectively, the
probability that i wins over j is πi/(πi + πj).
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Estimation of the strength parameters is usually performed
using maximum likelihood estimation. The basic idea is to
maximize the log-likelihood function of the observed compe-
tition outcomes to find the most likely values of the players’
strengths. Mathematically, given a set of observed outcomes
wij , where wij is the number of times competitor i wins over
competitor j, the log-likelihood function for these outcomes
under the Bradley–Terry model is

l(π) =
∑
i ̸=j

wij ln

(
πi

πi + πj

)
=
∑
i ̸=j

wij [ln(πi)− ln(πi + πj)] ,
(1)

where π = (π1, . . . , πn)
⊤ is the strength parameter vector.

Maximizing the log-likelihood function l(π) in Eq. (1)
involves iterative updates of the parameters π. Zermelo
proved [18] that this maximization has a unique solution
under certain conditions. The maximum can be found by
differentiating l(π) with respect to each parameter πi and
setting the resulting expressions to zero, resulting in an implicit
expression for the strength parameters

πi =

∑
j ̸=i wij∑

j ̸=i
wij+wji

πi+πj

. (2)

Zermelo also proposed the first iterative approach [18] to
solve Eq. (2). In each iteration step, one calculates

π′
i =

∑
j ̸=i wij∑

j ̸=i
wij+wji

πi+πj

, (3)

where π′
i denotes the updated strength of competitor i starting

from strengths πi and πj ̸=i. This method is simple but can
be slow to converge. More recently, Newman proposed an
alternative iterative process [22] that is substantially faster than
Zermelo’s algorithm. His proposal is based on the iteration

π′
i =

∑
j ̸=i

wijπj

πi+πj∑
j ̸=i

wji

πi+πj

, (4)

which converges faster than Zermelo’s algorithm by a factor
of ∼ 3 − −100. Newman’s iteration can be improved by
incorporating updated values after each iteration, enhancing
both convergence speed and stability as in the Gauss–Seidel
method [47]. We adapt this iteration process and represent it
as

π′
i =

∑
j ̸=i

wijπ
′
j

πi+π′
j
+
∑

j>i
wijπj

πi+πj∑
j ̸=i

wji

πi+π′
j
+
∑

j>i
wji

πi+πj

. (5)

Note that the strength parameters can become ill-defined if a
player never wins or never loses. For example, consider three
players 1, 2, and 3 with match results: 1 wins against 2, 1 wins
against 3, and 2 wins against 3. In such cases, the algorithm
may converge to values where π1 grows towards infinity at a
faster rate than π2, while π3 converges to 0.

TABLE I
AN OVERVIEW OF THE MAIN MODEL PARAMETERS. UNLESS OTHERWISE

STATED, ALL PARAMETERS ARE REAL-VALUED.

Symbol Description

N ∈ Z+ Number of agents
n ∈ Z+ Number of items (or projects)
n∗ ∈ Z+ Budget constraint
i, j ∈ {1, . . . , n} Project label
ℓ ∈ {1, . . . , N} Agent label
vi ∈ R+ Value of project i
ti ∈ [tmin, tmax] Type of project i
eℓ ∈ [emin, emax] Expertise of agent ℓ
β ≥ 0 Knowledge breadth of agents
eM Mean expertise level;

eM = (tmin + tmax)/2
viℓ Value of project i

as evaluated by agent ℓ
ηiℓ = viℓ − vi Noise in perceived value of project i

associated with agent ℓ
σiℓ > 0 Uncertainty of value of project i

associated with agent ℓ
v′i Aggregate value of project i

over all N agents
wℓ

ij ∈ (0, 1) Win probability of project i
outperforming project j
as predicted by agent ℓ

W ℓ ∈ (0, 1)n×n Matrix of all win probabilities wℓ
ij

as predicted by agent ℓ
w′

ij ∈ (0, 1) Aggregated win probability of
project i outperforming project j

W ′ ∈ (0, 1)n×n Matrix of all aggregated
win probabilities w′

ij

IV. PORTFOLIO SELECTION

To model the selection of projects from a portfolio under
cost constraints, we build on the framework proposed in
[2]. Each project i ∈ {1, . . . , n} is characterized by two
parameters: its type ti ∈ [tmin, tmax] and value vi ∈ R+. In the
project selection context, the values vi define the true benefit
of project i over a specific time horizon, if chosen. The true
benefit may evolve and be uncertain over time due to societal
value shifts, environmental changes, and complex interactions
with other selected projects j ̸= i. We do not consider these
sources of uncertainty in vi (which is here considered the
ground truth) and restrict ourselves to each agent’s uncertainty
in the estimation of vi at the time of evaluation. This leads
to subjective evaluations viℓ of project i from each agent
ℓ ∈ {1, . . . , N}. To represent viℓ we first assume that each
agent ℓ involved in the decision-making process has a level of
expertise eℓ ∈ [emin, emax] given by

eℓ = eM −
N + 1− 2ℓ

N − 1
β. (6)

According to Eq. (6) the eℓ values are evenly spaced across
the interval [eM − β, eM + β] ≡ [emin, emax]. Here, eM repre-
sents the mean expertise level and β denotes the knowledge
breadth that determines the expertise spread. For mathematical
convenience, we set eM = (tmin + tmax)/2 so that the mean
expertise coincides with the mean project type.

The values ti and eℓ do not have any specific meaning; they
are simply labels used to differentiate between various types
and expertise levels. However, the alignment between ti and eℓ
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affects the accuracy of viℓ, agent ℓ’s evaluation of project i’s
value.1 Specifically, we assume that the noise in the “perceived
value,” ηiℓ = viℓ − vi, follows a normal distribution with
standard deviation σiℓ = |ti − eℓ|. That is, ηiℓ ∼ N (0, σ2

iℓ),
meaning that the closer the agent’s expertise is to the project
type, the lower the uncertainty. Each project is evaluated by
N agents, and their aggregated preferences determine the final
selection. Given a limited amount of resources, only a fixed
number n∗ < n projects can be selected.

In this paper, we extend the described model of portfolio
selection to pairwise comparisons between projects. Suppose
agent ℓ is evaluating projects i and j, with perceived values
viℓ and vjℓ, respectively, and corresponding noise terms ηiℓ
and ηjℓ. How would this agent evaluate the win probability
wℓ

ij that project i is better than project j? As a starting point,
we define

wℓ
ij := Pr (vi > vj) = Pr ((viℓ − ηiℓ) > (vjℓ − ηjℓ))

= Pr ((ηiℓ − ηjℓ) < (viℓ − vjℓ)) .
(7)

Under the assumption that the noise in the perceived value is
independently and normally distributed, the quantity ηiℓ− ηjℓ
follows a normal distribution with a mean of 0 and a standard
deviation of

√
σ2
iℓ + σ2

jℓ. We can thus rewrite Eq. (7) as

wℓ
ij = Φ

 viℓ − vjℓ√
σ2
iℓ + σ2

jℓ

 , (8)

where Φ is the cumulative distribution function of the standard
normal distribution. An immediate consequence of the above
equation is that wℓ

ij = 1− wℓ
ji.

In Table I, we provide an overview of the main model
parameters used in this work. Some parameters, such as
aggregated values and win probabilities, will be introduced
in the next section, where we discuss various aggregation
methods for identifying the most valuable projects within a
given portfolio based on their performance E(β;N,n, n∗).
This quantity is defined as the expected value over n∗ out
of n projects that are evaluated by N agents with knowledge
breadth β. We compute the expected value over a given type
distribution.

As an example, we consider N = 3 agents, each with a
knowledge breadth of β = 0, and n = 3 projects, from which
n∗ = 2 must be selected. The project values are v1 = 1, v2 =
2, and v3 = 3. We assume that agents perceive the true project
values (i.e., viℓ = vi for ℓ ∈ {1, 2, 3}). The performance for
this example is calculated as E(β = 0;N = 3, n = 3, n∗ =
2) = v2 + v3 = 5.

Some of the aggregation approaches that we study in this
work will be based on project value estimates viℓ while
others will employ win probabilities wℓ

ij . We will show that
aggregation methods using win probabilities instead of value
estimates typically perform better.

1Our approach to describing domain-specific expertise is similar to that used
in Hotelling models, where preferences are represented as distances along a
line [48], [49].

V. AGGREGATION METHODS

In the portfolio-selection model that we consider in this
work, projects are chosen based on information collected from
multiple agents. This information contains noise, and a key
challenge is to design aggregation methods that effectively
integrate all the agents’ inputs to maximize the expected value
of the selected projects. One possibility is to aggregate the
estimated values provided by the agents using the arithmetic
mean. However, value estimates may be difficult to ascertain
in practice. Additionally, outliers can easily bias the arithmetic
mean towards inaccurate value estimates. Previous research [2]
has shown that a ranking-based method using Borda scores is
more robust to outliers than the value-based arithmetic mean.
Here, we leverage the win probabilities expressed in Eq. (8)
and incorporate them into existing aggregation methods. The
main advantage of this method is that rankings can be pre-
dicted directly from win probabilities that are associated with
pairwise comparisons of projects, so that project selection can
proceed without relying on explicit value estimates.

We will proceed with an overview of the aggregation
methods that we employ in this work.

A. Overview

a) Arithmetic Mean: This method requires all agents to
provide precise perceived values viℓ, which are then averaged
using the arithmetic mean to obtain the aggregated value v′i.
That is,

v′i =
1

N

N∑
ℓ=1

viℓ. (9)

The n∗ projects with largest aggregate values v′i are then
selected.

b) Borda Count: The Borda Count is based on the
eponymous method introduced by Jean-Charles de Borda in
the late 18th century [9]. In this approach, each agent ℓ ranks
the n projects in descending order based on their perceived
values viℓ. For each project i, we denote its position in agent
ℓ’s preference list by posℓ(i). The aggregated score si for
project i is then calculated as the sum of the reversed ranks
across all N agents. That is,

si =

N∑
ℓ=1

(n− posℓ(i)). (10)

The top n∗ projects with the highest aggregated scores are
selected. According to [2], this method is particularly robust
against misclassification and often outperforms the Arithmetic
Mean, especially in scenarios with high uncertainty.

c) Quicksort: Quicksort is a widely used sorting al-
gorithm, first introduced in [50], which employs a divide-
and-conquer approach to sort elements. Its average-case time
complexity is O(n log(n)), making it one of the most efficient
sorting algorithms to date [51]. When applied to project selec-
tion, as demonstrated in Algorithm 1, the algorithm selects a
“pivot” project from the middle of the list of available projects
and partitions the remaining projects into two sub-lists: one
containing projects ranked worse than the pivot, and the other
containing projects ranked better than or equal to the pivot.
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This partitioning process is recursively applied to each sub-
list. In our implementation, a project is considered better than
the pivot if its aggregated win probability against the pivot
exceeds 0.5. The aggregated win probability associated with
projects i and j is

w′
ij =

1

N

N∑
ℓ=1

wℓ
ij , (11)

where wℓ
ij is given by Eq. (8).

The Quicksort method produces a list of projects ranked
based on their aggregated win probabilities in ascending order,
from which the last n∗ projects are selected.

Algorithm 1 Quicksort with aggregated win-probability ma-
trix
Require: Aggregated win-probability matrix W ′ of size n×n
Ensure: Sorted index array idx

1: idx← list of integers from 0 to n− 1
2: function PARTITION(low, high)
3: i← low − 1
4: for j ← low to high− 1 do
5: if W ′[idx[j], idx[high]] < 0.5 then
6: i← i+ 1
7: Swap(idx[i], idx[j])
8: end if
9: end for

10: Swap(idx[i+ 1], idx[high])
11: return i+ 1
12: end function
13: function QUICKSORTRECURSIVE(low, high)
14: if low < high then
15: pi← PARTITION(low, high)
16: QUICKSORTRECURSIVE(low, pi− 1)
17: QUICKSORTRECURSIVE(pi+ 1, high)
18: end if
19: end function
20: QUICKSORTRECURSIVE(0, n− 1)
21: return idx

d) Bradley–Terry Method: The Bradley–Terry model is
usually employed in tournament settings, where the quantities
wij are integers and represent the number of times that
competitor i wins over competitor j. We use the Bradley–Terry
model to devise a portfolio selection method that includes real-
valued probabilities wℓ

ij as follows:
• First, each agent ℓ provides their predicted probabilities

wℓ
ij for all pairwise comparison results. We use W ℓ ∈

(0, 1)n×n to denote the corresponding win-probability
matrix.

• Then, aggregated win probabilities w′
ij are computed

according to Eq. (11). We use W ′ ∈ (0, 1)n×n to denote
the corresponding aggregated win-probability matrix.

• Next, Newman’s iteration is used to determine the relative
strength of each project using Eqs. (4) and (5).

• Finally, projects are selected in descending order of
relative strength until the desired number of projects n∗

is reached.

Since it may not be feasible for each agent to perform pairwise
comparisons for all projects in the first step, we propose
sampling approaches in Section V-C so that only a subset of
pairwise comparisons are performed. In the second step, one
may consider win-probability aggregation methods different
from Eq. (11).

Given that the aggregation methods presented here involve
different quantities (i.e., values, scores, and win probabilities),
we will now discuss some advantages and pitfalls associated
with the (a-d) methods outlined above.

B. Values, scores, or win probabilities?

Aggregating win probabilities using Eq. (11) offers an
advantage over employing the Arithmetic Mean as per Eq. (9),
particularly when handling outliers in project-value evalua-
tions. To illustrate this point, we consider three agents evaluat-
ing two projects, Project 1 and Project 2. The first agent holds
a highly favorable view of Project 1, while the other two agents
assign lower value estimates to it. If the first agent’s evaluation
is an outlier—say v11 approaches infinity—this outlier’s effect
differs significantly between the two methods.

With the arithmetic mean, the aggregated value for Project
1, v′1, becomes highly skewed by the outlier and may approach
infinity as well. This disproportionate influence from a single
agent distorts the collective assessment of Project 1’s value.

In contrast, when using the win probability aggregation
method, the outlier’s impact is mitigated. We assume that
the extreme value from the first agent translates into a win
probability of w1

12 = 0.98, indicating a strong preference. If
the other two agents provide negative assessments of Project
1 with respect to Project 2, such as w2

12 = w3
12 = 0.2, the

aggregated win probability, calculated using Eq. (11), results
in w′

12 = 0.46. This result is more closely aligned with the
agents’ evaluations than the one obtained with the Arithmetic
Mean shown in Eq. (9).

Using win probabilities also offers an advantage over the
Borda Count, as it more precisely captures individual prefer-
ences through real-valued probabilities. For example, consider
two agents evaluating two projects, Project 1 and Project
2. The first agent strongly prefers Project 1 over Project 2
(w1

12 = 0.8), while the second agent only slightly favors
Project 2 over Project 1 (w2

12 = 0.46). The aggregated
win probability, w′

12 = 0.63, indicates that Project 1 is the
preferred choice overall, reflecting the stronger preference of
the first agent. This approach takes into account the intensity
of each agent’s preference.

On the other hand, if the Borda Count is used, each project
would receive a Borda score of 1, resulting in a tie. This
outcome fails to differentiate between the strong preference
expressed by the first agent and the more moderate preference
of the second agent.

C. Sampling pairwise comparisons

When applying the Bradley–Terry method to portfolio selec-
tion, sampling pairwise comparisons (i.e., selecting a subset of
win probabilities wℓ

ij) can be a cost-effective strategy in prac-
tical implementations, as each additional comparison requires
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p1 p2

p3

w1
12 = 0.2024

w1
23 = 0.4338w1

13 = 0.2397

v11 = 1, σ11 = 3 v21 = 3.5, σ21 = 0.1

v31 = 4, σ31 = 3

Fig. 1. Comparison of three projects p1, p2, and p3 by a single agent.
Each node represents a project and each directed edge represents a pairwise
comparison between projects.

more resources. Moreover, we will show that incorporating
sampling protocols into aggregation methods can improve
performance.

To illustrate how different methods of comparing projects
can influence the resulting rankings, consider a simple example
involving a single agent evaluating three projects. The value
estimates for these projects are v11 = 1, v21 = 3.5, and
v31 = 4, with corresponding uncertainties σ11 = 3, σ21 = 0.1,
and σ31 = 3. Depending on the sampling strategy employed,
these pairwise comparisons can yield different rankings (see
Figure 1). For instance, comparing Project 1 with Project 2
results in a win probability of w1

12 = 0.2024, while comparing
Project 2 with Project 3 yields w1

23 = 0.4338. This sequence
of comparisons leads to the ranking: Project 3 ≻ Project 2 ≻
Project 1, where x ≻ y indicates that x is strictly preferred
over y. However, if we compare Project 1 with both Project
2 and Project 3, the win probabilities w1

12 = 0.2024 and
w1

13 = 0.2397 produce a different ranking: Project 2 ≻ Project
3 ≻ Project 1. Thus, different methods of performing pairwise
comparisons can lead to varying rankings.

Instead of performing all O(n2) comparisons, we employ
an O(n) cyclic graph sampling method. This technique can be
visualized as extracting a subgraph from the complete graph
generated by n projects. Given an ordered list of all pi projects
such as (p1, p2, . . . , pn), the cyclic graph sampling of pairwise
comparisons is defined as

((p1, p2), (p2, p3), . . . , (pn−1, pn), (pn, p1)). (12)

In this notation, the pairs in parentheses represent the pairwise
comparisons conducted between these projects.

The performance of the cyclic graph sampling approach is
influenced by how projects are initially ordered in the list.
In this work, we employ a two-phase approach. In the first
phase, an initial project-ranking approximation can be obtained
through random sampling or by using existing ranking algo-
rithms. This preliminary ranking then serves as the input for
the second phase, where cyclic graph sampling is employed
to refine the rankings through an optimization step based on
the Bradley–Terry method.

We propose two additional aggregation methods using the
cyclic graph sampling shown in Eq. (12). Both are based on

a two-phase approach and are discussed below
e) Two-Phase Bradley–Terry method:

• In the first phase, we begin by generating an initial
ranking using a list in which each project pi (i ∈ 1, . . . , n)
is selected uniformly at random without replacement from
the n available projects. Next, the values of w′

ij are
calculated via Eq. (11) according to the cyclic graph
sampling of the randomly ordered list as shown in (12).
Finally, Newman’s iteration illustrated in Eqs. (4) and
(5) is applied to the win probabilities w′

ij to obtain an
approximate ranking.

• In the second phase, starting from the approximate rank-
ing, we compute the corresponding win probabilities w′

ij

using cyclic graph sampling (12). To further refine the
ranking, we apply Newman’s iteration again, while also
incorporating the win probabilities obtained in the first
phase. Win probabilities that were not calculated in either
phase one or phase two are set to 0.
f) Two-Phase Quicksort:

• In the first phase, we approximate the project ranking
using the Quicksort algorithm. Instead of relying on ran-
domly selected pairwise comparisons, here we apply the
Quicksort algorithm to the matrix of aggregated win prob-
abilities W ′, with elements w′

ij (as shown in Eq. (11)), to
generate an initial ranking of items. During this step, only
the necessary entries of the aggregated win probabilities
W ′ are sampled, resulting in an O(n log(n)) complexity.
In addition to calculating w′

ij , the Quicksort algorithm
also produces an initial ranking. However, because the
underlying perceived values are noisy observations, the
output of the Quicksort algorithm does not represent the
true ranking as it would in the absence of uncertainty.

• In the second phase, starting from the Quicksort ranking,
we compute the corresponding win probabilities w′

ij

using cyclic graph sampling (12). Newman’s iteration
shown in Eqs. (4) and (5)) is then applied to determine a
refined ranking. Unlike in the Two-Phase Bradley–Terry
method, we only consider win probabilities associated
with the cyclic graph structure and not those obtained in
the first phase.

VI. SIMULATION RESULTS

We now compare the effectiveness of the aggregation
methods (a–f) in achieving a high expected value for the
selected projects, as quantified by the performance measure
E(β;N,n, n∗). This is a measure that quantifies the expected
value of the n∗ (out of n) selected projects, each evaluated
by N agents with with knowledge breadth β. Recall that the
knowledge breadth determines the spread in agents’ expertise
according to Eq. (6). Following prior work [1], [2], [10], we
calculate the expected value over the project-type distribution
U(0, 10). The expertise value of the central decision maker
is set at eM = (tmin + tmax)/2 = 5. In our simulations, we
consider a scenario with n = 30 projects, N = 3 agents, and
a target of selecting n∗ = 15 projects. We define the value
of project i as vi = i (i ∈ {1, . . . , 30}). The uncertainty in
agent ℓ’s project evaluations is quantified by additive Gaussian
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Fig. 2. Portfolio selection with n = 30 projects, N = 3 agents, and a target
of selecting n∗ = 15 projects. We show the performance E(β;N,n, n∗) as
a function of the knowledge breadth β for the six aggregation methods (a–f).

noise with zero mean and standard deviation σiℓ = |ti − eℓ|,
where the expertise level eℓ of agent ℓ is given by Eq. (6). Prior
work [2] has demonstrated that variations in value distribution,
type distribution, and other parameters rarely affect the relative
ordering of aggregation-rule performance.

All our results are based on Monte Carlo simulations. For
methods based on pairwise comparisons and win probabilities,
we use 100,000 independent and identically distributed sam-
ples. For the remaining two methods, Arithmetic Mean and
Borda Count, which are computationally less demanding, we
increase the sample size to 500,000. The theoretical maximum
performance is

∑30
i=16 vi =

∑30
i=16 i = 345.

We consider two scenarios for computing the win prob-
abilities w′

ij . In the first scenario, the probabilities are cal-
culated according to Eqs. (8) and (11). However, in real-
world applications of aggregation methods based on pairwise
comparisons and win probabilities, assigning probabilities with
several decimal places may be impractical. Therefore, in the
second scenario, we prespecify a set of win probabilities from
which agents can choose when making pairwise comparisons.

A. Continuous win probabilities

In Figure 2, we show the performance E(β;N = 3, n =
30, n∗ = 15) for the six aggregation methods (a–f) as a
function of knowledge breadth β. Prior work [2] has high-
lighted that both the Arithmetic Mean and the Borda Count are
effective in identifying high-value projects within a portfolio.
In particular, the Borda Count is more robust to evaluation
outliers than the Arithmetic Mean and performs well across a
wide range of model parameters. Our results in Figure 2 show
that Quicksort (c), Two-Phase Quicksort (f), and the Bradley–
Terry method using all pairwise comparisons (d), outperform
both the Arithmetic Mean (a) and Borda Count (b) methods,
particularly at higher values of β. The Two-Phase Bradley–
Terry method (e), which employs a cyclic graph sampling
approach of pairwise comparisons, performs worse than both
the Arithmetic Mean (a) and Borda Count (b) for knowledge
breadths β ≲ 5.5.

As a robustness check, we also conducted simulations
for N = 15 and N = 30 agents. We observed that

Fig. 3. Portfolio selection with n = 30 projects, N = 3 agents, and a target
of selecting n∗ = 15 projects. We show the performance E(β;N,n, n∗) as
a function of the knowledge breadth β for the six aggregation methods (a–f).
In all approaches that are based on win probabilities, agents select one of the
following values {0.01, 0.1, 0.2, . . . , 0.9, 0.99}.

the performance of all methods and observed that for all
six methods the performance increases with increasing N ,
while their relative performance remains similar. Additionally,
the performance gap between the Two-Phase Bradley–Terry
method and the other methods widens. This is because the
Two-Phase Bradley–Terry method uses a sampling protocol
that leaves more entries in the aggregated win probability
matrix W ′ empty, compared to other methods based on win
probabilities.

B. Discrete win probabilities

In practical applications of the Bradley–Terry method,
it may be necessary to prespecify a set of win proba-
bilities wℓ

ij from which agents can choose. For example,
one could use a set of prespecified probabilities such as
{0.01, 0.1, 0.2, . . . , 0.9, 0.99}. This approach simplifies the
win-probability values by limiting them to a finite and manage-
able set, which is useful in decision-making scenarios where
achieving a high degree of precision is not feasible.

In Figure 3, we show a comparison of the aggregation
methods (a–f) where the win probabilities are restricted to
values taken from the set {0.01, 0.1, 0.2, . . . , 0.9, 0.99}. The
relative performance ranking of the methods remains un-
changed. However, the performance values of Quicksort and
Two-Phase Quicksort exhibit a greater difference compared to
the continuous case shown in Figure 2. Recall that the Two-
Phase Quicksort method employs a refinement phase in which
the final ranking is computed according to Newman’s iteration
(see Eqs. (4) and (5)). While this second phase had little
impact on performance in the continuous case, it substantially
affected results when using the prespecified win probabilities
listed above. This aligns with the intuition that Newman’s
iteration (or similar iterative methods used in the Bradley–
Terry method) performs well in scenarios where rankings are
derived from a limited set of tournament outcomes.

The Arithmetic Mean and Borda Count methods rely on
value estimates and scores, respectively, rather than win proba-
bilities. Assigning value estimates can, in principle, be done di-
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Fig. 4. Number of pairwise project comparisons across aggregation methods
(c–f) for knowledge breadths β ∈ {0, 5, 10} used to determine the perfor-
mance E(β) in Figure 3.

rectly without comparing projects. However, assigning ranking
scores, as in the Borda Count, requires project comparisons. In
our implementation of the Borda Count, we sort the agents’
value estimate lists to generate the final rankings based on
Eq. (10). When using Quicksort to obtain the scores, the
average number of comparisons is O(n log(n)).

For the remaining methods that are based on win probabil-
ities, the average number of comparisons are as follows:

• Bradley–Terry (all pairwise comparisons): O(n2)
• Two-Phase Bradley–Terry: O(n)
• Quicksort (without a second refinement phase):
O(n log(n))

• Two-Phase Quicksort: O(n log(n))

In Figure 4, we show the number of pairwise comparisons for
each of these four approaches. The standard Bradley–Terry
aggregation method considers all 30(30−1)/2 = 435 possible
comparisons, regardless of the value of β. The Two-Phase
Bradley–Terry method involves approximately 58 comparisons
for the given values of β. For Quicksort without a second re-
finement phase, the number of pairwise comparisons decreases
from 265 for β = 0 to 193 for β = 10. The Two-Phase
Quicksort approach results in slightly more comparisons, with
266 for β = 0 and 194 for β = 10.

The observed decrease in the number of pairwise compar-
isons results from the interplay between noise in the perceived
values and the divide-and-conquer nature of Quicksort. The
algorithm compares elements against a pivot to split the
dataset into two parts. The fastest case occurs when the
two parts contain an equal number of projects, while the
slowest case happens when one part contains all the remaining
projects, and the other part contains none. As the noise in
project values increases with β, it becomes less likely that
highly imbalanced sublists arise during Quicksort recursion.
Therefore, the algorithm is expected to be more efficient for
large values of β.

Although the Bradley–Terry, Quicksort, and Two-Phase
Quicksort methods demonstrate the best performance in the
simulations considered, the number of pairwise comparisons
they require is likely too high for practical applications. In
contrast, the Two-Phase Bradley–Terry method achieves favor-

able performance with a relatively small number of pairwise
comparisons, making it the most practical approach for real-
world use.

VII. CONCLUSIONS

In this work, we compared and contrasted six aggregation
methods (a-f) for portfolio selection of projects with uncertain
values. Of these, four novel methods (c-f) are based on pair-
wise comparisons. Agents are tasked with selecting a subset of
available projects. The accuracy of their evaluations improves
when the agents’ expertise aligns well with the project types.
However, when there is a misalignment between expertise and
project types, evaluations are more prone to errors.

Agents may assign estimated values to projects, which
can then be aggregated to make final decisions about which
projects to select. When value estimates are difficult to as-
certain, or when there is a risk of outlier evaluations due to
mismatches between expertise and project types, it may be
more appropriate to use Borda-type methods. These methods
rank projects based on their perceived value, and the rankings
are aggregated. However, ranking projects can also be chal-
lenging, especially when agents must evaluate a large number
of projects relative to each other.

To address this challenge, we established a connection
between portfolio selection and the Bradley–Terry model in
which rankings of items are derived from pairwise com-
parisons and the associated win probabilities. We proposed
two main aggregation methods based on win probabilities.
The first method uses an extension of Quicksort to produce
project rankings based on aggregate win probabilities, with a
computational complexity of O(n log n). The second approach
employs Newman’s iteration to compute rankings from a set
of pairwise comparisons and their corresponding win proba-
bilities. To reduce the number of comparisons, we introduced
a cyclic graph sampling method, which achieved favorable
performance with O(n) comparisons instead of the O(n2)
required for all possible pairwise comparisons. Similar graph
structures have also been studied in the context of subgraph
matching [52].

The methods we propose have applications in participatory
budgeting, social choice, organizational decision-making, and
other resource allocation problems involving decision-making
under uncertainty. Furthermore, our sampling and ranking
methods can be effectively applied to benchmark foundation
models such as LLMs [31], [53], [54].

An interesting direction for future research is to extend the
proposed Bradley–Terry aggregation methods by incorporating
delegation strategies, where only agents with suitable expertise
are queried, or by using approaches based on the median
instead of the arithmetic mean. A related promising direction is
to examine how interactions between agents shape their evalu-
ations, using models of social influence on networks [55]–[57].

Another avenue for future work is the study of sampling
methods akin to our cyclic graph sampling method that
can achieve good performance with a subset of all pairwise
comparisons. Identifying ways to sparsify the aggregate win
probability matrix W ′ can make our proposed method more
practical.
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Finally, our work focused on uniform project costs, a single
type distribution, and a single set of project values. These
assumptions could be relaxed to examine the impact of hetero-
geneous project costs and of other type and value distributions.
A broader analysis along these lines would provide further
insight into the performance of aggregation methods based on
pairwise comparisons and corresponding win probabilities.
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