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Effect of surface roughness on bulk-disorder–induced wetting
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Abstract. – Transfer-matrix results in 2D show that wetting of a rough, self-affine wall induced
by bulk bond disorder turns discontinuous as soon as the wall roughness exponent ζW exceeds
ζ0 = 2/3, the spatial anisotropy index of interface fluctuations in the bulk. For ζW < 2/3
critical wetting is recovered, in the same universality class as for the flat-wall case. These and
related findings suggest a free-energy structure such to imply first-order wetting also without
disorder, or in 3D, whenever ζW exceeds the appropriate ζ0. The same thresholds should apply
also with van der Waals forces, in cases when ζ0 implies a strong-fluctuation regime.

Disorder induced critical wetting [1]-[3] is a remarkable phenomenon in the physics of
interfaces in random media [2], [4], [5]. Even at temperature T = 0, under the effect of
quenched bulk impurities, an interface can undergo depinning from an attractive (smooth)
wall [1]. An example is offered by the 2D Ising model on semi-infinite lattice. At T = 0, with
suitable boundary conditions, the interface can be localized on a line of weak ferromagnetic
bonds along the edge (wall). If the bulk couplings are disordered, upon reducing wall attraction
depinning eventually occurs. This ill-condensed matter version of critical wetting in 2D belongs
to a different universality class as similar transitions controlled by thermal fluctuations alone.
Indeed, the mean wall-interface distance h diverges as ∆ε−ψ, where ψ = 2 [1] and ∆ε measures
the deviation from critical edge attraction conditions. ψ = 1 holds for the thermal case without
disorder [6].

An as yet unanswered question concerns the possible effect of additional, geometrical surface
disorder on this type of wetting. Rough substrate walls with self-affine geometry, are produced
in experiments [7], [8] and adsorption phenomena have been already observed on them [8].
On the other hand, interface depinning belongs to a more general class of disorder-induced
delocalization phenomena of fluctuating manifolds from extended defects [9].
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In the present letter we show that a self-affine roughness of the attractive wall can indeed
have dramatic effects on the wetting induced by bulk disorder. By extensive calculations in
2D and by a study of the interfacial free energy, we show that wetting turns first-order as soon
as the wall roughness exceeds that of the interface in the bulk. If, on the contrary, the wall
is smoother than the bulk interface, critical wetting persists, in the same universality class as
with flat wall. For first-order wetting due to roughness our results allow to draw a general
scenario, encompassing also cases in 3D, with ordered bulk or long-range substrate forces.

The possibility for geometrical surface disorder to drive wetting first-order has been recently
envisaged by some of us for pure systems and in the context of hierarchical models [10]. A
key issue here is to assess whether and up to what extent this disorder, which is correlated in
the case of self-affine roughness, can determine modifications when acting simultaneously with
uncorrelated bulk randomness.

Here wetting of a rough boundary is studied by means o the model illustrated in fig. 1. To
each bond b of a square lattice, a random energy εb is independently assigned from a uniform
distribution in (0, 1). The interface configurations are directed paths with one end in the
origin O and t steps (t measures also the longitudinal distance). At T = 0 the only interface
configuration is that minimizing the total energy of a path P , given by

EP =
∑
b∈P

εb −
∑

b∈W∩P

εW . (1)

Our paths cannot trespass the wall W , whose profile is fixed together with the set {εb} in
a given disorder configuration. Substrate attraction is accounted for by assigning an extra
energy gain −εW (εW > 0) to each step of P on W . Directed wall configurations are sampled
at random through an algorithm [11] producing xW (t)’s such that(

(xW (t1)− xW (t2))2
)1/2

∼t2−t1>1 (t2 − t1)ζW , (2)

where the bar indicates averaging over wall disorder, xW are transverse wall coordinates,
and ζW is a preassigned wall roughness exponent (0 < ζW < 1).

Information on the optimal path properties at time t can be transferred to t + 1 if, for
each possible x (xW (t) ≤ x ≤ t), the energy, E(t, x), and the total number of steps on the
wall, N(t, x), are known for the minimal-energy path joining the origin with the point of
coordinates (t, x). Indeed, the following recursion holds:

E(t+ 1, x) = min
{
E(t, x+ 1) + εb1 − εW δx+1,xW (t)δx,xW (t+1) ;

E(t, x− 1) + εb2 − εW δx−1,xW (t)δx,xW (t+1)

}
,

(3)

where b1 and b2 are bonds connecting the point (t+1, x) to its upper left and lower left nearest
neighbor (n.n.), respectively. Of course, minimization in eq. (3) trivially involves only one term
when x is at its upper or lower bound and only one such n.n. point exists. For N we have

N(t+ 1, x) = N(t, y) + δx,xW (t+1)δy,xW (t) , (4)

where y = x + 1 or y = x − 1, depending on which one of the two terms in eq. (3) satisfies
minimization.

We considered four different values of ζW : ζ1 = 1/2, ζ2 = ln 4
ln 12 = 0.557 . . ., ζ3 = ln 4

ln 6 =

0.773 . . . and ζ4 = ln 6
ln 8 = 0.861 . . .. For these ζW and a wide range of t’s we calculated

quantities like xmin(t) such that E(t, xmin(t)) = minx{E(t, x)}, h(t) = xmin(t) − xW (t) and
n(t) = N(t, xmin(t))/t, and their quenched averages over disorder. We made extrapolations of
these quantities to infinite t. We could average over at least 50 different bulk and wall random
configurations in correspondence to the longest paths (t = 1.5× 105).
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Fig. 1. – The thick line represents an interface with origin in O and end point at (t, x) after t steps.
The shaded area represents the substrate bounded by the rough wall. Both interface and wall are
directed paths.

Fig. 2. – n(εW − εc) vs. εW for the four different values of ζW . Note the parabolic vanishing of n when
ζW < 2/3. The insert displays the fit of n for ζW = ζ1, to the critical behavior ∝ ∆εψ: ψ = 2.0± 0.1
and εc = 0.162 ± 0.001.

For each ζW , upon lowering εW , a threshold εc(ζW ) is always reached, below which h =
limt→∞ h(t) = ∞ and n = limt→∞ n(t) = 0. For ζW = ζ1 and ζ2, h and n diverge and
approach zero, respectively, as power laws in ∆ε = εW − εc, when ∆ε approaches zero. Quite
remarkably, best fits of our data are well consistent with h ∝ n−1, and with h ∝ (∆ε)−ψ, with
ψ = 2.0 ± 0.1, and 2.1 ± 0.1, respectively, for ζW = ζ1 and ζ2 (fig. 2). These exponents are
also fully consistent with finite-size scaling collapse fits for h(∆ε, t) or n(∆ε, t). E.g., for n we
test the scaling form n(∆ε, t) = ∆εψf(t∆εψ), taking into account that the transverse lengths
controlling crossover are t and ∆ε−ψ.

These results strongly suggest that, at least for ζW ≤ ζ2, wetting remains critical, and in
the same universality class as with flat walls [1]. Thus, geometric disorder of the boundary
does not seem to affect the nature of the wetting transition here. The only effect of surface
geometric disorder is a slight increase of εc with increasing ζW .

The behaviors of n and h radically change for ζW = ζ3 and ζ4. At both these ζW values, the
curves for n are much steeper soon above threshold (slopes, respectively, two and four times
larger than in the previous smoother cases), with an initial behavior at threshold which cannot
be fitted in terms of the previous power law (fig. 2). In order to better characterize the wetting
transition with rougher walls, we analyzed distributions of the fraction n of adsorbed interface
steps at different t’s, based on rich enough samples of disorder configurations (∼ 300), and
up to t ∼ 5 × 104. Figure 3 shows a series of histograms for n(t) at a value of εc . εW , for
ζW = ζ4. A very marked two-peak structure can be recognized. This is a most convincing
indication of a first-order transition. The mechanism of n vanishing appears to be a depletion
of the peak at nonzero n values in favor of that at the origin. This depletion takes place in
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a relatively narrow range of εW values for finite t and is responsible for the peculiar behavior
of n just above threshold. Similar results are obtained for ζW = ζ3. This behavior openly
contrasts with that of the smoother walls we tested. For those walls a single-peak structure is
manifest and the vanishing of n is due to a progressive shift of the peak location towards the
origin. This is consistent with the expected continuous character of the transition.

The arrangement of the four tested ζW values is such that the above results already feature
ζW = 2/3 as a plausible threshold for the instauration of first-order wetting. Indeed, ζ0 = 2/3
is the intrinsic roughness of the interface when it wanders in the bulk [4], and it makes sense
that this number plays a crucial role here. We did not attempt a finer numerical exploration
in the interval ζ2 < ζW < ζ3. This would be very time consuming and would not provide sharp
enough results. Rather, we argue the precise location of the tricritical threshold as follows.

Let us consider generally situations at nonzero T , so that overbars indicate quenched
averages of thermal expectation values. As discussed below, in the presence of bulk disorder,
nonzero T is not expected to alter the scenario [1], [9]. The continuum interface Hamiltonian
description of wetting leads to the identification of different contributions to the free energy
density [2], [12]. An ubiquitous term in the Hamiltonian density is the square gradient of
the interfacial profile, (∇h)2. For an interface bound at average distance h from a flat

wall, this term is expected to be ∝ Σh
−τ(ζ0)

, where Σ is a positive interface stiffness, and
τ = 2(1− ζ0)/ζ0, with ζ0 = 2/3 in the case of random bonds in the bulk [2], [12]. This follows
from dimensional considerations, by estimating the distance between successive wall-interface

contacts as ∝ h
1/ζ0

, and thus the above gradient as ∝ h
(1−ζ0)/ζ0

. In the flat case, one can
also argue that the random potential due to bond-impurities should provide an additional
term, with the same h-dependence [2]. The presence of this extra term is crucial. Indeed, the
stiffness term, being positive and most long-ranged, needs to be possibly compensated, for the
interface to be able to continuously depin, upon approaching wetting. Other contributions to
the free energy, like the entropic one [2], [12], can indeed be shown to decay to zero at infinity

more rapidly (∝ h
−3/2

) than the stiffness one in the presence of bulk bond disorder. Since
the reference free energy of the interface in the bulk is put equal to zero, only discontinuous
depinning could occur, with a positive free-energy barrier always present at large h.

Based on the estimate of the leading free-energy density as ∝ h
−τ(ζ0)

and on the identifi-

cation of h with ξ⊥, the transverse correlation length (ξ‖ ∝ ξ
3/2
⊥ is the parallel one), Lipowsky

and Fisher [2] could derive ψ = 2. Our results for ζW < 2/3 are clearly consistent with the
free-energy leading terms retaining the same power law behavior as in the case of flat wall.
Thus, the arguments of ref. [2] still apply. If the wall is less rough than the interface, the
stiffness term remains determined by the anisotropy of interface fluctuations, rather than by
the geometry of the substrate. At the same time, the continuous character of wetting shows
that bulk disorder contributions, which are again linked to interface wandering, remain able
to balance this stiffness term.

For ζW > 2/3 we must argue differently. The positive stiffness term of the bound interface

must certainly be modified to Σh
−τ(ζW )

, because wall geometry now determines the gradient.
Indeed, the dominant stiffness free energy originates from the fact that now the bound interface
has to adapt to wall roughness, rather than to bulk disorder. Moreover, τ(ζW ) < 1, for
ζW > 2/3. Thus, the stiffness free-energy term is now even more dominant at large h. On
the other, we can convince ourselves that, for given h, the disorder-induced fluctuations of the
interface are still controlled by ζ0 and are not wide enough to compensate the stiffness term
in the free energy. Moreover, this is fully consistent with the fact that first-order wetting is
observed: only with the stiffness term left as the dominating one at large h an excess positive
free-energy barrier can be maintained for the transition. Thus, we conclude that, as soon as
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Fig. 3. – Histograms of n(t), at different t’s, for ζW = ζ4 and εW = 0.22. Asymptotically n(εW −εc) =
0.057 ± 0.005.

ζW > 2/3, if wetting does occur, it is first order.

The above picture is fully consistent with our numerical results and elucidates the role
of ζW = ζ0 = 2/3 as a threshold for discontinuous wetting. Thus, geometric surface disorder
plays a very crucial role in determining the nature of the wetting transition. First-order wetting
in 2D and with short-range forces is quite exceptional [3]. We know of only one special setup
in which a first-order depinning with bulk disorder was obtained in 2D [13]. In that example,
bulk disorder is fully correlated parallel to a flat wall, i.e. the random potential depends on x
alone, not on t. Here we find a subtle and physically realistic way in which correlations of the
disorder in direction parallel to the wall can produce a first-order transition. Indeed, in our
system, a nontrivial long-range longitudinal correlation pertains to the self-affine boundary
fluctuations (see eq. (2)) and does not involve the whole bulk. Nevertheless, upon tuning ζW ,
this effect is such to induce a tricritical point for the wetting transition.

By producing histograms like those in fig. 3, in the absence of bond disorder and at T > 0,
we also find conclusive numerical evidence that ζW ' ζ0 = 1/2 is the threshold for first order
in this case, as previously conjectured [10]. With ordered bulk in 2D, τ(ζ0) = τ(1/2) = 2 and

the entropy falls as h
−2

. Also here we argue that, as soon as ζW > 1/2, the stiffness term

Σh
−τ(ζW )

, with its asymptotic dominance, is such to create an extra positive energy barrier,
which leaves first-order wetting as the only possibility.

Our arguments are naturally generalized in 3D, where ζ0 ∼ 0.41 with bulk bond disorder [5].
The gradient squared term in the Hamiltonian still leads to a long-range stiffness free energy
decaying with τ(ζ0) ∼ 2.9. Thus, even if the critical wetting exponents are not known for the
flat case, we anticipate first-order wetting for ζW > 0.41. Similarly, in the case of ordered bulk
in 3D (ζ0 = 0), we expect first-order as soon as ζW > 0, which turns the stiffness term from
exponentially [12] to power law decaying [14].

Finally, we consider long-range forces with the substrate, inducing an interface potential

V (h) = u/h
σ−1

+ v/h
σ

[2], [12]. With flat walls, critical wetting falls in a regime of mean field
(MF) if ζ0 < 2/(σ+ 2), of weak fluctuation (WFL) if 2/(σ+ 2) < ζ0 < 2/(σ+ 1) = ζ∗, and of
strong fluctuation (SFL) if ζ0 > ζ∗. Such regimes have been discussed for both ordered and
random bulk, and their exponents are known in many cases [2], [12]. Within a local potential
approximation, the effect of roughness added to V has been shown to be irrelevant as long as
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ζW < ζ∗, in the sense that only subdominant corrections to V are introduced [15]. On the
other hand, for ζW > ζ∗, self-consistent scaling and renormalization group (RG) calculations

yield a modified total potential ∝ h
−τ(ζW )

for the bound interface. This agrees with our
analysis for short-range forces, which also fall in SFL regimes. There we argued a stiffness
term of this form for ζW > ζ0. In the light of our discussion of the short-range cases, it
is natural to expect continuous or first-order wetting transitions for ζW < ζ0 or ζW > ζ0,
respectively, in a SFL regime. For ζW < ζ0 the transition should occur with the exponents
of the flat case, while first order should be induced by the extra positive free-energy barrier
at large h when ζW > ζ0. In MF or WFL regimes there will be no change in the critical
transitions and their exponents as long as ζW < ζ0 (< ζ∗). A very interesting case occurs
when ζ0 < 2/(σ + 2) < ζW < ζ∗. Here we expect still critical wetting, but with WFL
exponents determined by ζW [15] (e.g., ψ = (τ(ζW )− σ + 1)−1 [12]), in place of the MF ones
of the flat case. Similarly, a roughness-dominated WFL critical wetting should prevail for
2/(σ + 2) < ζ0 < ζW < ζ∗. A drastic change into first-order wetting should again occur when
ζW > ζ∗ > ζ0. To confirm these predictions numerical or RG calculations would be useful.

In summary, we fully elucidated the role of self-affine wall roughness in determining the
nature of wetting, for short-range forces and with or without bulk disorder in 2D. We could
generalize our arguments to 3D, and even to cases in which long-range forces are present.
In SFL regimes, first-order wetting is always anticipated when ζW > ζ0, as with short-range
forces. Our results are expected to generalize also to interfaces in random field systems [2], or
quasi-crystals [16].
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