

(since the numerator is bounded by ± 1 and the denominator grows without bound)

3. $f(4)=3$

$$
f^{\prime}(4)=\frac{3-2}{4-2}=\frac{1}{2}
$$

4.

$$
\begin{aligned}
& \left.f(x)=x|x| \begin{array}{l}
f\left(a+h_{1}\right)-f(a) \\
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{\lim ^{\prime}(0)} \quad \frac{f(0+h \rightarrow 0}{h^{h}-0} \\
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{n \mid h)^{h}-0}{n}=\lim _{h \rightarrow 0} \frac{h|h|}{n}=(0+h)=(0+h)|0+h|=h|h| \\
f^{\prime}(0)=\lim _{n \rightarrow 0}\left|h_{h}\right|=0
\end{array}\right)=0|0|=0
\end{aligned}
$$

(5.) | x | 3.0 | 3.2 | 3.4 | 3.6 | 3.8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 8.2 | 9.5 | 10.5 | 11.0 | 13.2 |
| estimate $f^{\prime}(3.2), f^{\prime}(3.5)$ | | | | | |
| $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ | | | | | |$\quad \begin{aligned} & (3.0,8.2)\end{aligned} \quad(3.8,13.2)$

$$
f^{\prime}(3.2)=\frac{9.5-8.2}{3.2-3.0}=6.5, f^{\prime}(3.2)=\frac{10.5-9.5}{0.2}=5
$$

$$
\frac{(6.5+5)}{2}=5.75
$$

$$
f^{\prime}(3.5)=\frac{11.0-10.5}{36-3.4}=2.5
$$

6a)

$$
\begin{aligned}
f(x) & =\frac{1}{9} x^{5}+x^{\frac{2}{3}}-\frac{1}{x^{6}} \\
& =\frac{1}{9} x^{5}+x^{\frac{2}{3}}-x^{-6} \\
& =\left(5 \cdot \frac{1}{9}\right) x^{5-1}+\frac{2}{3} x^{\frac{2}{3}-1}-(-6) x^{-6-1} \\
& =\frac{5}{9} x^{4}+\frac{2}{3} x^{-\frac{1}{3}}+6 x^{-7} \\
& =\frac{5}{9} x^{4}+\frac{2}{3 \sqrt[3]{x}}+\frac{6}{x^{7}}
\end{aligned}
$$

$$
\begin{aligned}
& b f(x)=x \cdot(\sin x)^{2} \\
&(\sin x)^{2}+x \cdot 2 \sin x \cdot \cos x \\
&\left(\sin ^{2} x+2 x \sin x \cos x\right.
\end{aligned}
$$

6c) $f(x)=\frac{x^{2}+1}{x-5} \quad \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right], \frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
$6 d$

$$
\text { 6d. } \begin{aligned}
f(x) & =\sqrt{a^{2}+x^{2}}=\left(a^{2}+x^{2}\right)^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2}\left(a^{2}+x^{2}\right)^{-1 / 2}(2 x) \\
f(x) & =\frac{x}{(1+2 x)^{9}}=x(1+2 x)^{-9} \\
f^{\prime}(x) & =(1+2 x)^{-9}+x(-9)(1+2 x)^{-10}(2) \\
& =(1+2 x)^{-9}-18 x(1+2 x)^{-10}
\end{aligned}
$$

(b)
f)

$$
\begin{aligned}
& f(x)=\tan ^{2}\left(x^{2}+1\right) \\
& f^{\prime}(x)=2 \tan \left(x^{2}+1\right) \cdot \frac{1}{\cos ^{2}\left(x^{2}+1\right)} \cdot(2 x) \\
& f^{\prime}(x)=\frac{4 x \tan \left(x^{2}+1\right)}{\cos ^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

7. Equation of line trongout to curve $x^{3}+3 x^{2} y^{2}+y^{3}=3$

$$
\begin{gathered}
3 x^{2}+6 x y^{2}+3 x^{2} 2 y \frac{d y}{d x}+3 y^{2} \frac{d x}{d x}=0 \\
\frac{d y}{d x}\left(3 x^{2} 2 y+3 y^{2}\right)=\frac{-3 x^{2}-6 x y^{2}}{3 x^{2} 2 y+3 y^{2}}=\frac{-3+-6}{-6+3}=-\frac{9}{3} \\
=3
\end{gathered}
$$

(It is easier to plug in $(1,-1) \underline{\text { before }}$ solving for $\mathrm{dy} / \mathrm{dx}$ above.)
Tangent line : $y=y_{1}+m\left(x-x_{1}\right)$ gives $y=-1+3(x-1)$,
or $y=3 x-4$.
8.

(So if the mean outside temperature increased from 50° to 51°, we would expect the daily cost to heat the house to drop by approximately $\$ 0.15$.)
9. No solution provided.
10. Approx Area of a Triangle given

$$
A(\theta)=\frac{1}{2} \sin \theta \cos \theta \quad 0=\frac{\pi}{6} \pm 0.02 \operatorname{Radians}(\Delta \theta)
$$

Find Area if $A\left(\frac{\pi}{6}\right)$

$$
\begin{aligned}
& A^{\prime}=\frac{1}{2} \sin \theta \cos \theta \rightarrow \frac{1}{2}(\sin \theta)\left(\frac{d}{d \theta} \cos \theta\right)+\cos \left(\frac{\partial}{d \theta} \frac{1}{2} \sin \theta\right)= \\
& \frac{1}{2}(-\sin \theta \sin \theta+\cos \theta \cos \theta)=\frac{1}{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& \Delta A=\left(\frac{1}{2} \cos ^{2} \theta-\sin ^{2} \theta\right) \Delta \theta= \\
& \frac{1}{2}\left(\left(\cos \left(\frac{\pi}{6}\right)\right)^{2}-\left(\sin \left(\frac{\pi}{6}\right)\right)^{2}\right) 0.02= \\
& \frac{1}{2}(.75-.25) 0.02 \\
& \triangle A=(.25) 0.02=0.005
\end{aligned}
$$

11, 12. No solutions provided.
(13) (A) f is incneufing from -2 to 1 becuune the graph of \neq 'l is paritive (abore the - axis) on that intreval.
ff is dervensing fron f to 3 bearuce the graph of frl is segathe (below the x-atis) on that intieval.

f is concrue down on O to 2 becarna tie graph of ti sir decretery on thut ittreval
(c) $f(x)$ is greantert at $k=1$ fecsure ϵ^{\prime}; ixcraping up to thet point. $f^{\prime}(x)$ is greestert at O becarie we can bee ito tle graph of F^{\prime}.
$f^{\prime \prime}(x)$ is greatest at -1 becence the slope of f^{\prime} ir greotest on -1 .
(d) poss:ble graph of $f(x)$

14. Graph (c) is the derivative of graph (b) and graph (d) is the derivative of graph (a).

17. Find the inflection point between the points where the slope is zero.

1. Get the derivative: $y^{\prime}=-3 x^{\wedge} 2+6 x+9$ (Setting the derivative to zero will get you the points where the slope is zero)
2. Get the $2^{\text {nd }}$ derivative: $y^{\prime \prime}=-6 x+6$. Setting it to zero, $x=1$. The maximum rate of change occurs at $x=1$, where $y=-16$. (Note that this gives the maximum of y^{\prime}.)
3. No solution provided.
4. $y=x^{2}$, and sades at $\left(2, y_{1}\right)$
so. -th two pts. way workmy with

Now in adder to find the shortest distance from the et $(2,1 / 2)$ we use the distance formula $\left(\sqrt{(x 1-x 2)^{2}+(y 1-y 2)^{2}}\right)$

$$
\begin{aligned}
& =\sqrt{(2-x)^{2}+\left(\frac{1}{2}-x^{2}\right)^{2}}=\sqrt{\left(y-4 x+x^{2}\right)+\left(\frac{1}{4}-x^{2}+x^{4}\right)} \\
& =\sqrt{x^{4}-4 x+\frac{17}{y}}=\left(x^{4}-1 x+\frac{17}{y}\right)^{1 / 2}
\end{aligned}
$$

Sow we take the derivative: $\frac{1}{2}\left(x^{4}-4 x-\frac{T^{-1}}{4}\right)^{-1 / 2} \cdot\left(4 x^{3}-4\right)$

- (using the chain rule)

$$
=\frac{\text { (using the chain rule) }}{\frac{4 x^{3}-4}{2 \sqrt{x^{4}-4 x+\frac{17}{4}}}}
$$

$4 x^{3}-4=0=y\left(x^{3}-1\right)=0 \quad x= \pm 1 \quad$ (to find our x)
since $y=x^{2}=(1)^{2}=1$ so.. $(1,1)$
So... the Shortest distona tram the point $(2,1 / 2)$ will be at $(1,1)$:

$$
\sqrt{(2-1)^{2}+(1 / 2-1)^{2}}=\sqrt{5} / 2
$$

$$
\begin{aligned}
& \text { Area of vectangle }=6 h \\
& \text { Area of triangle }=\frac{1}{2} w h \\
& 2 \text { vriangles } 2\left(\frac{1}{2} w h\right) \\
&=w h
\end{aligned}
$$

soncahtoa

$$
A=6 h+w h
$$

$h=$

$$
\begin{aligned}
A= & 6(6 \sin \theta)+(6 \cos \theta)(6 \sin \theta) \\
A= & 36 \sin \theta+36(\cos \theta \sin \theta) \\
A^{\prime}= & 36 \cos \theta+36\left(-\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& 36 \cos \theta+36 \cos ^{2} \theta-\underbrace{36 \sin ^{2} \theta}
\end{aligned}
$$

$\left.{ }_{\frac{6}{6}}^{6}\right]^{n}$

$$
\begin{aligned}
& \sin \theta=\frac{h}{6} \\
& n=6 \sin \theta \\
& w= \\
& \cos \theta=\frac{w}{6} \\
& w=6 \cos \theta
\end{aligned}
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\frac{-\sin ^{2} \theta=1-\cos ^{2} \theta}{-36\left(1-\cos ^{2} \theta\right)}
$$

$$
\begin{aligned}
& A^{\prime}=36 \cos \theta+36 \cos ^{2} \theta-36\left(1-\cos ^{2} \theta\right. \\
& A^{\prime}=36 \cos \theta+36 \cos ^{2} \theta-36+36 \cos ^{2} \theta \\
& A^{\prime}=72 \cos ^{2} \theta+36 \cos \theta-36 \\
& A^{\prime}=36\left(2 \cos ^{2} \theta+\cos \theta-1\right) \\
& \quad \underbrace{(2 \cos \theta-1}_{\quad})(\underbrace{\cos \theta+1)} \\
& \quad \cos \theta=\frac{1}{2} \\
& \quad \theta=0^{\circ} \text { or } \frac{\pi}{3}=-1 \text { Doesnt work }
\end{aligned}
$$

21. No solution provided.
(23) $G(x)=\int_{0}^{x} \sqrt{t^{4}+1} d t$
(a) $G(0)=\int_{0}^{0} \sqrt{t^{4}+1} d t=0$
(b) $G^{\prime}(x)=\sqrt{\sqrt{x^{4}+1}}$
(c) $f^{\prime \prime}(x)=$

$$
\frac{1}{2}\left(x^{4}+1\right)^{-1 / 2} \cdot\left(4 x^{3}\right)=\frac{4 x^{3}}{2 \sqrt{x^{4}+1}}=\frac{2 x^{3}}{\sqrt{x^{4}+1}}
$$

(d) Increasing from $[-\infty, \infty]$ decreasing never

$$
\text { 23(a) } \begin{array}{rlr}
\int\left(x+\frac{1}{x}\right)^{2} d x & \text { (b) } \int \cos ^{5}(3 x) \sin (3 x) d x \\
=\int x^{2}+x^{-2}+2 d x & w=\cos (3 x) d w=-3 \sin (3 x) d x \\
=\frac{x^{3}}{3}+\frac{x^{-1}}{-1}+2 x+C & & -\frac{1}{3} \int-3 \sin (3 x) \cdot \cos ^{6}(3 x) d x \\
= & \frac{x^{3}}{3}-x^{-1}+2 x+C & =-\frac{1}{3} \int w^{5} d w \\
& =-\frac{1}{3} \cdot \frac{w^{6}}{6}+c \\
\text { (c) } \int \frac{1}{\sqrt{x}}(\sqrt{a}+\sqrt{x})^{\frac{5}{2}} d x & -\frac{\cos ^{6}(3 x)}{18}+c \\
& -w=\sqrt{a}+\sqrt{x} d w=\frac{1}{2} x^{-\frac{1}{2}} d x & \\
& 2 \int \frac{1}{2} x^{-\frac{1}{2}}(\sqrt{a}+\sqrt{x})^{\frac{5}{2}} d x & \\
= & 2 \int w^{\frac{5}{2}} d w & \int_{0}^{t} \frac{d}{d x}\left(\cos \left(x^{2}+1\right)\right) d x \\
= & 2 \cdot w^{\frac{7}{2}} \cdot \frac{2}{7}+C & \\
= & \frac{4}{7} \cdot(\sqrt{a}+\sqrt{x})^{\frac{7}{2}}+C &
\end{array}
$$

ERROR: undefined
OFFENDING COMMAND: GQ.
STACK:

