1) Find the local and absolute extreme values of f(z) = a1 ™ the intervg ,
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2) A cylindrical tank with radius 5 meters is being filled with water at a rate of 3 m®/min. How

fast is the height of the water increasing?
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3) Find the derivative of cos \/sin(tan7x)
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4) Find dy/dx by implicit differentiation for ycosz = 1 + sin(zy)
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5) Find the limit or show it does not exist limg_0 V&2 + az — Va2 + bz

el )

o
oy

"ux + U X ebx X[ m N ‘V/J N

6) Sketch y(z) = Find slant asymptotes if they exist and evaluate the concavity.
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7) Does there exist a function f such that f(0) = —1, f(2) = 4 and f/(z) < 2 for all 7 Use the

Mean Value Theorem to prove or disprove your answer.
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8) Find the intervals upon which f(z) = 4z° 4 322 — 6z + 1 is increasing or decreasing. Find its

local maximum and minimum. Sketch the function. Find concavity and convexity and inflection
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9) Two cars start moving from the same point. One travels south at 60 mi/hr and the other travels

west at 25 mi/h. At what rate is the distance between them increasing two hours later?
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10) Show that the equation 2z — 1 — sinz = 0 has exactly one real root. Use Rolle’s theorem.
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