Math 140B Midterm 2

(Dated: October 30th 2017)

Name:

MAJUA

SID:

Ja whous

Write clearly and box all your numerical answers. Simplify all formulas to the very end. Round appropriately. Think before starting your calculations. Use the back for more space. Show all steps you are performing. No credit will be given for just giving the numerical answer without discussing the logic behind it.

Useful formulas:

Z-score for x from a normal distribution $N(\mu, \sigma)$ with mean μ and standard deviation σ

$$z = \frac{x - \mu}{\sigma}$$
 mean $\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$ standard deviation $\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$

Standard deviation of a sampling distribution of mean p and sample size n:

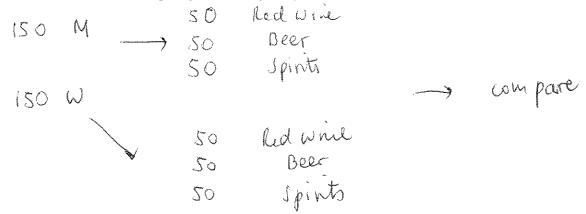
$$\sigma = \sqrt{\frac{p(1-p)}{n}}$$

Standard error for a sample estimate \hat{p} and sample size n:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Margin of error for a confidence interval corresponding to z^* and the above standard error:

$$z^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$


Rule of thumb for applicability of normal distribution properties on a sample of size n

$$np > 10$$
 $n(1-p) > 10$

Table C

Confidence Interval	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%
z*	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291

1) Three-hundred adults were aged 45 to 65 were recruited for an alcohol consumption experiment over the next five years. The test is to compare the effects on heart disease of moderate drinking of only red wine, only beer or only spirits. Outline the design of a completely randomized experiment using blocks of men and women. Be sure to specify how many subjects will be placed in each group.

- 2) A couple plans to have three children. There are eight possible arrangements of boys (B) and girls (G). All arrangements are equally likely.
 - 2a. Write down all eight arrangements and state the probability for each of these.

2b. What is the probability that the couple has two boys, in any order?

2c. Find the distribution for the total number of boys. How many total numbers of boys can there be? What is the probability for each outcome?

$$P(0) = \frac{1}{8}$$
 GGG

 $P(1) = \frac{3}{8}$ BGG/GBG/GGP

 $P(2) = \frac{3}{8}$ BBG/GBB/BGB

 $1(3) = \frac{1}{8}$ BBB

3) A die is "loaded" so that the number 6 comes up too often and the number 1 comes up too seldom. The probability of 6 is modified to 0.2, the probabilities of 2, 3, 4, 5 are not affected with respect to a normal, not loaded die. Give the probability for all outcomes of the affected die

$$P(1) = 1 - \frac{4}{6} - \frac{2}{10} = 1 - \frac{2}{3} - \frac{1}{5} = \frac{15 - 10}{15} = \frac{2}{15}$$

$$P(1) = \frac{2}{15}$$
 $P(2) = \frac{1}{6}$ $P(3) = \frac{1}{6}$ $P(4) = \frac{1}{6}$ $P(5) = \frac{1}{6}$ $P(6) = \frac{2}{15}$

- 4) In the U.S. 83% of Pinterest users are female. A simple random sample of 500 users is taken.
 - 4a. What are the mean and standard deviation of the sampling distribution for the proportion of female Pinterest users?

$$\nabla = \sqrt{0.83 - 0.17} = \sqrt{0.0168}$$

$$p = 0.83$$

4b. What is the approximate probability that \hat{p} is between 80% and 86%?

$$\hat{p} > 0.86$$
 $Z_1 = \frac{0.86 - 0.83}{5} = \frac{0.03}{0.0168} = 1.79$; $Z_2 = -1.79$
 $Z_1 \rightarrow \text{com area} = 0.9633$
 $Z_2 \rightarrow 0.0367$ $P(\hat{p} \text{ between } 80.867.) = 0.9266 = 0.9266$

4c. What standard deviation must \hat{p} have so that 95% of all samples gives a \hat{p} within 3% of p?

$$95\% \rightarrow 250$$

$$2 = \frac{0.03}{5} = 5 = \frac{0.03}{2} = \frac{0.015}{2}$$

- 5) For each of the following, indicate whether it is a parameter (P) or a statistic (S):
 - 5a. The fraction of all Americans who have never seen an ocean in person
 - 5b. The mean number of spots that a sample of 100 ladybugs have
 - 5c. The proportion of 100 randomly chosen homes in Milwaukee that have a swimming pool
 - 5d. The percent of all defective iPhones made by Apple
 - 5e. The mean height of all kindergarten children in California.

6) A simple random sample of 2673 heterosexual adults is taken and 170 had more than one sexual partner in the last year. Calculate the following confidence intervals for the proportion of all heterosexual adults with multiple partners $\hat{\rho} = \frac{170}{2000} = 0.06$

6a) the 95% confidence interval

$$0.064 \pm 2.0.005 = 0.064 \cdot 0.936$$

$$0.064 \pm 0.01 \qquad (0.054; 0.074)$$

$$= 0.005$$

6b) the 80% confidence interval

$$0.064 \pm 1.282.0.005$$
 (0.058; 0.070)

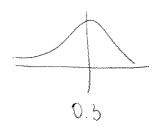
6c) the 90% confidence interval

6d) Interpret in words these results. Which one is largest? Why?

7) A simple random sample of 450 teens shows that 80% own an Ipad. Another simple random sample of 4500 teens reveals that 80% own an Ipad. For **both** samples calculate the 90% confidence interval for the percentage of the teen population that owns an Ipad. Which one is smaller? Why?

a)
$$0.8 \pm 1.645 \sqrt{\frac{0.8 \cdot 0.2}{450}} = 0.8 \pm 0.024$$

(0.776, 0.824)


b)
$$0.8 \pm 1.645 \sqrt{\frac{0.8 \cdot 0.2}{4500}}$$
 $0.8 \pm 0.00 \mp 5$ $(0.7925; 0.8075)$

- 8) Thirty percent of CSUN students wear contact lenses. We randomly pick 100 students. Let \hat{p} represent the proportion of students who wear contacts.
- 8a. Check that the rule of thumb of applicability for a normal distribution is verified.

$$0.3 \cdot 100 = 30 > 10$$

 $0.7 \cdot 100 = 70 > 10$

8b. Draw the associated sampling distribution specifying the mean and the standard deviation

$$50 = \sqrt{\frac{03.0.7}{100}} = (0.046 - 10)$$

8c. Find the probability that less than 20% of this sample wear contacts.

$$Z = \frac{0.2 - 0.3}{0.096} = -2.17$$

8d. Find the probability that more than one third of this sample wear contacts.

$$7 = \frac{0.333 - 0.3}{0.046} = 0.724$$

$$P(>30) = 1-0.7642 = 0.20 2358$$

Estré entry

Table entry for a is the area crube the calculation of a

TABLE	A 51.	ANDARD	NORMAL	CUMULA	TIVE PRO	PORTION	5			
	.00	.01	.02	.03	.04	.05	.06	.07	.80.	.09
-3.4	.0003	.0003	0001	0003	:0003	.0003	0003	.0003	.0003	.0002
-3.3 -3.2 -3.1	.0005	.0005	0005	0004	.0004	.0004	.0004	.0004	0004	0003
-3.2	.0007	.0007	.0006	.0006	.DOD6	,0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	8000.	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	DOLI	,0012	.0011	.0011	.0011	.0010	.0010
-29	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.00ZÍ	.0020	.0019
-2.7	.0035	JX034	.0033	.0032	.0031	.0030	.0029	.0018	2017	.0026
-2.6	.0047	.0045	,0044	.0043	.0041	.0040	0030	.0038	.0037	.0016
-2.5	.0062	.0060	.0059	.0057	:0055	.0054	.0052	:0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	0066	.0054
→2.3 →2.2	.0107	.0104	.0102	00/90	.0096	,0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	0119	.0116	0113	.0110
-2.1	.0179	DL74	.0170	.0166	.0162	.0158	0154	.0150	0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	0197	.0192	.0188	.0183
-1.9	.0287	J028Î	.0274	.0268	,0262	.0256	.0150	.0244	.0239	.0233
-18	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	0446	.0436	.0427	.0418	0409	:0401	.0392	20384	0375	.0167
-1.6	.054B	.0537	.0526	.0516	.0505	.0495	20485	.0475	.0465	.0455
=1.5	.0668	,0655	.0643	.0630	,0618	.0606	.0594	.0582	.0571	.0559
-1.4	DROR	.D793	.0778	.0764	.0749	.0735	0721	.0708	.0594	0681
-1.3	.0968	.0051	,0934	.0918	.0901	.0885	0869	.0853	.C0338	.0823
-1.2	11151	.11.11	.1112	.1093	.1075	.1056	1038	.1020	.1003	0985
$ \begin{array}{c c} -1.1 \\ -1.0 \end{array} $.1.357	.1335	.1314	.1292	.1271	.1251	,1230	.1210	1190	.1170
·	.1587	.1562	(1539	.1515	.1402	,1469	.1446	.1423	7401	.£1,
-0.9	.1841	.1814	,1788	.1762	.1736	.1711	.1685	.1660	.1635	.[6]]
-0.8	2119	.2090	.2061	.2033	2005	.1977	.1949	.1922	.1894	.1867
-0,7	.2420	.2389	.2358	,2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2700	32676 —	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	3050	.3015	.2981	:2946	2912	.2877	.2843	2810	.2776
-0.4	.3446	_1400	.1372	3336	3300	.3264	.3228	3192	3156	.3121
-0.3	.3821	.3783	.3745	.3707	3669	.3632	.3594	.3557	3520	.3483
-0.2	4107	4168	(4129)	.4090	,4052	4013	.3974	.3936	J897	3859
-0.1	.4602	.4562	.4522	.4483	.444.1	.4404	.4364	.4325	.4286	.4247
-0.0	5000	4060	:4920	4880	.4840	.4801	.4761	.4721	.4681	4641

Table criting A

Table entry for a lattle area under the saculard Narras curve to the left of a.

TABLE	A STANDARD NORMAL CUMULATIVE PROPORTIONS (CONTINUED)									
Ž	,00	,01	.02	.03	,04	.05	.06	.07	.08	.09
0.0	5000	.5040	5080	.5120	.5160	5199	.5230	5279	5319	5350
01	.5398	5438	.5478	5517	.5557	5596	5636	.5675	5714	5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	614
0.3	.6179	.6217	6255	.6293	.6331	6368	.6406	6443	.6480	.6517
0.4	.6554	6591	.6628	.0664	.6700	,6736	.6772	.6808	.6344	.687
0.5	<i>8</i> 915	.6950	.6985	.7019	.7054	.7088	.7123	.7.157	.7190	.7224
0.6	.7257	.7291	;7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	:7910	.7939	.7967	.7995	.8023	.8051	3078	.8106	.813
0.9	X159	.8186	.8212	.8238	.8264	8289	8315	.8140	.8365	X389
1.0	3413	.8438	.846 l	.8485	.8508	.8531	.8554	.8577	.8590	.862
1.1	3643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	,883
1.2	3849	.8869	8883	.8907	.8925	8944	,69o2	,8980	8997	901
1.3	.9032	9049	9066	.0082	.0090	9H5	.9131	9147	.9162	.917
1.4	9197	.9207	9222	.9236	.9251	.9265	.9279	9292	.9306	.9319
1.5	9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	<u>\$452</u>	,9463	.9474	.0484	.9495	.9505	.9515	9525	.9535	.954
1.7	.9554	.9564	.9573	. 9582	.9591	9599	9608	9616	.93625	.963
18	0541	.9649	9656	.9664	9671	9678	9686	9691	(%(%)	970X
1.9	.9713	.9719	.9726	.9732	9738	.9744	.9750	.9756	.9761	.976
2.0	9771	9778	.9783	.9788	.979.3	9798	9803	9808	.9812	.981
2.1	9821	9816	.9830	9834	.9838	9842	.9846	9850	9854	985
2.2	9861	9864	9868	9871	9875	9878	.0881	9884	9887	080
2.3	.9893	.9896	9898	9901	9904	.9906	.9909	9911	.9913	,991d
2.4	.9918	.9920	9921	9925	0927	.0020	.0031	2012	.9914	9934
2.5	5938	.0040	.9941	.0043	.0045	9946	.9948	,904g	.995L	(20)5
2,6	9953	9055	9956	,9957	0050	.9960	9961	9962	.0067	,996
27	.9965	.9966	.9967	.9968	9969	.9970	.9971	9072	.9973	997
2.8	29074	.9975	.9976	.0077	.9977	.9978	.0070	9979	.9080	.908
2.9	19981	.9982	.9982	.9983	.9984	.9084	.9985	.9985	.9338,6	,995
3.0	.9987	.9987	9987	.9988	0088	9089	.0080	oogo	.9990	0000
11	9990	જુરા	9991	9991	0002	.0093	9992	9991	0003	000
3.2	3993	.9993	.9994	9994	,909.4	0004	.0004	9995	9395	990
3.3	.9995	.9295	9995	.9096	,9096	.9996	9996	.9906	.0000	.999
3.4	.9997	,9397	9997	9997	9097	.9997	.0907	9297	.9007	XXX