Math 140
 Introductory Statistics

First midterm
February 202013

3. Stemplots

Speeds of mammals (mph)

$11,12,20,25,30,30,30,32,35,39$, $40,40,40,42,45,48,50,70$

3. Stemplots

Speeds of mammals (mph)

$11,12,20,25,30,30,30,32,35,39$, $40,40,40,42,45,48,50,70$

1| 12

3. Stemplots

Speeds of mammals (mph)

$11,12,20,25,30,30,30,32,35,39$,
$40,40,40,42,45,48,50,70$
$3 \mid 000259$

3. Stemplots

| 1 | 12 | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 05 | |
| 3 | 000259 | |
| 4 | 000258 | |
| 5 | 0 | |
| 6 | | |
| 7 | 0 | |

$3 \mid 9$ represents 39 mph

3. Stemplots

Or stem-and-leaf plots

Numbers on the left are called stems (the first digits of the data value)

Numbers on the right are called leaves (the last digit of the data value)

Split stemplots

$$
\begin{array}{l|ll}
1 & 12 \\
\cdot & 2 \\
2 & 0 \\
\cdot & 5 \\
3 & 0002 \\
\cdot & 59 \\
4 & 0002 \\
\cdot & 58 \\
5 & 0 \\
\cdot & \\
6 & \\
\cdot & \\
7 & 0 \\
& 3 & 9 \text { represents } 39 \mathrm{mph}
\end{array}
$$

Split stemplots

> The unit digits
> 0,1,2,3,4 are associated with the first stem and they are placed on the first line.

The unit digits 5,6,7,8,9 are associated with the second stem
and they are placed on the second line.

Back to back stemplots

The data is differentiated on whether the mammals are predators or non-predators

Who has the faster speed?

Calculating medians and quartiles

Stem-and-leaf of Speeds Leaf Unit $=1.0$		$\mathrm{N}=18$
		$\mathrm{N}^{*}=21$
$2 \quad 112$		
2	1	
3	20	wer quartile =
4	25	
83000	3 (0)002	- Median $=37$
(2)	3519	
8	4000 (2)	
4	458	
2	50	Upper quartile $=42$
1	5	
1	6	
1	6	
1	70	

Stemplots work best when

Small number of values to plot

Want to keep track of individual values (at least approximately)

Want to see shape of distribution
Have two or more groups that we want to compare

4. Bar graphs

One bar for each category

The height of the bar tells the frequency
Bar graphs have categories in the horizontal axis, as opposed to histograms which have measurements.

Bar graphs

Bars are separated so there is no confusion

US working women age 25 or older

1. Less than 9th grade
2. 9th to 12 th grade, no diploma
3. High school grad 4. Some college, no degree
4. Associate degree 6. Bachelor degree 7.Phd or
professional degree

Modal category: category with highest frequency

Measures of center: mean and median

Earlier we used visual estimates to find out center and spread

Now we will learn how to calculate them exactly
Measures of Center Mean Median

Measures of Spread
Standard Deviation Inter Quartile Range

Center: Mean (average)

Denoted as \bar{x}

$$
\bar{x}=\frac{\text { sum of values }}{\text { number of values }}=\frac{\sum x}{n}
$$

Example: 5, 12, 34, 18, 37, 11, 9, 21, 30, 6

$$
\bar{x}=\frac{5+12+34+18+37+11+9+21+30+6}{10}=18.3
$$

Center: Median

Denoted as Q2
Divides data into equal halves.
List all n values in increasing order and find the middle one.

If n is odd the middle one is $(\mathrm{n}+1) / 2$ Say $\mathrm{n}=17$ median is at $(17+1) / 2=9$ And there 8 to the left, 8 to the right

If n is even the median is the average of the two Values on and after $\mathrm{n} / 2$ positions

Center: Median

Example: 5, 6, 9, 11, 12, 18, 21, 30, 34, 37, 41

$$
\begin{gathered}
\mathrm{n}=11 \text { median is }(\mathrm{n}+1) / 2=6^{\text {th }} \text { position } \\
18
\end{gathered}
$$

Example: 5, 6, 9, 11, 12, 18, 21, 30, 34, 37
$\mathrm{n}=10$ median is between the two
values at $\mathrm{n} / 2=5^{\text {th }}$ position $(12+18) / 2=15$

Center: Median

If placed in a histogram the median will divide the total area in two equal parts

Median

Calculate means and medians before and after Westvaco layoffs

$$
25,33,35,38,48,55,56,55,55,64
$$

Median

Calculate means and

 medians before and after Westvaco layoffs$$
25,33,35,38,48,55,56,55,55,64
$$

Spread - IQR

> First Quartile or Lower Quartile Q1 Third Quartile or Upper Quartile Q3

Medians of left hand side of data and right hand side of Data with respect to the median

$$
\begin{gathered}
\text { Inter Quartile Range } \\
\text { IQR = Q3 - Q1 }
\end{gathered}
$$

Five number summary
 Q1, Q3, median, min, max

$11,12,20,25,30,30,30,32,35,39$, $40,40,40,42,45,48,50,70$

These give the five number summary From which to calculate

$$
\begin{aligned}
\mathrm{IQR} & =\mathrm{Q} 3-\mathrm{Q} 1 \\
\text { range } & =\text { max }-\mathrm{min}
\end{aligned}
$$

Five number summary

$11,12,20,25,30,30,30,32,35,39$, $40,40,40,42,45,48,50,70$

$$
\begin{gathered}
\text { Min }=11 \\
\text { Max }=70 \\
\text { Q1 }=30 \\
\text { Median }=\mathrm{Q} 2=37 \\
\text { Q3 }=42
\end{gathered}
$$

Range $=$ max $-\min =70-11=59$
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1=42-30=12$

Outliers

If a value is more than 1.5 times the IQR from the nearest quartile it may be an outlier

Is the cheetah an outlier?
Is the pig an outlier?
Is the gazelle an outlier?
Is the lion an outlier?
Which animal is the largers non-outlier?

Outliers - definitions

$11,12,20,25,30,30,30,32,35,39$, $40,40,40,42,45,48,50,70$

A value is an outlier if it is more than 1.5 times the IQR from the nearest quartile

$$
\begin{gathered}
\mathrm{IQR}=12 \\
1.5^{*} \mathrm{IQR}=1.5^{*} 12=18
\end{gathered}
$$

Q1=30 --- outliers are all data less than 30-18 $=12$
Q3 $=42$--- outliers are all data more than $42+18=60$

Spread - Deviation

Deviation of a value x is how far it is from the mean

$$
x-\bar{x}
$$

This value is different for every data point x and can be negative or positive

Standard deviation

$$
\begin{aligned}
& \sigma_{n}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \\
& \sigma_{n-1}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
\end{aligned}
$$

The custom is to use σ_{n}

Standard deviation

Data $2,7,8,12,12,19 \quad n=$? average $\bar{x}=$?

x	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
2		
7		
8		
12		
12		
19		
total sum $=60$		

Standard deviation

Example. Data: 2,7,8,12,12,19
$n=6, \bar{x}=(2+7+8+12+12+19) / 6=10$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
2	-8	64
7	-3	9
8	-2	4
12	2	4
12	2	4
19	9	81

Find σ_{n} and σ_{n-1}

60	0	166

Standard deviation

Example. Data: 2,7,8,12,12,19
$n=6, \bar{x}=(2+7+8+12+12+19) / 6=10$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
2	-8	64
7	-3	9
8	-2	4
12	2	4
12	2	4
19	9	81
60	0	166

$$
\begin{aligned}
& \sigma_{n}=\sqrt{\frac{166}{6}} \approx 5.2599 \\
& \sigma_{n-1}=\sqrt{\frac{166}{5}} \approx 5.7619
\end{aligned}
$$

Box Plots

Graphical display of 5 number summary Q1, Q2, Q3, max, min

Hk

Page 63, E25, E26, E28, E29, E32, E33, E36, E41,

