Math 140
 Introductory Statistics

Math 140 tutoring: LIVE OAK 1319

MW 11:30-4:30 TTh 3:30-5:30 F $10: 30-12: 30$
General Hours:
M - Th 10:00-5:30 F 10:00-3:00

Later: Saturday from 11 to 2.

Last time

Westvaco laid off 3 people at round 2

$$
55,55,64
$$

Their average age was 58
The average age of all workers was 46.4
The average age of retained workers was 41.4

Was it by chance?

Let's do a simulation - group of 3

Model of a chance process

Consider all ages of workers at Round 2 whose ages are
$\begin{array}{llllllllll}25 & 33 & 35 & 38 & 48 & 55 & 55 & 55 & 56 & 64\end{array}$

Let's do a simulation - group of 3

Model of a chance process

Person ONE will label them at random

\[

\]

Let's do a simulation - group of 3

Model of a chance process
Persons TWO and THREE will simulate cases of of three people to be laid off from A to J

$$
\begin{array}{cc}
\text { example } 1 \text { - Layoffs: } & \text { B, F, A } \\
\text { example } 2 \text { - Layoffs: } & \text { C, A, I } \\
\ldots & \\
\text { example } 5 \text { - Layoffs: } & \text { F, G, A }
\end{array}
$$

5 per person, so that you have a sample of 10 simulation events

Let's do a simulation - group of 3

Model of a chance process
Match layoff letters with ages Calculate average age of laid off people

You should end up with TEN estimates Put them in a dot plot

Questions:

What is the largest possible average? What is the lowest possible average?

What to do with this?

How many times did we find that the average layoff age was equal or greater than 58 ?

We should have roughly 400 estimates in total in this class

In this case only 5% of outcomes were higher or equal to 58 years

some results were $42.7,48.0,42.7,37.0$

Inference

Getting an average of 58 or more is not impossible It COULD HAVE BEEN BY CHANCE!

But it is extremely unlikely

The lay off being by chance is POSSIBLE but UNLIKELY

Other reasons?

Martin vs. Westvaco

The statistician hired by Mr. Martin argued that the probability of getting an average layoff age larger than Westvaco's average layoff age, was only 5%.

The layoffs were most likely not randomly distributed in age.

There could have been other reasons though.
The law sets the limit at 2.5%

The case was settled out of court

Simulation steps

Define your random model

Calculate summary statistic (for us average age)

Repeat many times

Display the distribution
Estimate the probability (for us about 5\%)
Come to some conclusion

How do we make sense of it?

We compared the age of 58
to that of the rest of Westvaco's workers

The average number of hectares of the Earth we use in the USA per person for our basic needs is 9.7 .

Is that a lot or a little?

Visualize the distribution

Number of hectares of earth used per person to satisfy our basic needs.

The red dot is us - the USA

Shapes of distribution

4 main possibilities:
Uniform or rectangular
Normal
Skewed
Bimodal or multimodal

Uniform distribution

Each outcome occurs roughly the same number of times if we repeat measurements over and over

Uniform distribution

Each outcome occurs roughly the same number of times if we repeat measurements over and over

Examples:
Number of people born per month Randomly distributed numbers
Number of times you get head/tail from coin toss
Number of times you get any number on the roll of dice

Number

of births and deaths in the USA for the year 1997 (in thousands)

Months	Births	Deaths
January	305	218
February	289	191
March	313	198
April	342	189
May	311	195
June	323	182
July	345	192
August	341	178
September	353	176
October	329	193
November	304	189
December	324	192

Plot the distributions

Uniform or rectangular distribution

1000 random numbers

generated by a computer
Where is center? What is the spread like? What does it mean?

Other examples?

What should not be uniformly distributed?

Normal distributions

Objects that are manufactured
(diameter of pennies, tennis balls)

Tennis ball diameter - what do you observe?

Normal distributions

Bell shaped around a maximum Symmetric left and right

Idealized normal distributions

mean

inflection points

Idealized normal distributions

Center value is called the "mean".
The distribution is symmetric with respect to the mean.

The concavity changes at the "inflection points" Roughly $2 / 3$ of the area below the curve is between the inflection points.

Idealized normal distributions

The distance between the mean and either of the inflection points is called

Standard Deviation (SD)

and measures how spread the distribution is

An example

center is at 47 , about 68% of ages fall between 43 and 51
We say the mean is 47 with SD of 4
The average age is 47 give or take 4 .

Let's try

Weight of pennies (grams)

Diameter of tennis balls (mm)

Estimate mean and SD

Skewed distributions

Not symmetric curves
Data is bunched on one end and a tail appears on the other side

Skewed distributions

Skewed Left

Skewed Right

This happens because there is a 'wall'
A value of data you cannot go beyond.
Maybe 0 (for things like counts or measurements) or 100 (for percentiles)

Skewed distributions

The weight of bears in pounds

Skewed distributions

Your GPAs - can't go beyond 4!
We should look at quartiles and medians to investigate better

Do in class and homework

Problems E13, E14, E17, E21 (page 16)
E1, E4, E5, E6, E10, E15 (page 42)
For problems E13 and E21
Number of ways to pick 3 objects from group of 4

$$
\binom{4}{3}=4
$$

$$
\binom{6}{2}=15
$$

Number of ways to pick 2 objects from group of 6

