Math 140 Introductory Statistics

Extra hours at the tutoring center

Fri Dec 3rd 10-4pm, Sat Dec 4 11-2 pm Final Dec 14th 5:30 - 7:30pm CH 5122

Left handed people

113 out of 1067 males are left handed92 out of 1170 females are left handed

Perform a significance test to see whether males Are more likely to be left handed than women.

> Null hypothesis? Alternate hypothesis?

Left handed people

113 out of 1067 males are left handed 92 out of 1170 females are left handed

Perform a significance test to see whether males Are more likely to be left handed than women.

 p_1 male, p_2 female

Null hypothesis: $p_1 = p_2$ Alternate hypothesis? $p_1 > p_2$

Left handed people

You try: check applicability of normal distribution, Check for the 95% confidence interval.

$$\hat{p}_1 = \frac{113}{1067} = 0.106;$$

$$\hat{p}_2 = \frac{92}{1170} = 0.079;$$

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} = \dots$$

Let's do it a bit differently The null hypothesis says that $p_1 = p_2$ We are going to create a **POOLED** estimate Total number of left handed people = 113 + 92 = 205Total number of people = 1067+1170 = 2237 Then, according to the null hypothesis, p1, p2 should both be approximately 205/2237 = 0.091

Let's do it a bit differently

So we ESTIMATE the error of the difference in the following way:

$$\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}} = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

We also introduce a new test statistic z

Let's do it a bit differently

 $z = \frac{statistic - parameter}{estimated \quad stan \, dard \quad error} =$

$$=\frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n_1} + \frac{\hat{p}(1 - \hat{p})}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 2.23$$

The alternative hypothesis is that $p_1-p_2>0$

Let's do it a bit differently

 $z = \frac{statistic - parameter}{estimated \quad stan \, dard \quad error} =$

$$=\frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n_1} + \frac{\hat{p}(1 - \hat{p})}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 2.23$$

Our P value is 0.0129

2004: 1000 adults surveyed, 30% were overweight 2009: 1000 adults surveyed, 32% were overweight

Does this represent a real population change at the 10% significance level?

Of course, the difference is 0.32 - 0.30 = 0.02 = 2% But is this value statistically significant?

Null hypothesis, the real percentages of the Overweight population

p1 (2009) = p2 (2004)

Alternative hypothesis

p1 (2009) different than p2 (2004)

Check applicability:

0.30*1000 = 300; 0.32*1000 = 320; (1-0.30)*1000 = 700;(1-0.32)*1000 = 680;

OK all are greater than 5

Find the POOLED value of proportion of overweight people

Total number of overweight people = 300+320

Total number of people polled = 1000+1000

The pooled estimate is

$$\hat{p} = \frac{620}{2000} = 0.31$$

The test statistic z

$$\hat{p} = \frac{620}{2000} = 0.31$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n_1} + \frac{\hat{p}(1 - \hat{p})}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = -0.97$$

Now, recall, we want the two proportions to be statistically DIFFERENT

So this is a double sided test, we need to ADD the two P values

$$P = 0.332$$

To discard the null hypothesis we need

$P < \alpha$

For us the level of significance was 10% on either side, so we need to look at $\alpha = 0.2$

To discard the null hypothesis we need

Either: 0.332 < 0.2 or: 0.166 < 0.1

This is false, so we don't discard the null hypothesis

You try it in the "old way"

Construct the 90% confidence interval For the difference of overweight people between the years 2004 and 2009

> p1 (2009) = 320 out of 1000 p2(2004) = 300 out of 1000

You should see that 0 is plausible.

AIDS: AZT or AZT+ACV?

	Treated with			
		AZT	AZT + ACV	Total
	No	28	13	41
Survived?	Yes	41	49	90
	Total	69	62	131

What is the null hypothesis?

What is the alternative hypothesis? n1, n2, \hat{p}_1, \hat{p}_2

Hypotheses:

Null: the treatments (AZT alone, or the cocktail AZT + ACV) give the same survival rate

(AZT) p1 = p2 (ACV)

Alternative: the AZT + ACV is better

p1 < p2

Find:

n₁=69 sample size of patients treated with AZT

40

- n₂=62 sample size of patients treated with AZT+ACV
- $\hat{p}_1 = \frac{41}{69}$ proportion of patients in the sample treated with AZT that survived

$$\hat{p}_2 = \frac{49}{62}$$
 proportion of patients in the sample treated with AZT+ACV that survived

- p1 True proportion of survival if all patients were treated with AZT (unknown)
- p2 True proportion of survival if all patients were treated with AZT+ACV (unknown)

Check all requirements are satisfied

 $n_1 = 69$ sample size of patients treated with AZT

 $n_2 = 62$ sample size of patients treated with AZT+ACV

 $\hat{p}_1 = \frac{41}{69}$ proportion of patients in the sample treated with AZT that survived

 $\hat{p}_2 = \frac{49}{62}$ proportion of patients in the sample treated with AZT+ACV that survived

- *p*₁ True proportion of survival if all patients were treated with AZT (unknown)
- p2 True proportion of survival if all patients were treated with AZT+ACV (unknown)

Check all Conditions

Find the z statistic using

$$\hat{p} = \frac{survived}{total} = \frac{41+49}{69+62} = 0.687$$

Our alternative hypothesis is that p1 (AZT) is worse than p2 (AZT+ACV),

p1 < p2

Where do we look on Table 1, page 759?

Check all Conditions

P value 0.0078

$$z = \frac{(0.594 - 0.790) - 0}{\sqrt{0.687(1 - 0.687)\left(\frac{1}{69} + \frac{1}{62}\right)}} = -2.415$$

We reject the null hypothesis, because the P value is extremely small.

P = 0.0078

AZT+ACV is better

The Flu Treatment Surgical Mask **N95 Respirator** Total Yes 50 48 98 Influenza? No 175 173 348 Total 225 221 446

Two anti-flu masks esist

Surgical are cheaper, but don't always fit right N95 are more expensive, but fit better

Experiments to check their effectiveness

The Flu Treatment **Surgical Mask N95 Respirator** Total Yes 50 48 98 Influenza? 175 173 No 348 Total 225 221 446

Null hypothesis: p1 = p2 Alternate hypothesis p1 different than p2

The Flu Treatment Surgical Mask **N95 Respirator** Total Yes 50 48 98 Influenza? No 175 173 348 Total 225 221 446

Check applicability using

p1 = 50/225, p2 = 48/221

The Flu

		Treat	tment	
		Surgical Mask	N95 Respirator	Total
Influenzo2	Yes	50	48	98
influenza?	No	175	173	348
	Total	225	221	446

Test statistic

$$z = \frac{(50/225 - 48/221) - 0}{\sqrt{0.219(1 - 0.219)\left(\frac{1}{225} + \frac{1}{221}\right)}} = 0.128$$

P value = 2*(0.4483) = 0.8966

We need to see whether they are different, so this is a two sided test

LARGE! The two masks perform more in the same way.

The Flu

This means:

If the difference in flu infectivity was really 0 between the two mask types

then the probability we would get a difference of p1-p2 = 50/225 - 48/221 = 0.005between our measured data is 0.8990

Large probability, most likely our assumption is correct.

	% Helmet Use		Sample Size	
Location Type	1999	2002	1999	2002
Local streets	16	19	1116	848
Collector streets	25	30	592	513
Greenways	42	55	404	369
Mountain biking trails	84	90	336	219
Total			2448	1949

A law imposing helmet use was passed in early 2002. Do these numbers support or disprove the fact that that the law was effective in having people wear their helmet?

	% Helmet Use		Sample Size	
Location Type	1999	2002	1999	2002
Local streets	16	19	1116	848
Collector streets	25	30	592	513
Greenways	42	55	404	369
Mountain biking trails	84	90	336	219
Total			2448	1949

1999 = 0.16*1116 =178.56 people were wearing their helmets

2002 = 0.19*848 = 161.2 people were wearing their helmets

	% Helmet Use		Sample Size	
Location Type	1999	2002	1999	2002
Local streets	16	19	1116	848
Collector streets	25	30	592	513
Greenways	42	55	404	369
Mountain biking trails	84	90	336	219
Total			2448	1949

Pooled p = (178.56+161.2)/(1116+848) = 0.173

$$z = \frac{(0.16 - 0.19) - 0}{\sqrt{0.173(1 - 0.173)\left(\frac{1}{1116} + \frac{1}{848}\right)}} = -1.741$$

We are asking if the law changed things so that p1 < p2

The P value is 0.04

Very low. Certainly there is a difference, But maybe not necessarily due to the law!

Homework

Page 455 E35 - E45 Page 441 E17-E27