Math 140
 Introductory Statistics

Extra hours at the tutoring center

Fri Dec 3rd 10-4pm, Sat Dec 4 11-2 pm
Final Dec 14th 5:30-7:30pm CH 5122

Left handed people

113 out of 1067 males are left handed 92 out of 1170 females are left handed

Perform a significance test to see whether males Are more likely to be left handed than women.

Null hypothesis?
Alternate hypothesis?

Left handed people

113 out of 1067 males are left handed 92 out of 1170 females are left handed

Perform a significance test to see whether males Are more likely to be left handed than women.

p_{1} male, p_{2} female

Null hypothesis: $p_{1}=p_{2}$ Alternate hypothesis? $\mathrm{p}_{1}>\mathrm{p}_{2}$

Left handed people

You try: check applicability of normal distribution, Check for the 95% confidence interval.

$$
\begin{aligned}
& \hat{p}_{1}=\frac{113}{1067}=0.106 \\
& \hat{p}_{2}=\frac{92}{1170}=0.079 \\
& \sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}=\ldots .
\end{aligned}
$$

Let's do it a bit differently

The null hypothesis says that $\mathrm{p}_{1}=\mathrm{p}_{2}$
We are going to create a POOLED estimate
Total number of left handed people $=113+92=205$
Total number of people $=1067+1170=2237$

Then, according to the null hypothesis,
p1, p2 should both be approximately 205/2237 $=0.091$

Let's do it a bit differently

So we ESTIMATE the error of the difference in the following way:

$$
\begin{aligned}
\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} & \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}} \\
& =\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
\end{aligned}
$$

We also introduce a new test statistic z

Let's do it a bit differently

$$
\begin{aligned}
& z=\frac{\text { statistic - parameter }}{\text { estimated } \text { standard error }}= \\
& =\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=2.23
\end{aligned}
$$

The alternative hypothesis is that $\mathrm{p}_{1}-\mathrm{p}_{2}>0$

Let's do it a bit differently

$$
\begin{aligned}
& z=\frac{\text { statistic }- \text { parameter }}{\text { estimated } s \text { tandard error }}= \\
& =\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=2.23}
\end{aligned}
$$

Our P value is 0.0129

Overweight in America

2004: 1000 adults surveyed, 30% were overweight 2009: 1000 adults surveyed, 32% were overweight

Does this represent a real population change at the 10% significance level?

Of course, the difference is $0.32-0.30=0.02=2 \%$ But is this value statistically significant?

Overweight in America

Null hypothesis, the real percentages of the Overweight population
p1 (2009) = p2 (2004)

Alternative hypothesis
p1 (2009) different than p2 (2004)

Overweight in America

Check applicability:

$$
\begin{gathered}
0.30 * 1000=300 ; \\
0.32 * 1000=320 ; \\
(1-0.30)^{*} 1000=700 ; \\
(1-0.32)^{*} 1000=680 ;
\end{gathered}
$$

OK all are greater than 5

Overweight in America

Find the POOLED value of proportion of overweight people

Total number of overweight people $=300+320$
Total number of people polled $=1000+1000$
The pooled estimate is

$$
\hat{p}=\frac{620}{2000}=0.31
$$

The test statistic z

$$
\begin{gathered}
\hat{p}=\frac{620}{2000}=0.31 \\
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=-0.97
\end{gathered}
$$

Now, recall, we want the two proportions to be statistically DIFFERENT

The test statistic z

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{1}}+\frac{\hat{p}(1-\hat{p})}{n_{2}}}}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=-0.97
$$

So this is a double sided test, we need to ADD the two P values

The test statistic z

$$
\mathrm{P}=0.332
$$

To discard the null hypothesis we need

$$
P<\alpha
$$

For us the level of significance was 10% on either side, so we need to look at $\alpha=0.2$

The test statistic z

$$
\mathrm{P}=0.332
$$

To discard the null hypothesis we need

> Either: $0.332<0.2$
> or: $0.166<0.1$

This is false, so we don't discard the null hypothesis

You try it in the "old way"

Construct the 90% confidence interval
For the difference of overweight people between the years 2004 and 2009

$$
\begin{aligned}
& \text { p1 }(2009)=320 \text { out of } 1000 \\
& \text { p2(2004) }=300 \text { out of } 1000
\end{aligned}
$$

You should see that 0 is plausible.

AIDS: AZT or AZT+ACV?

Treated with

Survived?	AZT	AZT + ACV	Total	
	No	28	13	41
	Yes	41	49	90
	Total	69	62	131

What is the null hypothesis?
What is the alternative hypothesis?

$$
\mathrm{n} 1, \mathrm{n} 2, \quad \hat{p}_{1}, \hat{p}_{2}
$$

Hypotheses:

Null: the treatments
(AZT alone, or the cocktail AZT + ACV) give the same survival rate

$$
(\mathrm{AZT}) \mathrm{p} 1=\mathrm{p} 2(\mathrm{ACV})
$$

Alternative: the AZT + ACV is better

$$
\mathrm{p} 1<\mathrm{p} 2
$$

Find:

$n_{1}=69$ sample size of patients treated with AZT
$n_{2}=62$ sample size of patients treated with $A Z T+A C V$
$\hat{p}_{1}=\frac{41}{69} \quad \begin{aligned} & \text { proportion of patients in the sample treated with AZT } \\ & \text { that survived }\end{aligned}$
$\hat{p}_{2}=\frac{49}{62} \quad \begin{aligned} & \text { proportion of patients in the sample treated with } \\ & \mathrm{AZT}+\mathrm{ACV} \text { that survived }\end{aligned}$
$p_{1} \quad$ True proportion of survival if all patients were treated with AZT (unknown)
$p_{2} \quad$ True proportion of survival if all patients were treated with $\mathrm{AZT}+\mathrm{ACV}$ (unknown)

Check all requirements are satisfied

The z statistic

$n_{1}=69$ sample size of patients treated with AZT
$n_{2}=62$ sample size of patients treated with AZT + ACV
$\hat{p}_{1}=\frac{41}{69} \quad \begin{aligned} & \text { proportion of patients in the sample treated with AZT } \\ & \text { that survived }\end{aligned}$
$\hat{p}_{2}=\frac{49}{6} \quad \begin{aligned} & \text { proportion of patients in the sample treated with }\end{aligned}$ $A Z T+A C V$ that survived
$p_{1} \quad$ True proportion of survival if all patients were treated with AZT (unknown)
$p_{2} \quad$ True proportion of survival if all patients were treated with $A Z T+A C V$ (unknown)

Check all
 Conditions

Find the z statistic using

$$
\hat{p}=\frac{\text { survived }}{\text { total }}=\frac{41+49}{69+62}=0.687
$$

The z statistic

Our alternative hypothesis is that p 1 (AZT) is worse than p2 (AZT+ACV),

$$
\mathrm{p} 1<\mathrm{p} 2
$$

Where do we look on Table 1, page 759?

The z statistic

Check all
 Conditions

P value 0.0078

$$
z=\frac{(0.594-0.790)-0}{\sqrt{0.687(1-0.687)\left(\frac{1}{69}+\frac{1}{62}\right)}}=-2.415
$$

The z statistic

We reject the null hypothesis, because the P value is extremely small.

$$
\mathrm{P}=0.0078
$$

$\mathrm{AZT}+\mathrm{ACV}$ is better

The Flu

Treatment

Influenza?	Yes	Treatment		Total
		Surgical Mask	N95 Respirator	
		50	48	98
	No	175	173	348
	Total	225	221	446

Two anti-flu masks esist
Surgical are cheaper, but don't always fit right N95 are more expensive, but fit better

Experiments to check their effectiveness

The Flu

		Treatment		Total
		Surgical Mask	N95 Respirator	
Influenza?	Yes	50	48	98
	No	175	173	348
	Total	225	221	446

Null hypothesis: p1 = p2
Alternate hypothesis p1 different than p2

The Flu

		Treatment		Total
		Surgical Mask	N95 Respirator	
Influenza?	Yes	50	48	98
	No	175	173	348
	Total	225	221	446

Check applicability using

$$
\mathrm{p} 1=50 / 225, \mathrm{p} 2=48 / 221
$$

The Flu

Treatment

Influenza?		Surgical Mask	N95 Respirator	Total
	Yes	50	48	98
	No	175	173	348
	Total	225	221	446

Test statistic

$$
z=\frac{(50 / 225-48 / 221)-0}{\sqrt{0.219(1-0.219)\left(\frac{1}{225}+\frac{1}{221}\right)}}=0.128
$$

The Flu

Treatment

Influenza?		Surgical Mask	N95 Respirator	Total
	Yes	50	48	98
	No	175	173	348
	Total	225	221	446

$$
P \text { value }=2^{*}(0.4483)=0.8966
$$

We need to see whether they are different, so this is a two sided test

LARGE! The two masks perform more in the same way.

The Flu

This means:

If the difference in flu infectivity was really 0 between the two mask types

then the probability we would get a difference of p1-p2 $=50 / 225-48 / 221=0.005$ between our measured data is 0.8990

Large probability, most likely our assumption is correct.

Helmets

	\% Helmet Use		Sample Size	
Location Type	1999	2002	1999	
2002				
Local streets	16	19	1116	
Collector streets	25	30	592	
Greenways	42	55	404	
Mountain biking trails	84	90	336	
Total			2448	

A law imposing helmet use was passed in early 2002.
Do these numbers support or disprove the fact that that the law was effective in having people wear their helmet?

Helmets

	\% Helmet Use		Sample Size	
Location Type	1999	2002	1999	2002
Local streets	16	19	1116	848
Collector streets	25	30	592	513
Greenways	42	55	404	369
Mountain biking trails	84	90	336	219
Total			2448	1949

$$
1999=0.16 * 1116=178.56
$$

people were wearing their helmets

$$
\begin{gathered}
2002=0.19 * 848=161.2 \\
\text { people were wearing their helmets }
\end{gathered}
$$

Helmets

	\% Helmet Use		Sample Size	
Location Type	1999	2002	1999	2002
Local streets	16	19	1116	848
Collector streets	25	30	592	513
Greenways	42	55	404	369
Mountain biking trails	84	90	336	219
Total			2448	1949

Pooled $p=(178.56+161.2) /(1116+848)=0.173$

Helmets

$$
z=\frac{(0.16-0.19)-0}{\sqrt{0.173(1-0.173)\left(\frac{1}{1116}+\frac{1}{848}\right)}}=-1.741
$$

We are asking if the law changed things so that

$$
\mathrm{p} 1<\mathrm{p} 2
$$

The P value is 0.04
Very low. Certainly there is a difference, But maybe not necessarily due to the law!

Homework

Page 455 E35-E45

Page 441 E17-E27

