Math 140

 Introductory Statistics

 Introductory Statistics}

An exercise for you

Utah's national parks

National ParkArches (A)119
Bryce Canyon (B) 56
Canyonlands (C) 527
Capitol Reef (R) 378
Zion (Z) 229

Last time we created the sampling distribution for the total number of square miles in any 2 parks.

2 size sample

Sample of Two Parks	Total Area (sq mi)	Mean Area (sq mi)
A and B	175	87.5
A and C	646	323.0
A and R	497	248.5
A and Z	348	174.0
B and C	583	291.5
B and R	434	217.0
B and Z	285	142.5
C and R	905	452.5
C and Z	756	378.0
R and Z	607	303.5
		Mean

5 choose 2 possibilities = 10 combinations
 Mean is 261.8
 SD is 105.23

Try again for a sample of size 3

A and B and C Total area

Mean Area from
the 3 sample

How many combinations are possible?
Mean is?
SD is?

Do for a sample size of 4 and 5

Sample size	Combination possibilities	Mean	SD (standard error)
$\mathrm{N}=2$	5 choose $2=10$	261.8	105.23
$\mathrm{~N}=3$	5 choose $3=10$	261.8	$?$
$\mathrm{~N}=4$	5 choose $4=5$	261.8	$?$
$\mathrm{~N}=5$	5 choose $5=1$	261.8	0

You should see the standard error decreases, as n increases

7.2 Shape, center and sampling distributon of the mean

We want to estimate the total number of children in US households

We will take a random sample of families And compute the mean on those families

What is the best sample size to use?
Should I make groups of $4,10,20,40$ or more? And average on those? How do decide sample size?

According to the Census Bureau

BUT WE DON'T KNOW THIS

Number of Children	Proportion of Families
0	0.524
1	0.201
2	0.179
3	0.070
4 (or more)	0.026

Try with different sampling sizes n

$\mathrm{n}=1$ one family at a time

$$
n=4, n=10
$$

When we look at higher values of n we have more outcomes

Try with different sampling sizes n

Sample Size, n	Mean	Standard Error, $\sigma_{\bar{\chi}}$
1	0.9	1.1
4	0.9	0.55
10	0.9	0.35
20	0.9	0.25
40	0.9	0.17
Population	0.9	1.1

$$
\mathrm{n}=20, \mathrm{n}=10
$$

The mean is the same and the standard error becomes smaller as n increases

Noteworthy observations

For $\mathrm{n}=1$ the sampling distribution is skewed towards the right (more values close to zero)

As n increases, the skew disappears
As n increases, the sampling distribution starts Looking normal

The mean is the same 0.9 children per family
The standard error becomes smaller as n increases

Choose $\mathrm{n}=20$

There is a 95% chance that all values between $0.9-1.96^{*} 0.25$ and $0.9+1.96^{*} 0.25$ are reasonably likely.

All values between 0.41 and 1.39 are likely. This includes our estimate of 0.9

Choose n=40 - a tighter fit

There is a 95% chance that all values between $0.9-1.96^{*} 0.17$ and $0.9+1.96^{*} 0.17$ are reasonably likely.

All values between 0.67 and 1.23 are likely. This includes our estimate of 0.9

Calculating means from sampling distributions

Properties of the Sampling Distribution of the Sample Mean, $\overline{\boldsymbol{x}}$

If a random sample of size n is selected from a population with mean μ and standard deviation σ, then the sampling distribution of \bar{x} has these properties.

- The mean, $\mu_{\bar{x}}$, equals the mean of the population, μ :

$$
\mu_{\bar{x}}=\mu
$$

- The standard deviation, $\sigma_{\bar{x}}$, sometimes called the standard error of the mean, equals the standard deviation of the population, σ, divided by the square root of the sample size n :

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

What does this mean?

1. It does not matter what the underlying distribution looks like, the mean calculated from all random sampling

IS THE SAME AS THAT OF THE UNDERLYING POPULATION

This is true for symmetric and non-symmetric distributions

We saw this in the case of the NBA salaries

What does this mean?

This was a skewed distribution with average $\$ 4.6$ million

When we did the random sampling, the average was still $\$ 4.6$ million

True always if I use all possible samples

What does this mean?

2. It turns out that the standard error (calculated from your sampling distribution) is the same as the standard deviation of the population divided by the square root of n

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

This tells us that indeed the standard error gets smaller as n gets larger

Finally

- The shape will be approximately normal if the population is approximately normal. For other populations, the sampling distribution becomes more normal as n increases. (This property is called the Central Limit Theorem.)

You try

Sample Size, n	Mean	Standard Error, $\sigma_{\bar{\chi}}$
1	0.9	1.1
4	0.9	0.55
10	0.9	0.35
20	0.9	0.25
40	0.9	0.17
Population	0.9	1.1

Estimate what the standard error should be when $n=30$
And the 95\% confidence interval

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

You try

Sample Size, n	Mean	Standard Error, $\sigma_{\bar{x}}$
1	0.9	1.1
4	0.9	0.55
10	0.9	0.35
20	0.9	0.25
40	0.9	0.17
Population	0.9	1.1

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \quad=\frac{1.1}{\sqrt{30}}=0.20
$$

For $\mathrm{n}=30$ the standard error is about 0.20 The 95% confidence interval is between 0.52 and 1.49

Let's go back to the kids

What is the probability that a random sample of 20 families will have an average of 1.5 kids or less?

Let's go back to the kids

Well, it looks normal, so let's use what we know about normal distributions!

Center $=0.9$, standard error $=0.25$

Let's go back to the kids

What is the probability that a random sample of 20 families will have an average of 1.5 kids or less?

Recall rescaling and recentering?

We need to calculate the corresponding z-score!

$$
z=\frac{x-\text { mean }}{\text { std deviation }}=\frac{1.5-0.9}{0.25}=2.4
$$

The x we care for is 1.5 . We need to find the corresponding z so we can check on page 759

Recall rescaling and recentering?

From Table A

The probability is 0.9918

For you

What is the probability that we find 30 kids total From a random sample of 20 families in the US?

For you

What is the probability that we find 30 kids total From a random sample of 20 families in the US?

A little bit of a trick question.
This means that PER FAMILY we find $30 / 20$ kids=1.5

The answer is the problem we just did!

Corn yields in Indiana

Let's select random plots of the size $1 / 1000$ of an acre. This is about 18 feet of 1 row of corn.

On average each plot has a yield of about 15,000 kernels With SD of 2000. This is the POPULATION DATA

Suppose we decide to randomly sample $\mathrm{n}=25$ plots
What is the approximate probability that the mean number of kernels will exceed 16,000?

What are reasonably likely outcomes for the mean yield of these $\mathrm{n}=25$ sample plots?

Corn yields in Indiana

We expect the mean of the sample to be?
We expect the standard error of the sample to be?
Then take this info to Table A

Corn yields in Indiana

We expect the mean of the sample to be 15,000

We expect the standard error of the sample to be

$$
\sigma=\frac{2000}{\sqrt{25}}=\frac{2000}{5}=400
$$

The z-score is?

Corn yields in Indiana

$$
\begin{gathered}
\text { Mean }=15,000 \\
\sigma=\frac{2000}{\sqrt{25}}=\frac{2000}{5}=400
\end{gathered}
$$

The z -score is

$$
z=\frac{x-15,000}{400}=\frac{16,000-15,000}{400}=2.5
$$

From table A the probability is $1-0.9938=0.0062$

Corn yields in Indiana

Reasonably likely values are between
$15,000-1.96 * 400=15,000-794=14,216$
And
$15,000+1.96 * 400=15,000+794=15,784$

Can this always be done?

We need to make sure the sampling distribution is normally distributed

For example, $\mathrm{n}=1, \mathrm{n}=4$ are not really normal $\mathrm{n}=10$ begins to look normal

1. We can use z-scores only if the random sample distribution is normal

So for the case of the NBA
players we should be careful,
cause the distribution was skewed but if the underlying population is itself normally distributed then we can use z-scores.

In general

When Can the Sampling Distribution of the Mean Be Considered Approximately Normal?

- If the population is approximately normally distributed, you can assume that the sampling distribution of \bar{x} is approximately normal too, no matter what the sample size.
- If the sample size is 40 or more, it's pretty safe to assume that the sampling distribution of \bar{x} is approximately normal.
- Using the normal approximation may be reasonably accurate with smaller sample sizes if the population isn't too badly skewed.

Also

2. The mean of the random sampling distribution is the same as the mean of the population

$$
\begin{gathered}
\text { ALWAYS! } \\
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
\end{gathered}
$$

3. This too we can use almost always, only very rare exceptional cases when not appropriate

Questions

Using the Properties of the Sampling Distribution of the Mean

If you select 100 households at random, would the standard error of the sampling distribution of the mean number of children be larger if the population size, N, is 1000 or if it is 10,000 ?

Questions

Using the Properties of the Sampling Distribution of the Mean

If you select 100 households at random, would the standard error of the sampling distribution of the mean number of children be larger if the population size, N, is 1000 or if it is 10,000 ?

Homework

Page 337 P7, E15, E16, E17, E18, E19, E20, E22, E27, E28

