Math 140
 Introductory Statistics

Tests will be returned on Thursday

Let's make our own sampling!

If we use a random sample (a survey)
or if we randomly assign treatments to subjects (an experiment)
we can come up with proper, unbiased conclusions

We should work with randomized data to avoid bias

But HOW to produce, collect and analyze data?

7.1 Generating sampling distributions

Generate sampling distributions and study:

The sample mean

The sample shape, the center, the spread
How to draw proper conclusions about what is
likely and what is rare.
How to relate this to the entire population?
How to do this in the easiest way?

Sample vs. Population

Sampling size n

Our friends at Westvaco

Recall, the people laid off were 55, 55 and 64 is this discrimination or not?

We need to compare with RANDOM layoffs of three people

Randomly select three workers from the group of 10 with ages above, and calculate the mean age of the three selected.

25333538485555555664

Perform a random 'simulation'

All possible sets of 3 people chosen from 10

$$
\binom{10}{3}=120
$$

For each of these groups calculate average age and create a dot plot - this is your sampling distribution

Conclusions from Westvaco

The average age of the people that were actually laid off was 58

Common sense: It is rather hard for this to happen by chance - Westvaco has some explaining to do

Generate a sample distribution

Simulated sampling distribution:

 distribution of summary statistics obtained from taking repeated random samples.I. Take a random sample of a fixed size n from a population.
II. Compute a summary statistic for this sample.
III. Repeat steps I and II many times.
IV. Display the distribution of the summary statistic.

We will often have access to samples, but not necessarily to the entire population
(too big or inaccessible)

Our friends at the NBA

These are the salaries of NBA players. The mean is $\$ 4.6$ million and the SD is $\$ 4.7$ million. Highly skewed

THESE ARE POPULATION STATISTICS (EVERYBODY)

Our friends at the NBA

Suppose this data was not public and I am an NBA player who wants to know the average salary of my colleagues.

I can only access 10 people at random.

How is the average I find different from the true average?

Since the distribution is skewed, should I be concerned?

Lets' 'simulate' a sampling distribution

Select random samples of 10 from our distribution
Calculate average salary
Repeat many times (200?)
Place them in a chart

THESE ARE SAMPLE STATISTICS

Average simulated salaries

200 simulations
The distribution is approximately

Normal

Centered at about $\$ 4.6$ million

SD is about $\$ 1.5$ million

Equivalent of what we did for Westvaco!

Average simulated salaries

From our 200 simulations
The distribution is approximately normal and centered at about $\$ 4.6$ million, the SD is about $\$ 1.5$ million

The mean of the entire population was $\$ 4.6$ million and the SD was $\$ 4.7$ million.

Recall properties of the normal distribution

Central Intervals for Normal Distributions 68\% of the values lie within 1 standard deviation of the mean.
90% of the values lie within 1.645 standard deviations of the mean.
95% of the values lie
within 1.96 (or about 2)
standard deviations of the
mean.

99.7% (or almost all) of the values lie within 3 standard deviations of the mean.

For us the mean is $\$ 4.6$ million and the SD is

$\$ 1.5$ million

We can be 95% sure that our sample mean is within
3 million from the population mean

Normal distribution

We can be 95% sure ANY mean of 10 people we pick falls between $\$ 1.6$ and $\$ 7.6$ million and centered about $\$ 4.6$ million

$$
\$ 1.6 \mathrm{mil} \quad \$ 7.6 \mathrm{mil}
$$

$\$ 4.6 \mathrm{mil}$

Average simulated salaries

We can be pretty confident that the selection of 10 people will give us a good idea about the average salary of NBA players

We did not need to sample the entire population!

The SD from our SAMPLING DISTRIBUTION is $\$ 1.5$ million.

The SD from our POPULATION DISTRIBUTION Is $\$ 4.7$ million

Average simulated salaries

The SD from our SAMPLING DISTRIBUTION is $\$ 1.5$ million.

This is called the STANDARD ERROR

The SD from our POPULATION DISTRIBUTION Is $\$ 4.7$ million

This is called the POPULATION STANDARD DEVIATION

Definitions

Values that lie in the middle 95% of a sampling distribution are called REASONABLY LIKELY EVENTS

Values that lie in the left 2.5% and in the right 2.5% Sides of a sampling distribution are called RARE EVENTS

Let's compare

Would we be surprised to draw a player with an $\$ 3$ million salary?

What about $\$ 8$ million salary?

Would be surprised to draw 10 players with an average salary of $\$ 8$ million?

Utah's national parks

National Park Area (sq mi)
Arches (A) 119
Bryce Canyon (B) 56
Canyonlands (C) 527
Capitol Reef (R) 378
Zion (Z) 229

Create the sampling distribution for the total number of square miles in any 2 parks.

Use all possible samples of 2 parks.

Utah's national parks

Sample of Two Parks A and B
Total Area (sq mi)
175

National Park	Area (sq mi)
Arches (A)	119
Bryce Canyon (B)	56
Canyonlands (C)	527
Capitol Reef (R)	378
Zion (Z)	229

Utah's national parks

National Park
Arches (A)
Bryce Canyon (B)
Canyonlands (C)
Capitol Reef (R)
Zion (Z)

Area (sq mi)
119
56
527
378
229

How many possible ways of selecting 2 parks? We can only survey 600 square miles a year. What is the probability that we DO NOT finish the survey within the first year?

Utah's national parks

We can use all possible combinations

```
Sample of Two Parks
        A and B
        Total Area (sq mi)
        175
    A and C646
```

A and R 497
A and Z 348
B and C 583
B and R 434
B and Z 285
C and R 905
C and Z 756
R and Z 607

Utah's national parks

Probability we don't finish survey is $4 / 10$

National Park	Area (sq mi)
Arches (A)	119
Bryce Canyon (B)	56
Canyonlands (C)	527
Capitol Reef (R)	378
Zion (Z)	229

Sample and population means

Any sample mean \bar{x}
Population mean μ

Usually they are different, but OVER MANY SAMPLES they tend to be the same

Also,
THE LARGER THE SAMPLE SIZE the closer they will be

Estimator points

Any sample mean \bar{x}
Population mean μ

When we use a summary statistic derived from the sample, (such as the sample mean) as an estimate of the population statistic (such as the population mean) we call it an estimator point.

Desired estimator points

The mean of the sampling distribution should be the same if you calculated the mean of the entire population unbiased

Also it is desirable that as the sample size increases, The SD should decrease
So that we have the most precision possible And the least standard error

Back to Utah

Calculate mean and SD for all parks

National Park	Area (sq mi)
Arches (A)	119
Bryce Canyon (B)	56
Canyonlands (C)	527
Capitol Reef (R)	378
Zion (Z)	229

Then do the same for all 10 samples of 2 parks

Back to Utah

$\begin{array}{ccc}\text { Sample of Two Parks } & \text { Total Area (sq mi) } & \text { Mean Area (sq mi) } \\ \text { A and B } & 175 & 87.5\end{array}$

At the end calculate the mean area for all your samples.
Is this mean the same as for the initial distribution? If so, our sample mean an unbiased estimator.

Now calculate the SD of the sampling distribution. Compare with the previous SD.

Back to Utah

Sample of Two Parks	Total Area (sq mi)	Mean Area (sq mi)
A and B	175	87.5
A and C	646	323.0
A and R	497	248.5
A and Z	348	174.0
B and C	583	291.5
B and R	434	217.0
B and Z	285	142.5
C and R	905	452.5
C and Z	756	378.0
R and Z	607	303.5

Back to Utah

Sample size 1

Sample size 2

This means that the spread we have is less if we use Sample sizes of 2 than if we use sample sizes of 1 .

The mean is the same, no bias The spread is different

Concepts

A simulated sample distribution is the distribution of a sample statistic (the mean) for a large number of repeated samples

The sample distributions are best described by shape, center and spread

Sampling distributions DO NOT necessarily have the same shape as the population from which they were taken

Concepts

The SD of the sampling distribution is called the standard error

If the sampling distribution is normal, reasonably likely outcomes are those that lie within 2 SD of the mean (95% of data)

P5 page 319 Estimate the range of Utah's national parks Range $=$ Largest Area - Smallest Area

Select 3 parks at random and calculate the range

1) What is the range of the entire POPULATION?
2) Make a table for the range of groups of 3

National Park	Area (sq mi)
Arches (A)	119
Bryce Canyon (B)	56
Canyonlands (C)	527
Capitol Reef (R)	378
Zion (Z)	229

3) Place your values on a dot plot
4) What is the mean of the sample?
5) Is the sample range biased or unbiased?

Practice

Page 321 P3, P4, P5, E1, E2, E3, E5, E6, E7, E10,

