Math 140

 Introductory Statistics

 Introductory Statistics}

Next test on Oct 19th

At the Hockey games

Arena Seating
(thousands)

Team

New Jersey Devils
New York Islanders 16
New York Rangers
Philadelphia Flyers
Pittsburgh Penguins
19

18
Philater
18
17

Construct the probability distribution for X, the probability for the total number of people that can attend two distinct games

$\mathrm{P}(\mathrm{X})$, attendance at 2 hockey games

Maximum Attendance
(thousands)
$19+16=35$

Teams
Devils/Islanders

So here we found $X=35$,

Find the rest and then calculate $P(X)$ for all X

How many possible X values will we have?

$\mathrm{P}(\mathrm{X})$, attendance at 2 hockey games

Maximum Attendance
 (thousands)
 $19+16=35$

Teams
Devils/Islanders

How many possible X values will we have? We are selecting 2 arenas out of 5

The number of X values is

$$
\binom{5}{2}=\frac{5!}{3!2!}=\frac{5 * 4 * 3 * 2 * 1}{3 * 2 * 1 * 2 * 1}=10
$$

$\mathrm{P}(\mathrm{X})$, attendance at 2 hockey games

Teams
Devils/Islanders
Devils/Rangers
Devils/Flyers
Devils/Penguins
Islanders/Rangers
Islanders/Flyers
Islanders/Penguins
Rangers/Flyers
Rangers/Penguins
Flyers/Penguins

Maximum Attendance (thousands)
$19+16=35$
$19+18=37$
$19+18=37$
$19+17=36$
$16+18=34$
$16+18=34$
$16+17=33$
$18+18=36$
$18+17=35$
$18+17=35$

$\mathrm{P}(\mathrm{X})$, attendance at 2 hockey games

Total Possible Attendance (thousands), x

Probability, p

33	0.1
34	0.2
35	0.3
36	0.2
37	0.2

What is the probability that attendance is at least 36,000 ?

$\mathrm{P}(\mathrm{X})$, attendance at 2 hockey games

Total Possible Attendance (thousands), x

33
34
35
36
37

Probability, p
0.1
0.2
0.3
0.2
0.2
$\mathrm{P}(\mathrm{X}>$ or $=36)=0.2+0.2=0.4 \quad 40 \%$ probability

What do you think is the average number of cars per household?

Vehicles per Household, x

0	0.087
1	0.331
2	0.381
3	0.201

What do you think is the average number of cars per household?

\author{

Vehicles per
 Household, x
 | 0 | 0.087 |
| :--- | :--- |
| 1 | 0.331 |
| 2 | 0.381 |
| 3 | 0.201 |

}

Average $=0$ * $0.087+1$ * $0.331+2 * 0.381+3 * 0.201=$ 1.696

In a more abstract way

$$
\text { Average }=\text { Sum over all }\left(X^{*} \mathrm{P}(\mathrm{X})\right)
$$

The mean of a probability distribution for the random variable X is called its expected value and is denoted by μ_{X} or $E(X)$.

The mean gets called expected value of the distribution Sometimes indicated as $\mathrm{E}(\mathrm{X})$ or μ_{x}

Getting insured

The probability that you get burglarized is 26.9 per 1000 people

Outcome	Payout, x	Probability, p	$x \cdot p$
No burglary	0	0.9731	0
Burglary	5000	0.0269	134.50

What the company will pay is $\$ 5,000$

Getting insured

The expected payout the company will pay is
0 if there are no burglaries $\$ 5000$ if there is a burglary

For each policy we will pay on average $0 * 0+5000$ *0.0269

Outcome
No burglary
Burglary
Payout, x
0
5000

$$
=\operatorname{Sum}(X * P(X))=134.50
$$

Getting insured

The company will break even if they charge 134.50
97% of the time people will pay, not be burglarized and not get anything,

The rest of the time they will be burglarized and get 5 K
The company breaks even, since

$$
E(X)=X P(X)
$$

What everyone pays = What the company pays

The Wisconsin lottery

Winnings, x

$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

A ticket costs $\$ 1$.
Why don't the probabilities add to one?
What is missing?

The Wisconsin lottery

Winnings, x	Probability, p
$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

What is the expected value for the probability distribution?

The Wisconsin lottery

Winnings, x	Probability, p
$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

$$
\mathrm{P}(0)=1 \text { - Sum of the above }=0.7793
$$

$$
\mu_{x}=0.6014
$$

If we spend $\$ 1$ we will get back, on average, 60 cents.

The Wisconsin lottery

We are given 10 tickets.
How much do we expect to win?
0.6014 for each ticket

10* $0.6014=\$ 6.01$ for 10 tickets

Calculate the expected value

Value, x	Frequency, f	
5	12	
6	23	
8	15	
		There are $\mathrm{n}=50$
Value, \boldsymbol{x}	Proportion, $\boldsymbol{f} / \boldsymbol{n}$	outcomes
5	0.24	
6	$?$	

Calculate the expected value

Value, x 5

12
6
23
8
15
Frequency, f
outcomes

Proportion, f / n
0.24
?
?
There are

$$
\mathrm{n}=50
$$

$$
\mu_{x}=\sum\left(x \frac{f}{n}\right)
$$

$$
\sim 6.3
$$

6.2 Variances of Probability distributions

$$
\begin{aligned}
& \sigma_{n}^{2}=\sum \frac{(x-\bar{x})^{2}}{n} \\
& S D=\sqrt{\sigma_{n}^{2}}=\sqrt{\sum \frac{(x-\bar{x})^{2}}{n}}
\end{aligned}
$$

For a set of data - note the n instead of $\mathrm{n}-1$

6.2 Variances of Probability distributions

For a probability distribution $\mathrm{P}(\mathrm{X})$

$$
\begin{aligned}
& \sigma_{x}^{2}=\sum \frac{(x-\bar{x})^{2}}{n} \\
& S D=\sqrt{\sigma_{n}^{2}}=\sqrt{\sum \frac{(x-\bar{x})^{2}}{n}}
\end{aligned}
$$

Try calculating the variance and SD

Winnings, x	Probability, p
$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

Recall, the average is 60.14 cents or 0.6014 dollars

Try calculating the variance and SD

Winnings, x	Probability, p
$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

The way to think about this is: for each deviation from the mean, what is the probability? For example The contribution for the $\$ 1$ winning is

$$
(1-0.6014)^{2} * 1 / 10
$$

Try calculating the variance and SD

Winnings, x	Probability, p
$\$ 1$	$1 / 10$
$\$ 2$	$1 / 14$
$\$ 3$	$1 / 24$
$\$ 18$	$1 / 200$
$\$ 50$	$1 / 389$
$\$ 150$	$1 / 20,000$
$\$ 900$	$1 / 120,000$

So all together, the variance is
$(1-0.6014)^{2} * 1 / 10+(2-0.6014)^{2} * 1 / 14+$ etc etc $=16.32$
The standard deviation is its square root $=\$ 4.04$

Variances

Formula for the Variance of a Probability Distribution

The variance of a discrete probability distribution is given by

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=\sum\left(x-\mu_{X}\right)^{2} \cdot p
$$

Here, p is the probability that the random variable X takes on the specific value x and μ_{X} is the expected value. To get the standard deviation, take the square root of the variance.

Significance

The average payout is $\$ 0.60$ With a SD of $\$ 4.04$

This means on average you win little but there is a chance of winning a lot (that is why the SD is large)

Let's triple the lottery

Original Winnings, x	Winnings in Special Promotion, $3 x$	Probability, p
$\$ 0$	$\$ 0$	0.7793
$\$ 1$	$\$ 3$	$1 / 10$
$\$ 2$	$\$ 6$	$1 / 14$
$\$ 3$	$\$ 9$	$1 / 24$
$\$ 18$	$\$ 54$	$1 / 200$
$\$ 50$	$\$ 150$	$1 / 389$
$\$ 150$	$\$ 450$	$1 / 20,000$
$\$ 900$	$\$ 2700$	$1 / 120,000$

Calculate mean and standard deviation Compare to original lottery

Let's triple the lottery

Original lottery winnings $\$ 0.6014$ New winnings $\$ 1.804$

Is this smart on Wisconsin's part?

$$
\begin{gathered}
\text { Original SD }=\$ 4.04 \\
\text { New SD }=\$ 12.12
\end{gathered}
$$

How are they related?
They are both multiplied by 3 !

$$
\mathrm{SD}=\sigma_{\mathrm{x}}
$$

Let's triple the lottery

μ_{x} turns into $3 \mu_{x}$
σ_{x} turns into $3 \sigma_{x}$

This is true in general. Multiplying data will rescale average and SD of the distribution

What if I had decided to add 50 cents to each winning?

Let's add 50 cents to the payout

μ_{x} turns into $0.50+\mu_{\mathrm{x}}$

$$
\sigma_{X} \text { stays } \sigma_{X}
$$

Just like rescaling and recentering

 So, adding C and multiplying by D gives$$
\begin{array}{r}
\mu_{\mathrm{x}} \text { turns into } \mu_{\mathrm{C}+\mathrm{DX}}=\mathrm{C}+\mathrm{D}^{*} \mu_{\mathrm{x}} \\
\sigma_{\mathrm{X}} \text { turns into } \sigma_{\mathrm{C}+\mathrm{DX}}=\mathrm{D}^{*} \sigma_{\mathrm{X}}
\end{array}
$$

In general

Linear Transformation Rule: The Effect of a Linear Transformation of X on μ_{X} and σ_{X}

Suppose you have a probability distribution for random variable X, with mean μ_{X} and standard deviation σ_{X}. If you transform each value by multiplying it by d and then adding c, where c and d are constants, then the mean and the standard deviation of the transformed values are given by

$$
\begin{aligned}
& \mu_{c+d x}=c+d \mu_{x} \\
& \sigma_{c+d x}=|d| \sigma_{X}
\end{aligned}
$$

Now, this was for TRIPLING the lottery
What if we kept the same lottery and bought 3 tickets?

What do you think?

If every time I play my average payout is $\$ 0.6014$ What do I get after buying 3 tickets?

What do you think?

If every time I play my average payout is $\$ 0.6014$ What do I get after buying 3 tickets?

$$
\text { Duh }-3 \text { * } 0.6014=1.804!
$$

Just like before!

It does not matter if I triple the lottery or if I buy three tickets, the result is the same.

My take-home on average is tripled.

What do you think?

We can conclude that when we select three items from the same distribution we find

$$
\mu_{3, x}=3 \mu_{x}=\mu_{x}+\mu_{x}+\mu_{x}
$$

In general, for different distributions we get

$$
\mu_{X, Y}=\mu_{x}+\mu_{y}
$$

Two tickets from two lotteries

Let's buy a ticket from the lottery of California and of Texas

> California $\mu_{\mathrm{x}}=\$ 0.50$
> Texas $\mu_{\mathrm{Y}}=\$ 0.75$

What are the expected total winnings?

$$
\mu_{\mathrm{CA}, \mathrm{TX}}=\mu_{\mathrm{CA}}+\mu_{\mathrm{TX}}=\$ 0.50+\$ 0.75=\$ 1.25
$$

What about the standard deviation?

We will look at that next time.

Practice and hk

Page 286
E11, E12, E13, E14, E15, E16

Page 295
P10, P13, E19, E20,

