Math 140
 Introductory Statistics

Next test on March 27th

Health care in America

About 30\% of young American adults ages 19 to 29 don't have health insurance.

Suppose you take a random sample of ten American adults in this age group.

What is the probability that at least one of them doesn't have health insurance?

Take ten people, probability at least ONE does not have h.I?

Let's think

$\mathrm{P}($ at least one DOES NOT have h.i $)+\mathrm{P}($ all have it$)=1$
This means, by moving over
P (all have it) to the other side
$\mathrm{P}($ at least one DOES NOT have health insurance $)=$

$$
1 \text { - P(all have it) }
$$

Let's think

$\mathrm{P}($ at least one DOES NOT have health insurance $)=$

$$
1-\mathrm{P}(\text { all have it })=
$$

1 - P (1st has it AND 2nd has it AND .. 10th has it)

Let's think

$\mathrm{P}($ at least one DOES NOT have health insurance $)=$

$$
1-\mathrm{P}(\text { all have it })=
$$

$1-\mathrm{P}(1$ st has it AND 2nd has it AND .. 10th has it $)=$ 1 - $\mathrm{P}(1$ st has it) * $\mathrm{P}(2$ nd has it) ... *P(10th has it)

Since they are independent

Let's think

$\mathrm{P}($ at least one DOES NOT have health insurance $)=$

$$
1-\mathrm{P}(\text { all have it })=
$$

$1-\mathrm{P}(1$ st has it AND 2nd has it AND .. 10th has it $)=$ $1-\mathrm{P}\left(1\right.$ st has it) * $\mathrm{P}(2$ nd has $i t) \ldots{ }^{*} \mathrm{P}(10$ th has $i t)=$

$$
1-0.7 \text { * } 0.7 \text { * } 0.7 \ldots{ }^{*} 0.7
$$

ten times =

$$
\begin{gathered}
1-(0.7)^{10} \\
=0.972
\end{gathered}
$$

A sad story - Sally Clark

2 of her kids died of sudden infant death syndrome Assume these are independent events and calculate

P(baby 1 died AND baby 2 dies)

Assuming P(baby dies) $=1 / 8500$

A sad story - Sally Clark

If the events were independent

$\mathrm{P}($ baby 1 died AND baby 2 dies $)=$
$\mathrm{P}($ baby 1 died) * P (baby2 died | baby 1 died)
$=\mathrm{P}($ baby 1 died $) * \mathrm{P}($ baby 2 died $)=$ 1/8500 * 1/8500

1 in 70 million

In the UK there are only about 200,000 second births per year

She was sentenced to life in prison

A sad story - Sally Clark

The Royal Statistical Society of the UK argued that two babies dying in the same family ARE NOT independent and concluded that the previous analysis does not apply.

$$
\begin{gathered}
\mathrm{P}(\text { baby } 1 \text { died and baby } 2 \text { dies })= \\
\mathrm{P}(\text { baby } 1 \text { died }) * P(\text { baby } 2 \text { died } \mid \text { baby } 1 \text { died }) \\
=1 / 8500 * 1 / 100
\end{gathered}
$$

This translates to one or two per year for the UK data

A sad story - Sally Clark

Sally Clark was released from prison

She died after 4 years.
Her family says she never recovered from the miscarriage of justice.

6.1 Probability distributions

Probability distribution =
Possible outcomes of a chance process
The probability distribution allows us to find probabilities for any outcome

We have three ways of specifying a population:

1. List of all (individual) units
2. Frequency Table
3. Relative Frequency or Proportion Table

Mean? SD?

List of units

Number	Type	Value x	$x-\mu$
1	Penny	1ϕ	-3
2	Penny	1ϕ	-3
3	Penny	1ϕ	-3
4	Penny	1ϕ	-3
5	Penny	1ϕ	-3
6	Nickel	5ϕ	1
7	Nickel	5ϕ	1
8	Nickel	5ϕ	1
9	Dime	10ϕ	6
10	Dime	10ϕ	6
	Total $=$ 10 coins	Sum $=$ 40 cents	

$$
\begin{aligned}
& \mu=\text { population mean }=\frac{\sum x}{n} \\
& \mu=\frac{1+1+1+1+1+5+5+5+10+10}{10}=4
\end{aligned}
$$

List of units

Number	Type	Value x	$x-\mu$
1	Penny	1ϕ	-3
2	Penny	1ϕ	-3
3	Penny	1ϕ	-3
4	Penny	1ϕ	-3
5	Penny	1ϕ	-3
6	Nickel	5ϕ	1
7	Nickel	5ϕ	1
8	Nickel	5ϕ	1
9	Dime	10ϕ	6
10	Dime	10ϕ	6
	Total $=$ 10 coins	Sum $=$ 40 cents	

$$
\begin{aligned}
& \mu=\text { population mean }=\frac{\sum x}{n} \\
& \mu=\frac{1+1+1+1+1+5+5+5+10+10}{10}=4
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{n}=\mathrm{SD}=\sqrt{\frac{\sum(x-\mu)^{2}}{n}} \\
& \sigma_{n}=\sqrt{\frac{9+9+9+9+9+1+1+1+36+36}{10}}= \\
& \sigma_{n}=\sqrt{\frac{120}{10}}=\sqrt{12} \approx 3.4641
\end{aligned}
$$

Make list from data

| | Second Die | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 |
| | 1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 |
| 2 | 2,1 | 2,2 | 2,3 | 2,4 | 2,5 | 2,6 |
| 3 | 3,1 | 3,2 | 3,3 | 3,4 | 3,5 | 3,6 |
| 4 | 4,1 | 4,2 | 4,3 | 4,4 | 4,5 | 4,6 |
| 5 | 5,1 | 5,2 | 5,3 | 5,4 | 5,5 | 5,6 |
| 6 | 6,1 | 6,2 | 6,3 | 6,4 | 6,5 | 6,6 |

Construct the probability distribution for 1) The sum of the two dice 2) The larger number on the two dice

List for the Sum of the data

		Second Die					
		1	2	3	4	5	6
First Die	1	1,1	1,2	1,3	1, 4	1,5	1,6
	2	2,1	2,2	2,3	2, 4	2,5	2, 6
	3	3,1	3, 2	3, 3	3, 4	3, 5	3, 6
	4	4,1	4,2	4,3	4, 4	4,5	4, 6
	5	5,1	5,2	5,3	5, 4	5,5	5,6
	6	6,1	6,2	6,3	6, 4	6,5	6, 6

Possibilities
Sum $=2$
Sum $=3$

You do the rest

List for the Sum of the data

	Sum of Two Dice, x	Probability, P
If we add them	2	$1 / 36$
we should	3	$2 / 36$
always get	4	$3 / 36$
1, since this	5	$4 / 36$
represents	6	$5 / 36$
all possibilities	7	$6 / 36$
Pral	8	$5 / 36$

Do also for larger number

Larger number

Probability

> Is 1
> Is 2

You do the rest

Do also for larger number

Larger Number, x	Probability, p
1	$1 / 36$
2	$3 / 36$
3	$5 / 36$
4	$7 / 36$
5	$9 / 36$
6	$11 / 36$
Total	1

We can calculate

Probability that the sum of number is $3=2 / 36$ Probability that the larger number is $3=5 / 36$ Etc etc

What we get after tossing the dice is a random variable
depends on chance - may change from trial to trial

We call it X .

For example, if we care for the SUM of numbers

$$
\begin{gathered}
\mathrm{P}(\mathrm{X}=3)=2 / 36=1 / 18 \\
\mathrm{P}(\mathrm{X}=7)=6 / 36=1 / 6
\end{gathered}
$$

Smoking and Lung cancer

Lung Cancer Cases	Proportion
Smoking responsible	0.87
Smoking not responsible	0.13

Suppose two lung cancer patients are randomly selected What is the probability distribution of

X - the number of patients with lung cancer caused by smoking

Smoking and Lung cancer

For 2 sick people, either smoking was cause of disease or not

4 possibilities

Not caused by smoking
Not caused by smoking
Caused by smoking
Caused by smoking

Not caused by smoking
Caused by smoking
Not caused by smoking
Caused by smoking

Recall

$$
\begin{aligned}
P(\mathrm{~A} \text { and } \mathrm{B})= & \mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})= \\
& \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{~A} \mid \mathrm{B})
\end{aligned}
$$

Are the lung cancer events on separate patients independent?

Recall

$$
\begin{array}{r}
P(\mathrm{~A} \text { and } \mathrm{B})= \\
\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})= \\
\\
P(\mathrm{~B}) \mathrm{P}(\mathrm{~A} \mid \mathrm{B})
\end{array}
$$

Are the lung cancer events on separate patients independent?

Yes!

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

Smoking and Lung cancer

Not caused by smoking

$$
\mathrm{P}=0.13
$$

$$
\mathrm{P}=0.13
$$

Independent events
$\mathrm{P}($ both patients had cancer not caused by smoking $)=$

$$
0.13^{*} 0.13=0.0169 \sim \text { less than } 2 \%
$$

Smoking and Lung cancer

Number Caused by Smoking, x

Probability, p

0
1
2

You fill it out

Smoking and Lung cancer

Number Caused by Smoking, x

Probability, p
0
0.0169

1
$0.1131+0.1131=0.2262$
2
0.7569

Building a parking lot

Vehicles per Household, x	Proportion of Households, p
0	0.087
1	0.331
2	0.381
3	0.201

What is the probability that a home will have two or more cars?
(Assume no one has 4)

Building a parking lot

Vehicles per
Household, x
0
1
2
$3 \quad 0.201$

What is the probability that a home will have two or more
cars?
$\mathrm{P}(\mathrm{X}=2)=0.381+0.201=0.582$

How about calculating the probability That two randomly selected homes have NO cars?

Building a parking lot

P (two randomly selected homes have NO cars $)=$

$$
\mathrm{P}(1 \text { st } 0 \text { cars }) * \mathrm{P}(2 \text { nd } 0 \text { cars } \mid \text { 1st } 0 \text { cars })=
$$

Independent events =

$$
\begin{aligned}
& \mathrm{P}(1 \text { st } 0 \text { cars }) * \mathrm{P}(2 \text { nd } 0 \text { cars }) \\
& \quad=0.087 * 0.087=0.008
\end{aligned}
$$

Less than 1\%

Household, x

Proportion of
Households, p
0.087
0.331
0.381
0.201

Building a parking lot

$\mathrm{P}($ exactly one car in a duplex $)=$
Take two homes, one has a car, the other has zero cars
$=\mathrm{P}(1$ car in 1 st house AND 0 cars in 2 nd house OR
0 cars in first house AND 1 car in 2nd house)

A = 1 car in 1st house AND 0 cars in 2nd house B = 0 cars in 1st house AND 1 car in 2nd house

Building a parking lot

A = 1 car in 1st house AND 0 cars in 2nd house B = 0 cars in 1st house AND 1 car in 2nd house

These are disjoined!

$$
\begin{gathered}
\text { Recall } \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B}) \\
\text { Here } \mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=0 \\
\text { They are disjoined }
\end{gathered}
$$

Building a parking lot

$\mathrm{P}(1$ car in 1 st house AND 0 cars in 2 nd house OR 0 cars in first house AND 1 car in 2nd house)
$=$
$=\mathrm{P}(1$ car in 1 st house AND 0 cars in 2 nd house $)+$
P (0 cars in first house AND 1 car in 2nd house)

$\mathrm{P}(1$ car in 1 st house AND 0 cars in 2 nd house OR 0 cars in first house AND 1 car in 2nd house)

$=\mathrm{P}(1$ car in 1 st house AND 0 cars in 2 nd house $)+$ P (0 cars in first house AND 1 car in 2nd house)
(disjoined)
=
$\mathrm{P}(1$ car $) * \mathrm{P}(0$ cars $)+\mathrm{P}(0$ cars $) * \mathrm{P}(1$ car $)$
(independent)
$=$

$$
0.331 * 0.087+0.087 * 0.331=0.058
$$

Make the full chart for duplexes

Total Number of Vehicles, x	Probability, p
0	
1	0.058
2	
3	
4	
5	
6	

Make the full chart for duplexes

Total Number of Vehicles, x	Probability, p
0	0.008
1	0.058
2	0.176
3	0.287
4	0.278
5	0.153
6	0.040

Practice and hk

Page 284

P1, P2, P3, E1, E2, E3, E5, E4, E6, E7

Try E2 first

6 computers, 3 are broken, you get to sample only 2
Find $P(X=0), P(X=1), P(X=2)$
$X=$ number of sampled computers that are broken

