IMMUNITY TO PARASITIC AND FUNGAL INFECTIONS

• Chapter 20

Immunity to Malaria
• Immunity to sporozoites injected by mosquito
 – Mediated by antibody that prevents infection of liver cells

• Immunity to parasites in liver cells
 – Mediated by CD4+ and CD8+ T cells producing IFN-γ
 – Not lytic activity but IFN-γ prevents replication of parasite

• Immunity to parasites in red blood cells
 – Exponential growth stage and symptoms of disease
 – TH1 cells produce IL-2 and IFN-γ (proinflammatory cytokines)
 • Mφ activated and destroy infected RBCs
 – TH2 cells drive specific Ab production
 • blocks invasion of new RBCs
 • Destroys infected RBCs through complement activation
 • Enhances phagocytosis by Mφ through FcR

Topics Covered
• Overview of parasitic diseases
• Immune response to parasitic infections
• Immunity to malaria
• Immunity to schistosomiasis
• Immune effectors in parasitic infections
• How parasites evade the immune response
• General features of fungal pathogens
• Immunity to fungal infections

Immunity to Malaria
• Overproduction of TH1 cytokines
 – Important for parasite control
 – Produces life threatening complications of cerebral malaria, anemia, and other symptoms

• Sequestration of parasites in the brain leads to the production and release of proinflammatory cytokines
 – TH1 cytokines IFN-γ, IL-2, TNF, IL-1
 – Mediate the brain lesions and neurologic damage
 – NO produced by cerebral endothelium interferes with neurotransmission
Dichotomy of protection and pathology associated with the TH1 response to Plasmodium

- Malaria antigens
 - CD4+ T cell activation
 - TH1 cytokines (IL-2)
 - Parasite antigens
 - Low levels
 - Protection
 - High levels
 - Pathology
 - Inhibition of liver and blood-stage parasites
 - Demyelination
 - Erythrocytosis
 - Increased cytokine production
 - Macrophages
 - Inhibited
 - Expanded

Immunity to Schistosomiasis

- Correlative evidence:
 - High IL-4, IL-5, and IgE individuals remain unreinfected
 - High IFN-γ in individuals who were reinfected

- Disease is due to TH2-directed granulomatous response to worm egg antigens
 - B cells proliferate and produce IL-10
 - IL-10 stops costimulation of APCs
 - Downmodulates the size of the granuloma

Immune Effectors in Parasitic Infections

- Most important cytokine activated cell is the Mφ
 - In control and elimination of parasites

- Nitric Oxide (NO) main mechanism for Mφ killing of parasites
 - IFN-γ activates Mφ to generate NO
 - TNF-α also enhances NO production
 - TGF-β and IL-10 inhibit NO production

- Direct killing of schistosome larvae by IFN-γ activated Mφ

- ADCC killing of schistosome larvae by eosinophils and Ab IgE
 - Eosinophils use FcR to bind IgE coated larvae
 - Eosinophils degranulate and release ROI and other toxins that kill over 24 hours
Immune Effectors in Parasitic Infections: Schistosome larvae in vitro experiments

Immunity to liver stage of malaria
- Vaccination with irradiated sporozoites in the lab
 - Provides protection against reinfection
- Ab against sporozoites
- CMI to merozoites at liver stage
 - CTLs lyse infected liver cells
- TH1 cells produce IFN-γ
 - Inhibits growth of parasite inside the cell
 - Along with IL-6 (by liver cells), TNF, IL-1
- IL-6 and IFN-γ
 - induce production of NO by infected cells and liver Mφ (Kupffer cells)
 - Induce MHC class II on liver cells - killing by CD4+ cells also
- IL-6, IL-1, and TNF
 - induce liver cells to release C-reactive protein (CRP)
 - CRP binds to sporozoite and inhibits development to merozoite

Ab isotypes and parasitic infection
- Correlation between high IgE levels and disease symptoms in lymphatic filariasis (elephantiasis)
- Individual hosts with circulating microfilariae have high IgG4 and low levels of IgE
 - No disease symptoms
- Individual hosts that have cleared the microfilariae have high levels of IgE and low levels of IgG4
 - but exhibit elephantiasis
- Suggests IgE and not the parasite causes the lymphatic immunopathology
Cytokine and Ab profiles during lymphatic filariasis

![Diagram](image-url)

Copyright 2004 ASM Press

Immune evasion by parasites

- Parasites have evolved many ways to evade host immune defenses
- Seclusion intracellularly
- Molecules that inhibit nonspecific host effector mechanisms
 - Complement
- Shield themselves with host derived molecules
- Antigenic variation of surface molecules
- Induce host cells to take on an immunosuppressive role

Immune evasion by parasites:

Seclusion intracellularly

- Avoid antibody and complement by hiding inside cells
- Parasites use different independent strategies to avoid destruction within the cell
 - *Leishmania* activate complement and opsonization
 - Are taken up by macrophage, are enclosed in the phagolysosome
 - But produce antioxidant enzymes and inhibitors of lysosomal enzymes
 - *T. gondii* are taken up by phagocytes
 - Prevents phagosome from fusing with lysosome
 - *T. cruzi* (Chagas’ disease) not normal phagocytosis
 - Causes lysosomes to cluster and enter directly
 - *Trichinella spiralis* transform muscle cell to a specialized nurse cell
 - Only intracellular human helminth

Immune evasion by parasites:

Molecules that inhibit nonspecific host effector mechanisms

- Activated immune cells
 - Produce hydrogen peroxide, superoxide ions, hydroxyl radicals that are toxic to pathogen
- Parasites produce antioxidant enzymes
 - Oxygen scavenging enzymes to protect themselves
 - Major enzymes are superoxide dismutase, catalase, and glutathione peroxidase
 - Superoxide dismutase is produced in extraordinary amounts by some parasites
- All protozoan and helminth parasites examined so far contain at least one of these antioxidant enzymes

Copyright 2004 ASM Press
Immune evasion by parasites: Molecules that inhibit Complement

- Leishmania avoid membrane attack complex (MAC) by having extended surface proteins
 - that bind complement and induce phagocytosis of parasite
 - But do not allow MAC formation because they are too far away from the membrane surface
- T. cruzi express a molecule that prevents assembly of the complement cascade
 - No opsonization by complement and No MAC formation
- Shistosome larvae insert the host factor that normally blocks assembly of the complement cascade
 - No opsonization by complement and No MAC formation
- Taenia solium (pig tapeworm) produces paramyosin that blocks assembly of the complement cascade
 - No opsonization by complement and No MAC formation

Immune evasion by parasites: Antigenic variation of surface molecules

- Many examples by pathogens
 - the most dramatic is T. brucei (african sleeping sickness)
 - Entire surface is covered with a dense coating of a single protein called VSG (variant surface glycoprotein)
 - Waves of parasitemia correspond to a clonal population of parasites expressing a single VSG type
 - Antibodies are generated against this VSG and destroy the parasites
 - New clonal population arises with different VSG type and persist until a new antibody response is generated
 - Almost 1,000 genes encoding different variants of VSG
 - These genes are activated one at a time to effect antigenic variation
 - Gene switching occurs at a low spontaneous rate
 - At any given time, at least one parasite is likely expressing a different VSG than is targeted by antibody
 - can escape and cause another round of parasitemia

- Plasmodium falciparum (Malaria)
 - Antigenic variation of PfEMP1 expressed on surface of infected RBC
 - Lots of genes encode these proteins
 - 2-6% of the parasite genome
 - Variant switching occurs at a high rate
 - Emergence of new variants allows chronic infection
 - Explains why previously infected individuals can be reinfected
Immune evasion by parasites:
Antigenic variation of surface molecules

- T. cruzi, T gondii, and Leishmania induce expression of TGF-β
 - Downregulates both TH1 and TH2 responses
- T gondii, and Leishmania enter Mφ without inducing IL-12
 - No TH1 response
- Shistosome eggs induce IL-10
 - Diminishes IFN-γ mediated Mφ activation

Immunology of Fungal Infections

- Eukaryotic organisms that live on dead organic material
- Like bacteria, most are harmless
- Small number cause disease in humans
 - Called mycoses
- Common superficial infections to life threatening systemic diseases
 - Immunocompromised hosts
- Very difficult to treat
- Lack of effective safe anti-fungal drugs
- Amphoterin B is highly effective for systemic mycoses
 - Has serious side effects

Fungal Pathogens

- Different from “classical” parasites
- Do not depend on interaction with host for survival
- Only cause disease by accidentally infecting humans
- Fungi occur in 2 forms
 - Unicellular yeasts
 - Molds that grow in branching chains
 - Hyphae
- The most pathogenic fungal genera are
 - Aspergillus
 - Grow as molds
 - Cryptococcus, and Histoplasma
 - Grow as molds in nature and in vitro tissue culture plates
 - Grow as yeast-like budding cells in infected human tissue
Invasive pulmonary *Aspergillus* in a patient with Leukemia

Aspergillus on an agar culture plate

Aspergillus on an agar culture plate

Cryptococcus neoformans yeast cells in spinal fluid of AIDS patient with cryptococcus meningitis

Cryptococcus neoformans yeast cells in spinal fluid of AIDS patient with cryptococcus meningitis
Cryptococcus neoformans yeast cells in the liver of a patient with disseminated cryptococcus

Fungal Diseases

- Classified into 3 clinical groups
 1. Superficial mycoses
 - Most common infections
 - Skin, hair, and nails
 - Athlete’s foot and ringworm
 - Mucosal surfaces
 - *Candida albicans* normally present in mouth, vagina and intestinal tract
 2. Subcutaneous mycoses
 - Caused by puncture wounds
 - Localized abscesses
 3. Systemic mycoses
 - Histoplasmosis, cryptococcosis, and coccidioidomycosis
 - Begin as lung infections acquired by inhaling spores
 - Mild influenza-like symptoms
 - Fatal without treatment
 - At risk are immunosuppressed individuals
 - Chemotherapy, steroid therapy, AIDS patients

Innate immune responses to Fungi

- Physical barriers: skin and mucosa
- Chemical factors in serum and skin secretions
- Phagocytic and nonphagocytic cells
 - Neutrophils (PMNs) are most important phagocyte
- If these are insufficient
 - T cell mediated responses are required for effective control

Effector cells in fungal infections

- Phagocytic cells
- PMNs are most effective killers
- Drawn to site of fungal infection by chemotactic factors produced by fungus
- Or by fungal membrane activation of complement (not ab mediated)
- Fungi can stimulate IL-1 and TNF-α
 - Enhances infiltration of PMNs
- PMNS kill by
 - Oxygen dependent and independent mechanisms
Effector cells in fungal infections

- PMNS kill by Oxygen dependent
 - Generation of toxic chem via oxidative burst
 - Or release granules with enzymes that generate hypochlorous acid
- PMNS kill by Oxygen-independent mechanisms
 - Proteases
 - Defensins are antimicrobial peptides
- PMNs produce IL-12 and activate TH1 response
- NK cells directly by cytolysis granules and indirectly by activating Macrophages
- Alveolar Macrophages
 - Kill inhaled spores
 - Aspergillus are readily killed
 - Coccidioides and Histoplasma are resistant to Mφ killing
 - No phagosome/lysosome joining in Coccidioides
 - Histoplasma Grows within Mφ if they are not activated by specific immune response

ACQUIRED IMMUNITY TO FUNGAL INFECTIONS

- TH cells and macrophages are important
- Probably little role for Ab
- TH1 response leads to disease resolution
 - IFN-γ and IL-12
- TH2 response leads to exacerbation of fungal infection
 - IL-4
- Show same responses in mice as Leishmania model

Dermatophyte immunity

Athlete’s foot, Ringworm

- Infections that result in high inflammatory responses
 - are more likely to be cleared (TH1 response)
 - those that do not are more likely to be chronic (TH2 response)
- Dermatophyte antigens are important allergens?
 - If they elicit a TH2 response
 - Immediate type hypersensitivity
- Allergic bronchopulmonary aspergillosis
 - Have activated TH2 cells and asthma-like symptoms