Why do we need a vaccine?

Formaldehyde-Treated, Heat-Inactivated Virions with Increased HIV-1 env can be used to induce High-Titer Neutralizing Antibody responses

Betty Poon Ph.D. David Geffen School of Medicine at UCLA and the UCLA AIDS Institute • Human costs

Economic costs

Human Costs

- 40 million living with HIV/AIDS
- [•] 21.8 million cumulative deaths
- 11,000 new infections each day
- 4,000 of these in persons ages 15-49
- Almost 2 teenagers infected EVERY HOUR OF EVERY DAY in the US

UCLA AIDS Human costs

8,200 people die each day

Equals 20 747's crashing

Every day

Year in

Year out

UCLA AIDS

Economic Costs

- UN estimates that medical and human costs have reversed social and economic development in 16 countries
- HAART costs between \$15,000-30,000/yr

Hlabisa, South Africa

- One of every three adults is HIV infected (40,000 people)
- With price reductions the most inexpensive combination therapy is approximately \$400-1000 per year
- 11 can currently afford antiviral therapy

Government sponsored HIV preventative vaccine trials

- Approx. 45 vaccines in Phase 1 trials
- Only 3 vaccines in Phase 2 trials
- Only 1 vaccine in Phase 3 trials

VaxGen data

Vaccine: recombinant gp120

TO	TOTAL	INFECTED / END OF TRI	AT AL PERCENTAGE	WHO BECAME INFECT	ED
All subject	1,679 3,330	98 191	5.8 % 5.7	PLACEBO	

VaxGen, 2003

UCLA AIDS

What happened?

- vaccine was recombinant gp120 protein
 - > env exists as trimer
- used lab strain of HIV clade B
 - > not representative of circulating HIV strains or other clades
- only targeting neutralizing Abs
- Pros:
 - > can conduct Phase III HIV vaccine trial
- learned that enrolling in trial did not increase risky behavior

UCLA AIDS

Why is it so difficult to make effective HIV vaccine?

- Viral diversity
- Animal models are limited
- Natural, controlled infections do not protect against superinfections
- HIV pathogenesis is poorly understood
- HIV affects same cells a vaccine targets: CD4 T cells, macrophages, DCs

RV144

- vCP1521 Clade E Canarypox
- AIDSVAX B/E' gp120 from MN and A244
- 4 immunizations at 0, 1, 3, and 6 months
- 2 vCP1521 alone and 2 vCP1521 + AIDSVAX
- Estimated cost >\$100 million

UCLA AIDS

HVTN 502 and 503

UCLA AIDS

- Merck Ad5 based vaccines
- Gag-Pol-Nef
- ° Clade B
- 502 began 2005—1500 volunteers needed
- 503 began 2007—3000 volunteers needed
- 503 tests a Clade B vaccine in a region where Clade C predominates!

3

Your Immune System

 Antibody Responses: Prevent cells from becoming infected

 Cellular Responses

Remove infected cells from circulation

Rationale for inactivated whole virion vaccine

- A preventive HIV vaccine should elicit broadbased immune responses: cytotoxic T cell and neutralizing antibody responses
- Relevant neutralizing antibodies can offer protection from infection with HIV and SIV if they are present in sufficient concentrations at the time of infection
- The use of heat inactivated virions provides a complex antigen source with close to native envelope conformation

Conditions for an Inactivated HIV Vaccine

- Eliminate infectivity
- Maintain or enhance antibody binding to envelope
- Generate protective immune responses

Methods of Inactivation

- Physical
- Thermal
- Irradiation
- Formaldehyde

Chemical

- Gluteraldehyde
- 2'2'dithiopyridine

Did we kill it?

- Mix virus (treated or untreated) with target T-cells
- Limiting dilution: What is the highest dilution that you can still get an infection? Determine how much infectious virus exists.

Thermal and Chemical Treatment Reduces Infectivity

Restant Server Res		- امیدملک ملولاملانمی دمل		
	12 ^{8.08}			
		-12		

Treatment with formaldehyde decreases envelope shedding

Why did we use both physical (heat) and chemical (formaldehyde)?

Can the envelope still bind to neutralizing antibodies?

- gp120 capture ELISA:
- Mix virus with CD4-IgG or human antigp120 antibodies
- Add mixture to plate containing sheep anti-gp120 antibody
- Detect amount of human anti-gp120 ab bound to env on virus by adding labeled goat anti-human antibody

Binding of gp120 to envelope specific monoclonal antibodies

Envelope modifications

- Mutation in the endocytosis and sorting signal in gp41 of HIVSXSL9 (Y706C)
- Reported to result in better expression of Env at the surface of SIV infected cells
- increase the incorporation of SIV Env into virions

700 N R V R Q G \boldsymbol{Y} S P L S F Q T

N R V R Q G **C** S P L S F Q T

Experimental protocol

How can we improve our

vaccine?

Table 1: Env content on virions and infectivity is enhanced by gp41 mutation (Y706C)

TCID50=amount of infectious virus/ml CD4 IgG=amount of CD4 bound to virions 2G12=amount of anti-Env antibody bound to virions

Mutations	TCID₅₀/ml	CD4 IgG (ng/ml)	2G12 (ng/ml)
HIV _{SXSL9}	105.42	21	26
HIVsxsl9,y706C	10 ^{7.9}	243	220

Studying HIV envelope structure

- HIV envelope produced as gp160
- gp160 cleaved into gp120 and gp41
- One functional envelope spike exists as trimer (3 gp120/gp41 subunits)
- Measure amount of envelope on virions by Western blot analysis
- Use reducing agent (β-ME) to examine envelope trimer

Fig 1: Env modified virions retain oligomeric structures

Vaccination Schedule

What about immunogenicity in small animals?

Serum Pre Absorption Conditions

- Goal: remove non-virus specific antibodies raised against proteins from virus producing cells
- 2 hours on 25 X 10⁶ 293T cells (remove high affinity abs)
- 1 hour on 25 x 10⁶ 293T cells (intermediate affinity)
- 30 minutes on 25 x 10⁶ 293T cells (low affinity)

Measuring removal of anticellular antibodies

- Take sera from vaccinated animals (rabbits)
- Mix with virus producing cells (293T cells)
- Add labeled second antibody that recognizes rabbit antibodies
- Detect amount of labeled antibody bound to cells (if high fluorescence, indicates presence of anticellular antibodies)

Preabsorption of immune sera removes xenoreactive Abs

rabbit anti-293T xenoreactive antibodies

Neutralization Assay

- Magi cells: express CD4, CXCR4 and CCR5, HIV LTR-Bgal
- Mix virus with sera at various dilutions
- Add to Magi cells- if infected, will turn blue
- Count blue cells
- Neutralizing antibodies will reduce number of blue cells (high GMT indicate more neutralizing antibodies)

Why do we care about crossclade neutralizing antibodies?

ubtype	env	gag	pol	Main geographical area
A	U455 IBNG DJ258 SF1703	U455 IBNG DJ258 VI32	U455 IBNG	Central Africa
B	LAI JRFL	LAI JRFL	LAI JRFL	Europe North and South America
C	OYI RF	OYI RF	OYI RF	Australia Asia
C	UG268 ZAM18 ZAM20 DJ256	ZAM18 ZAM20 DJ259		East and South Africa
D	NDK JY1 UG274 SE365	NDK VI203 UG274 UG270	NDK Z2Z6 ¹ ELI ¹	Central Africa
Е	TN235 TN239 TN242 CM240X			East Asia
F	BZ163A BZ126A 93BR029.2 93BR020.17	BZ162 VI69 VI174		South America East Europe
G	LBV217 ¹ 92UG975.10 92RU131.9	LBV217 ¹ VI191 SE6165 ²	SF6165 ²	Central Africa
H	VI557 ² CA13 ²	V1557 V1525	020100	Central Africa
J	SE702 ² SE7887 ²	SE7022 ² SE7887 ²		Central Africa (Europe)

Neutralization of HIV by sera from SXSL9_{V706C} immunized rabbits

	RabbitNumber	HIV SXSID	TK1135 (Clade A)	931N109 (Clade C)	93TH305 (Clade A/E)	SIV
	3065	40	80	20	640	<20
Are these preparations	3249 3058	160 80	80 160	20 20	320 40	<20 <20
immunogenic in raddits?	GMT	93	106	20	333	<20
	Human polyclonal	80	20	40	40	

Conclusions from our studies

- Inactivation protocol ↓ infectivity of HIV-1
- Inactivation protocol ↑ antigenicity of HIV-1
- Cross clade neutralizing Abs can be raised in mice and rabbits
- Improved neutralizing Ab titers by increasing the amount of env on virions

How can we improve safety and immunogenicity?

Developing Pseu

Safety mutations to impact key steps in virus replication: packaging, reverse transcription, and integration

Developing Pseu

- Safety mutations to impact packaging, reverse transcription, and integration
- Env specific mutations to remove specific N glycans and to increase Env content

Preliminary data: Pseu is immunogenic

Immunogen	Mean ND ₅₀ <u>HIV_{SXSL9}</u>	Mean ND ₅₀ <u>HIV_{NL4-3}</u>	Mean ND ₅₀ <u>HIV_{тк1135}</u>	Mean ND ₅₀ <u>HIV_{93IN101}</u>	Mean ND ₅₀ HIV _{93TH305}
Pseu	60 (20-80)	900 (540-1620)	106 (80-160)	47 (20-80)	80(80)
Pseu Y706C,N141Q	47 (20-80)	2220 (180-4860)	480 (160-640)	86 (20-160)	186 (80-320)

Collaborators

- Kathie Grovit-
- Ferbas, Ph.D. Betty Poon, Ph.D.
- berry roon, rn.D.
- J.F. Hsu M.S.
- Vaheideh Gudeman
- Irvin Chen, Ph.D.
 - Jeff Safrit, Ph.D.
 - Harold McClure, D.V.M.
 - Chris Petropoulos, Ph.D
 - [•] Jamie Scott, MD, PhD.
 - Tom Folks, Ph.D.