Chapter 4

Extensions to Mendelian Genetics

Allele Interactions

INTRODUCTION

- Mendelian inheritance describes inheritance patterns that obey two laws
 - Law of segregation
 - Law of independent assortment
- Simple Mendelian inheritance involves
 - A single gene with two different alleles
 - Alleles display a simple dominant/recessive relationship

INTRODUCTION

- In this chapter we will examine traits that deviate from the simple dominant/recessive relationship
- The inheritance patterns of these traits still obey Mendelian laws
 - However, they are more complex and interesting than Mendel had realized

Variations of Mendelian Phenotypic Ratios

- alleles can interact with each other in complex ways
 - incomplete dominance
 - codominance
 - pleiotropic alleles
- many traits are controlled by more than one gene
 - epistasis
 - redundancy
 - complementation
 - penetrance
 - expressivity
- interactions of genes with the environment

So far we have looked at traits that are clearly dominant or recessive.

P = dominant allele makes a normal enzyme p = recessive allele makes a defective one

- But nature is usually more complicated than this.
- Mendel was successful because he chose simple examples to start with (and he had some luck).

Dominance is not always complete

 Crosses between true-breeding strains can produce hybrids with phenotypes different from both parents

- Incomplete dominance
 - Looks like neither parent
- Codominance
 - Looks like both parents

Incomplete Dominance

Incomplete Dominance:

the phenotype of the heterozygous hybrid is usually an intermediate between the homozygous parents.

- Segregation of both genotype and phenotype is 1:2:1.
- Alleles contribute different amounts of functional protein; total amount determines phenotype.

precursor → red pigment

red pigment forming enzyme

A = dominant allele makes a normal enzyme a = recessive allele makes a defective one ■ The amount of red pigment present is dependent on the amount of enzymes present, which is dependent on the number of wildtype copies of the gene. This is a dosage effect.

Phenotype		Genotype	Amount of gene product
	Red	AA	2x
A CO	Pink	Aa	×
	White	aa	0

Incomplete Dominance

- Example: blooming time in peas.
- Example: Flower color.
 - A cross of pure breeding red lowered plants and pure breeding white flowered plants yields plants with pink flowers.
 - Is this blending?
 - Check F2 generation ratios.
- Biochemical basis of incomplete dominance.
- Incomplete dominance is when neither of the two traits are seen in the F1 of a cross of two pure breeding traits.

Incomplete dominance in snapdragons

Incomplete Dominance

- What is the phenotypic and genotypic ratio?
 - -Genotype:
 - 1 AA: 2 Aa: 1 aa
 - Phenotype
 - 1 red : 2 pink : 1 white
 - Notice anything?
 - They are the same
- Usually use R and R' or A and A' because neither is dominant

- In cattle, roan coloring is the result of crossing red with white cattle. What crosses would result in a pure line of roan cattle?
 - 1. Red x Red
 - 2. Red x White
 - 3. White x White
 - 4. Roan x Roan
 - 5. None

Codominance

- Both alternative traits can be visualized in the F1.
- Example: spotted lentil plant crossed to a dotted lentil plant.
- F1 hybrids look like both parents.
- Check phenotypic and genotypic ratios of F2.
- Codominance is when both alternative traits are expressed in the F1 of a cross of two pure breeding parents.

Codominant lentil coat patterns

The McGraw-Hill Companies, Inc. Permission required for reproduction
(a) Codominant lentil coat patterns

Co-Dominance

- What is the phenotypic and genotypic ratio?
 - Genotype:
 - 1 CsCs: 2 CsCd: 1 CdCd
 - Phenotype
 - 1 spotted: 2 spotted and dotted: 1 dotted
 - Again, notice anything?
 - They are the same
- In this case both alleles expressed

Do variations on dominance relations negate Mendel's law of segregation?

- Dominance relations affect phenotype and have no bearing on the segregation of alleles
- Alleles still segregate randomly
- Gene products control expression of phenotypes differently
- Mendel's law of segregation still applies
- Interpretation of phenotype/genotype relation is more complex

Codominant blood group alleles

(b) Codominant blood group alleles

Multiple Alleles

- A gene can have more than two alleles
 - How many do we inherit?
 - Just two.....but can pull from more than two in the gene pool
- Back to blood type
 - How many are there?
 - Three alleles
 - IA
 - IB
 - j

ABO Blood Types in Humans

- Three different alleles: I^A, I^B and i.
- There are 4 different blood group phenotypes: A, B, AB and O.
- Each pair has a different dominance relationship.
- Biochemical Basis:
 - Complex membrane anchored molecules that cause a variation in the structure of the sugar polymer on the cell surface.
 - Three possibilities: Sugar type A, B or none.

ABO blood types

Blood type

Genotypes	Corresponding Phenotypes: Type(s) of Molecule on Cell	
IAIA IAI	A	
IBIB IBi	В	
A B	АВ	
ii .	О	

ABO Antigens

- Type A individuals have the A antigen on their RBCs, and anti-B antibodies in their blood.
 - Their genotype is I A/I A or I A/i.
- Type B individuals have the B antige
 - n on their RBCs, and anti-A antibodies in their blood. Their genotype is I^B/I^B or I^B/i.
- Type AB individuals have both the A and the B antigen on their RBCs, and neither anti-A nor anti-B antibodies in their blood.
 - Their genotype is I^A/I^B.
- Type O individuals have neither the A nor the B antigen on their RBCs, and both anti-A and anti-B antibodies in their blood.
 - Their genotype is i /i.

- Which blood type is the universal donor?
 - -1)A
 - -2) B
 - -3)AB
 - -4)0

- Which blood type is the universal acceptor?
 - -1)A
 - -2) B
 - -3)AB
 - -4)0

- In a paternity suit, the child in question has blood type A and the mother is type AB, which of the following men could not possibly be the child's father? A father with type _____ blood.
 - -1.A
 - -2.B
 - 3. AB
 - -4.0
 - 5. All of the above could possibly be the father.

Dominance series

- Alleles are listed in order of most dominant to most recessive
- Establishes dominance relationships between multiple alleles
- Crosses between trre breeding lines allow arrangements
- Interbreeding F1 hybrids results in 3:1 ratios
 - Says alleles are in fact alleles of the same gene

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. (a) Mus musculus (house mouse) coat colors

(b) Alleles of the agouti gene

Genotype Phenotype

A-	agouti	
atat	black/yellow	
aa	black	

(c) Evidence for a dominance series

Dominance series: $A > a^t > a$

Dominance Series of Multiple Alleles

- There are multiple alleles for the gene that codes for coat color in mice.
- Using pair wise crosses of mice homozygous for each of the sixteen agouti alleles one, can construct a dominance series.
- The dominance series describes a hierarchical relationship between the various alleles of a single gene.

Pleiotropy

- One gene may contribute towards several visible characteristics.
 - E.g: coat color in mice
- In addition to coat color, a specific allele at this locus also causes lethality.
- The phenomenon of a single gene determining multiple distinct traits is known as pleiotropy.
- Pleiotropy may be the result of a single gene product (protein) giving rise to multiple functional characteristics.
 - Examples:
 - Recessive lethal alleles
 - Sickle Cell Syndrome

The A^Y Allele Is Pleiotropic

<u>Pleiotropic</u>: multiple physical effects (phenotypes) caused by a single altered gene or pair of altered genes.

A^Y: mutation, yellow coat

A^Y/A mice are yellow, obese, and develop tumors and type 2 diabetes

A/A: wild-type agouti (brown)

A^{Y/}A^Y die *in utero* always get 2 yellow : 1 wild-type pure breeding yellow mice can never be obtained ²⁹

Genetic Explanation

- Homozygous A^Y/A^Y mice die in utero and are never observed; it is a lethal phenotype.
- Yellow mice are heterozygotes.
- Homozygous recessive (wild type) mice are agouti.
- A allele is dominant over the A normal allele for coat color
- but is <u>recessive</u> for lethality.
- Dominance depends on what trait you look at.

Another example: White coat color and blue eyes in dogs and cats is often co-inherited with deafness. Pleiotropic genes have mutant phenotypes that disrupt more than one process, even seemingly unrelated ones, such as pigment formation and ear development.

Pleiotropy

- Hereditary congenital deafness in dogs (and cats) is
 - associated with defects in neural crest cells
 - which are precursors for both
 - melanocytes
 - required for pigmentation of the coat and eyes
 - •and structures of the inner ear.

Conclusions:

- •Alleles of a single gene can interact with other alleles of the same gene or with the environment.
- When heterozygous offspring look like one parent but not the other -
 - complete dominance, dominance series.
- When heterozygotes show a phenotype unlike that of either parent
 - incomplete dominance.
- When heterozygotes show characteristics of both parents
 co-dominance.

- When the same gene is related to respiratory problems and sterility, it can be described as:
 - 1. pleiotropy
 - 2. co-dominance
 - 3. Incomplete dominance
 - 4. Complete dominance

Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 3.1 For Traits Determined by One Gene: Extensions to Mendel's Analysis Explain Alterations of the 3:1 Monohybrid Ratio

What Mendel Described	Extension	Extension's Effect on Heterozygous Phenotype	Extension's Effect on Ratios Resulting from an $F_1 \times F_1$ Cross
Complete dominance	Incomplete dominance Codominance	Unlike either homozygote	Phenotypes coincide with genotypes in a ratio of 1:2:1
Two alleles	Multiple alleles	Multiplicity of phenotypes	A series of 3:1 ratios
All alleles are equally viable	Recessive lethal alleles	No effect	2:1 instead of 3:1
One gene determines one trait	Pleiotropy: one gene influences several traits	Several traits affected in different ways, depending on dominance relations	Different ratios, depending on dominance relations for each affected trait

Homework Problems

- Chapter 4

-# 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14

- DON'T forget to submit the online iActivity
 - "Charlie Chaplin"