6.2 Mendelian Genetics: When the Role of Genes Is Clear

Gregor Mendel

- Determined how traits were inherited
- The "father of genetics"
- Used pea plants and analyzed traits of parents and offspring

Essay 6-1 figure 1a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Mendelian Genetics

- Mendelian genetics
 - the pattern of inheritance described by Mendel
 - for single genes with distinct alleles
- Sometimes inheritance is not so straightforward
 - In humans it is rarely this straightforward.....

Medelian Definitions

- Genotype combination of alleles
 - homozygous: two of the same allele
 - heterozygous: two different alleles
- Phenotype
 - the physical outcome of the genotype
 - depends on nature of alleles
 - Dominance or recessiveness, etc

Mendelian Definitions

• **Dominant** alleles

- Can mask a recessive allele
- Always shows its phenotype
- Capital letters are used
 - For example: T for tall

Recessive alleles

- Can be masked by a dominant allele
- Only show phenotype if both alleles are recessive
- lower case letters are used
 - For example: *t* for short

Incompletely dominant alleles

- Alleles produce an intermediate phenotype
- Phenotype does not resemble either allele
 - White allele and Purple allele = pink phenotype

Codominant alleles

- Both alleles are fully expressed
- Phenotype resembles both alleles
 - Spotted allele and striped allele = spotted and striped phenotype

Mendelian Definitions

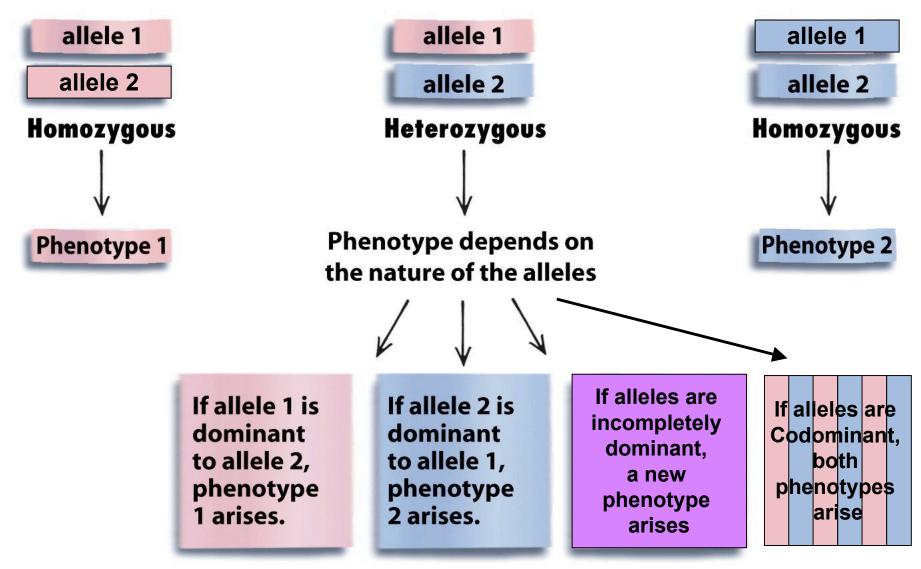


Figure 6-8 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Genetic Diseases in Humans

- Most alleles do not cause diseases in humans
- There are some diseases that are genetic and result from a single gene:
 - Recessive, such as cystic fibrosis
 - Need 2 alleles to have disease
 - Dominant, such as Huntington's Disease
 - Need only one allele to have disease
 - Codominant, such as sickle-cell anemia
 - One allele causes mild disease
 - Two alleles causes severe disease

Genetic Diseases: Cystic Fibrosis

- Affects 1 in 2500 individuals of European-decent
- Recessive condition:
 - individuals with disease have 2 copies of cystic fibrosis allele
- Diseased individuals produce mutant nonfunctioning proteins
 - Normal protein transports chloride ion in and out of cells in lungs and other organs
 - Mutant protein does not
 - Results in a thick mucus layer that is difficult to clear out of lungs and interferes with absorption of nutrients in intestines
 - Can result in suffocation and/or malnutrition and starvation
- Carriers
 - have one cystic fibrosis allele and one normal
 - but do not have cystic fibrosis
 - Appear phenotypically normal
- Carriers can pass the disease allele to children

Huntington Disease

- Dominant condition
- Fatal condition
- Only one Huntington's allele needed
- Produces abnormal protein that clumps up in cell nuclei
 - Especially nerve cells in the brain
 - Results in progressive brain malfunction and death

Sickle-Cell Anemia

- Codominant
 - both alleles are expressed
- One allele codes for normal hemoglobin and the other codes for sickle-cell hemoglobin

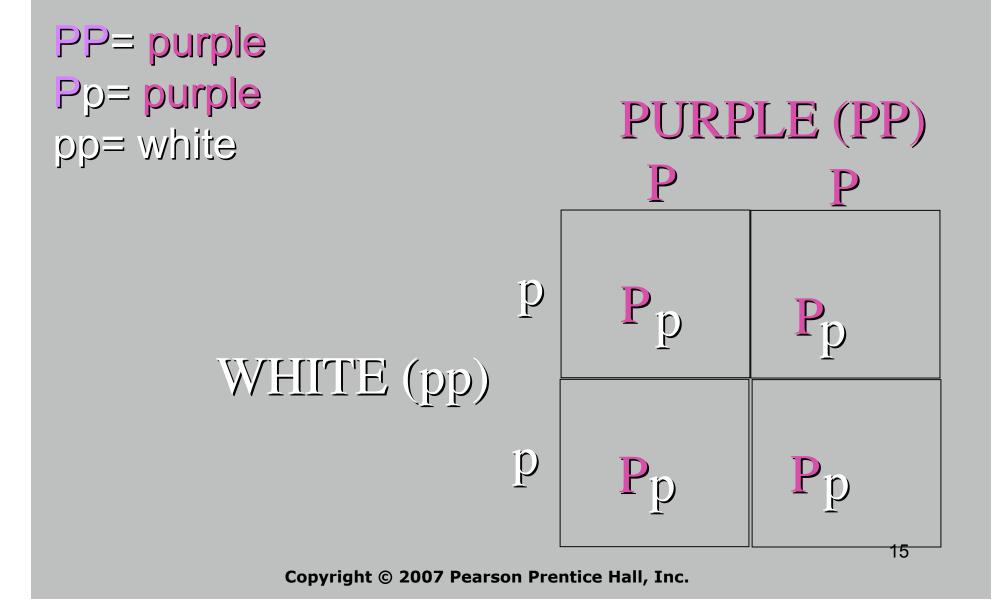
Figure 6-9 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc. Copyright © 2007 Pearson Prentice Hall, Inc.

Sickle-Cell Anemia

- If you have two normal hemoglobin alleles
 - you do not have the disease
- If you have two sickle-cell hemoglobin alleles
 - you have sickle-cell disease
 - You cannot carry oxygen efficiently
 - Can suffocate under low oxygen conditions
 - Red blood cells form a sickle shape and clog arteries
 - Can cause blood clots and death
- If you have one of each, you have sickle cell trait
 - Some of your red blood cells will sickle under low oxygen conditions
 - Some of your red blood cells will clog up arteries
 - Can cause blood clots and death

Why do we care????

- You could be a carrier of a lethal disease and not know it
 - You could pass this allele to your children
- You can "see your future" if you know your genotype...
- Genetics is Nerdy Fun!


How do we know our genotypes?

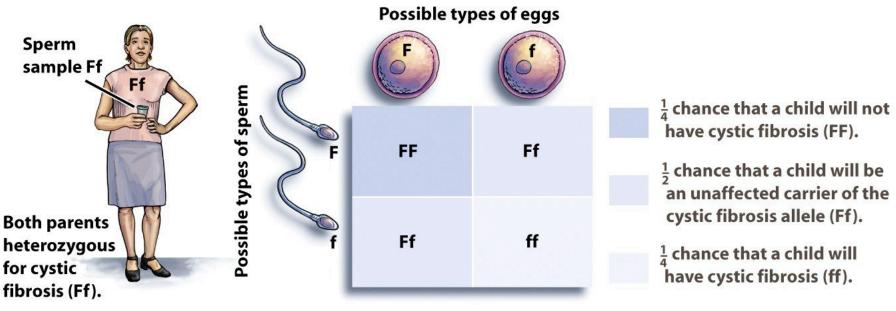
- Understanding Dominance and Recessive relationships of certain alleles
- Usually need to know phenotypes of parents
- We can use Punnett squares to predict offspring phenotypes
- Punnet Squares use possible gametes from parents to predict possible offspring

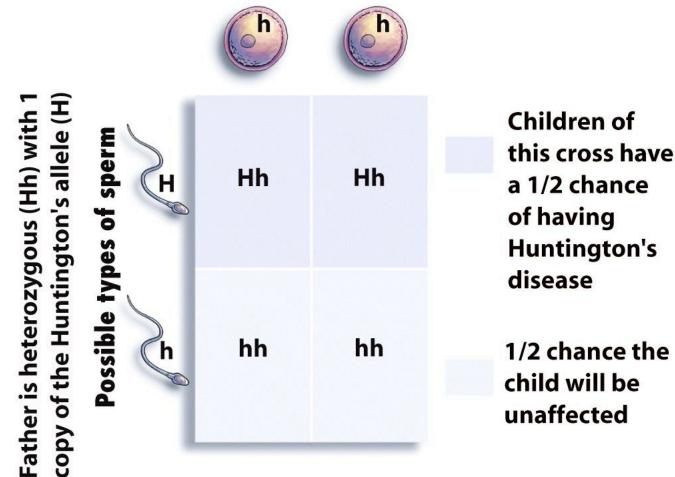
Punnett Squares: Single Gene Traits

- A parent who is heterozygous for a trait
 - Pp can produce two possible gametes
 - P or p
- A parent who is homozygous for a trait
 - PP can only produce one kind of gamete
 - P
- The possible gametes are listed along the top and side of the square
- The predicted offspring genotypes are filled in the center boxes of the square
- Punnet squares can be used to predict possibilities of inheriting genetic diseases

Punnett Square of Complete Dominance

How do we know our genotypes? Use Punnet Squares!

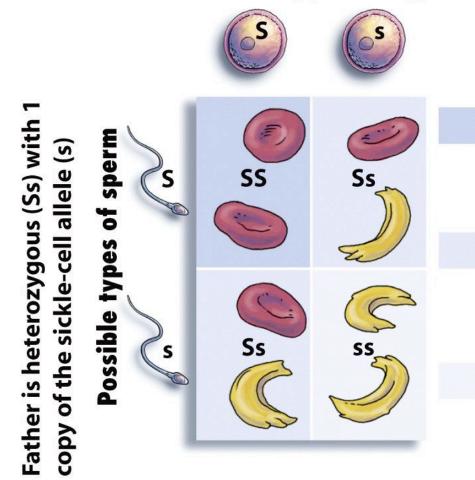



Figure 6-10 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- These are probabilities for each individual offspring
- For every fertilization event
 - there is a 25% chance of having a cystic fibrosis diseased offspring

Huntington's Disease

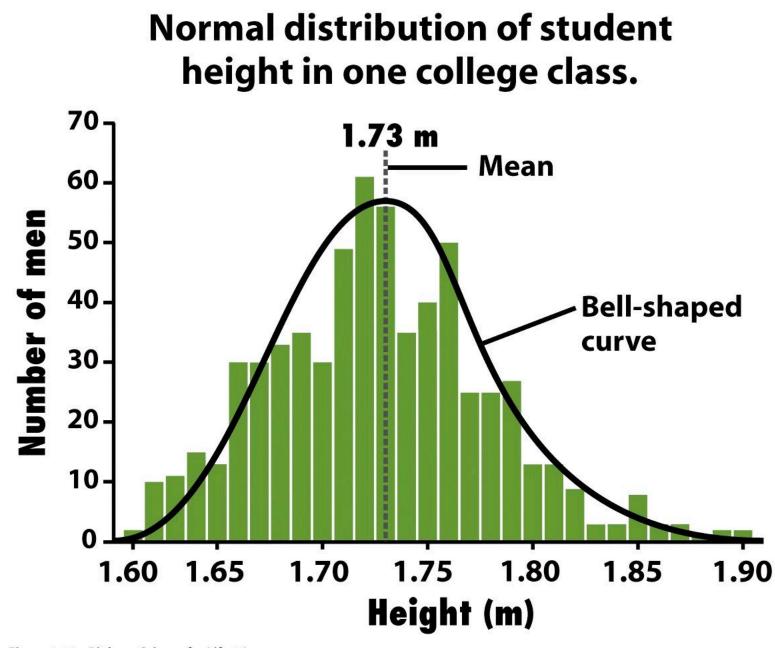
Mother is homozygous (hh) with 2 copies of the normal allele (h)


Possible types of eggs

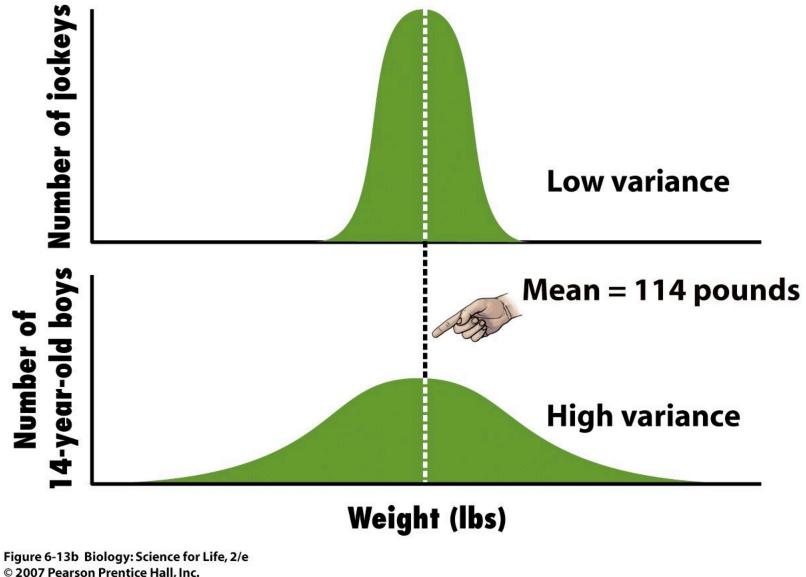
Sickle-cell anemia

Mother is heterozygous (Ss) with 1 copy of the sickle-cell allele (s)

Possible types of eggs


Children of this cross have a 1/4 chance of being unaffected

1/2 chance of having the sickle-cell trait


1/4 chance of having sickle-cell anemia

6.3 Quantitative Genetics

- Quantitative traits include weight, musical ability, susceptibility to cancer, intelligence, and height...
- The environment plays a role
 - Many genes involved in a person's maximum height
 - Diet and nutrition determine whether that person reaches the maximum genetically possible
- Quantitative traits show continuous variation
 - we can see a large range of phenotypes in the population
- Variance is the amount of variation in a population

Variance describes the variability around the mean.

Why Traits Are Quantitative

Polygenic traits

- those traits influence by more than one gene

- Eye color is a polygenic trait
 - There are two genes:
 - pigment
 - Distribution
- This produces a range of eye colors

Why Traits Are Quantitative

- Environment can affect phenotypes
- Identical twins have the same genotypes but may not have exactly the same appearance...

Figure 6-14 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

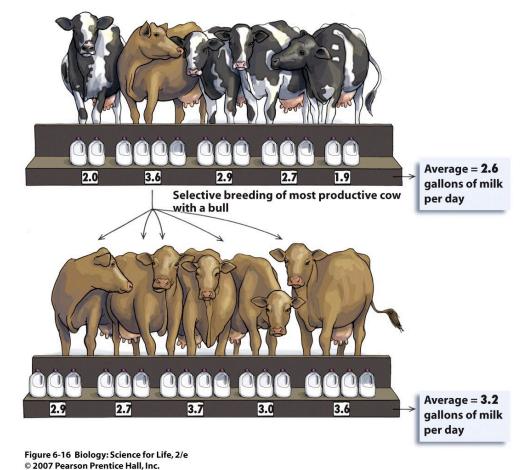
Why Traits Are Quantitative

• Skin color is affected by both genes and environment...

Genes

Figure 6-15a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Environment


Figure 6-15b Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Using Heritability to Analyze Inheritance

- Inheritance patterns for these quantitative traits are difficult to understand
- Researchers use plants and domestic animals to study heritability
 - a measure of the relative importance of genes in determining variation in quantitative traits among individuals

Using Heritability to Analyze Inheritance

- Artificial selection:
 - controlling the reproduction of organisms to achieve desired offspring

Correlations between Parents and Children

- Using animals we can perform experiments to correlate parental traits with traits in offspring
- Vaccinate parent and offspring in a bird population with Tetnus vaccine
- Look for correlation between parents and offspring in ability to produce anti-tetanus proteins
 - ability to produce an immune response to the vaccine

Correlations between Parents and Children

Points represent a single parent/offspring pair

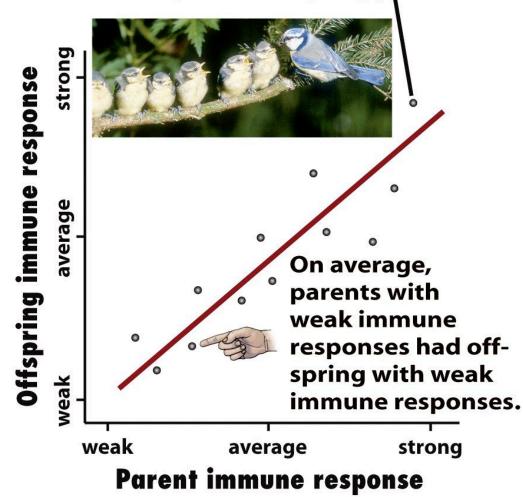
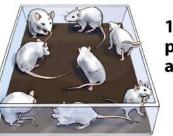
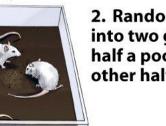



Figure 6-17 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Genes or Environment? Nature or Nuture?


- Highly heritable traits can respond to environmental change
- Traits can be both highly heritable <u>and</u> strongly influenced by the environment
 - examples
 - mouse weight
 - rat intelligence

Genes or Environment? Nature or Nuture?

1. Start with a population of mice that are variable in size.

Weight of mice is highly dependent on environment

2. Randomly divide mice into two groups. Feed half a poor diet and the other half a rich diet.

Rich diet

Poor diet

3. Allow the mice in both groups to breed. Measure the weight of adult offspring.

Average weight of the mice in the rich-diet environment is twice the average weight of the population in the poor-diet environment. Average genetic difference = 0

Figure 6-18 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Genes or Environment? Nature or Nuture?

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Environment in which rats were raised		
TITI		Normal environment	Restricted environment	Enriched environment
Phenotype	Maze-bright rats	115	170	112
	Maze-dull rats	165	170	122
₽.		Ru	All and a second	1 All
	more mis maze-bri	takes than ght rats ning a maze.	Both groups made the same number of mistakes when running a maze.	Both groups ma fewer mistakes when running the maze. The maze rats improved the most compared the normal environment.

Table 6-2 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.