Chapter 5

Cancer:

DNA Synthesis, Mitosis, and Meiosis
5.6 Meiosis

• Another form of cell division, meiosis, occurs within gonads, or sex organs
 – The point of meiosis is to cut the number of chromosomes in half

• Male gonads are testes and female gonads are ovaries
 – Meiosis (my-oh-sis) happens in my ovaries
 – Mitosis (my-toe-sis) happens in my toes

• Meiosis produces sex cells = gametes:
 – Male gametes: sperm cells
 – Female gametes: egg cells
Meiosis

• Gametes have half the chromosomes (23) that somatic or regular body cells do (46)

• Meiosis reduces the number of chromosomes by one-half (23)

• Fertilization or joining of the male (23) and female (23) gamete will result in 46 chromosomes
Meiosis

• Which 23 of the 46 chromosomes end up in each gamete?
 – One of each kind or pair

• Chromosomes come in homologous pairs

• Each somatic body cell has two of every chromosome
 – 1 through 22 pairs of autosomal chromosomes
 • Two copies of chromosome #1, two copies of chromosome #2, etc
 – And XX (female) or XY (male) sex chromosomes

• Each gamete has one chromosome from each homologous pair
 – One copy of chromosome #1, one copy of chromosome #2, etc
 – And an X or a Y but not both
Autosomes (22 pairs)

Sex chromosomes (1 pair)

Female

or

Male

Figure 5-20 Biology: Science for Life, 2/e
© 2007 Pearson Prentice Hall, Inc.
Meiosis

• There are 22 pairs of **autosomes**
 – non-sex chromosomes

• Each pair of chromosomes carry the same genes
 – That’s why they are called **homologous pairs**
 – Homo = same

• There is one pair of sex chromosomes:
 – Males have one X and one Y chromosome
 – Females have two X chromosomes
Figure 5-21 Biology: Science for Life, 2/e
© 2007 Pearson Prentice Hall, Inc.
Meiosis

• Each homologous pair has the same genes

• Both chromosomes of the pair will have the genes on them in the exact same place

• Alleles are
 – The same genes on a homologous chromosome pair
 – For example:
 • You have 2 alleles for the gene for earlobe shape
 • 1 on each of the homologous pair, say chromo 1
 – (in reality it is not known on what chromosome the gene for earlobe shape is located)
 • 1 allele may be for attached earlobes
 • The other allele may be for unattached earlobes
Meiosis

• Just like in mitosis, during the S phase of interphase:
 – the chromosomes are copied or replicated
 – now each of the homologous chromosomes have an identical copy called a sister chromatid

• All four sister chromatids carry the same genes at the same locations
 – but not necessarily the exact same information
–the chromosomes are replicated
–now each of the homologous chromosomes have an identical copy called a sister chromatid
Meiosis

• During meiosis, the homologous pairs are separated
 – so each cell has only one of each pair
 – Each has half the amount of chromosomes
 • Normal cells have 2 of each pair

• This condition is called **haploid** \((n)\)
 – having only one of each kind of chromosome
 – Haploid = half
Meiosis and Fertilization

• Meiosis occurs in the sex cells in either the testes or ovaries (for humans) producing gametes
 – Egg or sperm

• The joining of egg and sperm in fertilization forms
 – a **zygote**, or fertilized egg

• The zygote is **diploid** (2n)
 – It has two of each kind of chromosome now
 • One of each of the pairs of chromosomes from each gamete
 – Egg has 1 of each homologous pair
 » one chromosome #1, one chromosome #2, etc
 – Sperm has 1 of each homologous pair
 » one chromosome #1, one chromosome #2, etc
 – Zygote has 2 of each homologous chromosome
 » two chromosome #1, two chromosome #2, etc
Meiosis and Fertilization

Gamete formation in humans

Egg-producing cells in the ovary have 46 chromosomes (23 pairs).

Sperm-producing cells in the testes have 46 chromosomes (23 pairs).

Egg cell has 23 chromosomes (unpaired).

Sperm cell has 23 chromosomes (unpaired).

Fertilization

Zygote has 46 chromosomes (23 homologous pairs).

Figure 5-23a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.
Meiosis

• Interphase (G1, S, G2), then meiosis I and a cell division, and then meiosis II and a cell division
 – Equals 4 cells at the end
 – with half the number of chromosomes in each

• Meiosis consists of phases:
 – Meiosis I
 • the homologous pairs are separated
 • Cell divides into 2 cells
 – Meiosis II
 • the sister chromatids are separated
 – In both the 2 cells from meiosis I
 • Both cells divide into 2 cells
Interphase and Meiosis

Cell growth and preparation for division

G₂

S

G₁

MEIOSIS I

MEIOSIS II

End of previous mitotic event

Cell growth

S and G phases similar to the S and G phases of mitosis

DNA is copied

INTERPHASE (G₁, S, G₂)
Meiosis

Chromosomes replicate one time, nuclei divide twice
Meiosis

• Notice that the gametes are haploid
 – having one chromosome from each pair

• Each gamete carries half the genetic information as the parent
 – Half the number of chromosomes

• So when the egg and sperm get together
 – they now have the full amount of genetic information as the parent

• If the gametes did not have half number of chromosomes
 – Offspring would have twice as many chromosomes as the parents at every generation.
 – Too many chromosomes!
Meiosis and Nondisjunction

- Sometimes the homologous pairs do not separate during meiosis

- Supposed to have one chromo #1 go into one cell and the other Chromo #1 go into the other cell

- Sometimes, both Chromo #1 goes into one cell and no chromo #1 into the other cell

- This is called **nondisjunction** of meiosis 1

- If the sister chromatids do not separate, then it is **nondisjunction** of meiosis II
During fertilization, these gametes produce an individual that is **trisomic** for the missing chromosome.

(a) Nondisjunction in meiosis I

All four gametes are abnormal.

During fertilization, these gametes produce an individual that is **monosomic** for the missing chromosome.
(b) Nondisjunction in meiosis II

50 % Abnormal gametes

50 % Normal gametes
Meiosis and Nondisjunction

- Nondisjunction results in gametes with incorrect number of chromosomes
 - If fertilized, the offspring has an incorrect number of chromosomes

- An incorrect number of chromosomes is detrimental to humans
 - One example is trisomy 21 (Down Syndrome)
 - One extra chromosome #21

Conditions Caused by Nondisjunction of Autosomes

<table>
<thead>
<tr>
<th>Conditions Caused by Nondisjunction of Autosomes</th>
<th>Approximate Frequency Among Live Births</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy 21 — Down syndrome</td>
<td>The probability that a woman will have a child with Down syndrome increases with age. In mothers younger than age 35, Down Syndrome occurs in approximately 1 per 1000 births and at age 45, around 4 per 1000 births.</td>
<td>People with Down syndrome tend to be mentally retarded, have abnormal skeletal development, and have heart defects.</td>
</tr>
</tbody>
</table>

Table E7-3 part 1 Biology: Science for Life, 2/e
© 2007 Pearson Prentice Hall, Inc.

Age 45 = 33 per 1000
Russell, iGenetics

Copyright © 2007 Pearson Prentice Hall, Inc.
Meiosis and Nondisjunction

Hartwell, Genetics, From Genes to Genomes

Copyright © 2007 Pearson Prentice Hall, Inc.

<table>
<thead>
<tr>
<th>Age of Mother</th>
<th>Frequency of Trisomy 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-34</td>
<td>1/1700</td>
</tr>
<tr>
<td>35-39</td>
<td>1/333</td>
</tr>
<tr>
<td>40-44</td>
<td>1/100</td>
</tr>
<tr>
<td>45-47</td>
<td>1/30</td>
</tr>
</tbody>
</table>
Meiosis and Nondisjunction

<table>
<thead>
<tr>
<th>Conditions Caused by Nondisjunction of Autosomes</th>
<th>Approximate Frequency Among Live Births</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy 13—Patau syndrome</td>
<td>1 in 5000</td>
<td>Affected individuals are mentally retarded, deaf, and have a cleft lip and palate.</td>
</tr>
</tbody>
</table>

Table E7-3 part 2 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

<table>
<thead>
<tr>
<th>Conditions Caused by Nondisjunction of Autosomes</th>
<th>Approximate Frequency Among Live Births</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trisomy 18—Edwards syndrome</td>
<td>1 in 6000</td>
<td>Babies with Edwards syndrome have malformed organs, ears, mouth, and nose, leading to an elfin appearance. They are mentally retarded and usually die within 6 months of birth.</td>
</tr>
</tbody>
</table>

Table E7-3 part 3 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.
Mitosis and Meiosis

• Both are types of cell division

• Occur in different types of cells
 – Somatic body cells = mitosis
 – Sex cells or gametes = meiosis

• Produce very different products
 – Mitosis
 • 2 cells exact same number of chromosomes
 – Meiosis
 • 4 cells with half the number of chromosomes
Mitosis and Meiosis

Mitosis

1. **Prophase**
 - Chromosomes align along the equator.

2. **Metaphase**
 - Chromosomes align as pairs.

3. **Anaphase**
 - Two diploid daughter cells that are both genetically identical to the original parent cell.

4. **Telophase**
 - Daughter cells are haploid (have half as many chromosomes as the parent cell).

Meiosis

1. **Prophase I**
 - Homologues align as pairs.

2. **Metaphase I**
 - Homologues align along the equator.

3. **Anaphase I**
 - MEIOSIS II (separates sister chromatids)

4. **Telophase I**
 - Daughter cells are haploid (have half as many chromosomes as the parent cell).