Biology: Science for Life • Biology: Science for Life with Physiology

SECOND EDITION Colleen Belk • Virginia Borden

Chapter 5

Cancer:

DNA Synthesis, Mitosis, and Meiosis

5.6 Meiosis

- Another form of cell division, meiosis, occurs within gonads, or sex organs
 - The point of meiosis is to cut the number of chromosomes in half
- Male gonads are testes and female gonads are ovaries
 - Meiosis (my-oh-sis) happens in my ovaries
 - Mitosis (my-toe-sis) happens in my toes
- Meiosis produces sex cells = gametes:
 - Male gametes: sperm cells
 - Female gametes: egg cells

- Gametes have half the chromosomes (23) that somatic or regular body cells do (46)
- Meiosis reduces the number of chromosomes by one-half (23)
- Fertilization or joining of the male (23) and female (23) gamete will result in 46 chromosomes

- Which 23 of the 46 chromosomes end up in each gamete?
 One of each kind or pair
- Chromosomes come in homologous pairs
- Each somatic body cell has two of every chromosome
 - 1 through 22 pairs of autosomal chromosomes
 - Two copies of chromosome #1, two copies of chromosome #2, etc
 - And XX (female) or XY (male) sex chromosomes
- Each gamete has one chromosome from each homologous pair
 - One copy of chromosome #1, one copy of chromosome #2, etc
 - And an X or a Y but not both

Autosomes (22 pairs)

Sex chromosomes

Figure 5-20 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- There are 22 pairs of autosomes
 - non-sex chromosomes
- Each pair of chromosomes carry the same genes
 - That's why they are called homologous pairs
 - Homo = same
- There is one pair of sex chromosomes:
 - Males have one X and one Y chromosome
 - Females have two X chromosomes

Figure 5-21 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- Each homologous pair has the same genes
- Both chromosomes of the pair will have the genes on them in the exact same place

Alleles are

- The same genes on a homologous chromosome pair
- For example:
 - You have 2 alleles for the gene for earlobe shape
 - 1 on each of the homologous pair, say chromo 1
 - (in reality it is not known on what chromosome the gene for earlobe shape is located)
 - 1 allele may be for attached earlobes
 - The other allele may be for unattached earlobes

- Just like in mitosis, during the S phase of interphase:
 - the chromosomes are copied or replicated
 - now each of the homologous chromosomes have an identical copy called a sister chromatid
- All four sister chromatids carry the same genes at the same locations
 - but not necessarily the exact same information

-the chromosomes are replicated
-now each of the homologous chromosomes have an identical copy called a sister chromatid

Figure 5-22 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- During meiosis, the homologous pairs are separated
 - so each cell has only one of each pair
 - Each has half the amount of chromosomes
 - Normal cells have 2 of each pair
- This condition is called **haploid** (*n*)
 - having only one of each kind of chromosome
 - Haploid = half

Meiosis and Fertilization

- Meiosis occurs in the sex cells in either the testes or ovaries (for humans) producing gametes
 - Egg or sperm
- The joining of egg and sperm in fertilization forms
 - a **zygote**, or fertilized egg
- The zygote is **diploid** (2*n*)
 - It has two of each kind of chromosome now
 - One of each of the pairs of chromosomes from each gamete
 - Egg has 1 of each homologous pair
 - » one chromosome #1, one chromosome #2, etc
 - Sperm has 1 of each homologous pair
 - » one chromosome #1, one chromosome #2, etc
 - Zygote has 2 of each homologous chromosome
 - » two chromosome #1, two chromosome #2, etc Copyright © 2007 Pearson Prentice Hall, Inc.

Meiosis and Fertilization

Gamete formation in humans

Figure 5-23a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- Interphase (G1, S, G2), then meiosis I and a cell division, and then meiosis II and a cell division
 - Equals 4 cells at the end
 - with half the number of chromosomes in each
- Meiosis consists of phases:
 - Meiosis I
 - the homologous pairs are separated
 - Cell divides into 2 cells
 - Meiosis II
 - the sister chromatids are separated
 - In both the 2 cells from meiosis I
 - Both cells divide into 2 cells

Figure 5-24 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Chromosomes replicate one time, nuclei divide twice

- Notice that the gametes are haploid
 - having one chromosome from each pair
- Each gamete carries half the genetic information as the parent
 - Half the number of chromosomes
- So when the egg and sperm get together
 - they now have the full amount of genetic information as the parent
- If the gametes did not have half number of chromosomes
 - Offspring would have twice as many chromosomes as the parents at every generation.
 - Too many chromosomes!

- Sometimes the homologous pairs do not separate during meiosis
- Supposed to have one chromo #1 go into one cell and the other Chromo #1 go into the other cel
- Sometimes, both Chromo #1 goes into one cell and no chromo #1 into the other cell
- This is called **nondisjunction** of meiosis 1
- If the sister chromatids do not separate, then it is nondisjunction of meiosis II

All four gametes are abnormal

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(b) Nondisjunction in meiosis II

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Nondisjunction results in gametes with incorrect number of chromosomes
 - If fertilized, the offspring has an incorrect number of chromosomes
- An incorrect number of chromosomes is detrimental to humans
 - One example is trisomy 21 (Down Syndrome)
 - One extra chromosome #21

Conditions Caused by Nondisjunction of Autosomes	Approximate Frequency Among Live Births	Comments
Trisomy 21 – Down syndrome	The probability that a woman will have a child with Down syndrome increases with age. In mothers younger than age 35, Down Syndrome occurs in approxi- mately 1 per 1000 births and at age 45, around 4 per 1000 births.	People with Down syndrome tend to be mentally retarded, have abnormal skeletal development, and have heart defects.
Table E7-3 part 1 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.	Age 45 = 33 per 1000	

Russell, <u>iGenetics</u>

Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Age of Mother	Frequency of Trisomy 21	Russell, <u>iGenetics</u>
16-34	1/1700	
35-39	1/333	
40-44	1/100	
45-47	1/30	

Conditions Caused by Nondisjunction of Autosomes	Approximate Frequency Among Live Births	Comments
Trisomy 13—Patau syndrome	1 in 5000	Affected individuals are mentally retarded, deaf, and have a cleft lip and palate.
Table E7-3 part 2 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.		

Conditions Caused by
Nondisjunction of AutosomesApproximate Frequency Among
Live BirthsCommentsTrisomy 18 - Edwards syndrome
1 in 60001 in 6000Babies with Edwards syndrome have
malformed organs, ears, mouth, and
nose, leading to an elfin appearance.
They are mentally retarded and usually
die within 6 months of birth.

Table E7-3 part 3 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Mitosis and Meiosis

- Both are types of cell division
- Occur in different types of cells
 - Somatic body cells = mitosis
 - Sex cells or gametes = meiosis
- Produce very different products
 - Mitosis
 - 2 cells exact same number of chromosomes
 - Meiosis
 - 4 cells with half the number of chromosomes

Copyrig Figure 5-28 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.