Biology: Science for Life • Biology: Science for Life with Physiology

SECOND EDITION Colleen Belk • Virginia Borden

Chapter 5

Cancer:

DNA Synthesis, Mitosis, and Meiosis

- Cell division is the process through which a cell copies itself
- **Cancer** begins when a cell divides when it should not
- Unregulated cell division leads to a tumor

 a mass of cells with no apparent function in the body

- **Benign** tumors do not invade surrounding tissue
- Malignant tumors invade surrounding structures:

- are cancer

- Cells from Malignant tumors can break away and start new cancers elsewhere
 - through the process of **metastasis**
 - Benign tumors **cannot** metastasize

- Cancer cells differ from normal cells:
 - Divide when they should not
 - Invade surrounding tissue
 - Move to other locations in the body

Figure 5-1 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- Cancer travels through the body by way of the lymphatic and circulatory systems
 - Lymphatic vessels
 - Blood vessels
- The lymphatic vessels collect fluids lost from Blood vessels
- Lymph nodes are structures that filter the lost fluids
 - Lost fluid is called lymph

- All tissues that undergo cell division
- such as ovarian tissue
- are susceptible to cancer

Figure 5-3 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Lymphatic system

Copyright © 20 Figure 5-2a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

How Can Ovarian Cancer Kill You?

- Ovarian tumor cells metastasize into the lymph
 - Some get stuck in lymph nodes
 - Some travel to the bloodstream
- They can travel all over the body in the bloodstream
- Set up camp in vital organs
 - The function of the organs are disrupted by ovarian cell tumors
- Cause multi-organ failure and death

Why is ovarian cancer so deadly?

- Rarely causes symptoms until tumor is quite large
- No good "early detection" test
 - CA125 tumor marker bloodtest
 - Does not catch half of the early stage ovarian cancers
 - Does catch 90% of advanced
 - False positive tests from endometriosis, fibroids, pelvic inflammatory disease, pregnancy
- Usually metastasizes before detected
 - 70% of cases
 - Stage 2, 3, and 4
- Usually highly aggressive cancer cells
 - Grades 2 and 3
- Overall "5 year survival rate" is (live at least 5 years from diagnosis)
 - Stage 1 = 87%
 - Stage 2 = 59%
 - Stage 3 = 27%
 - Stage 4 = 11.5%

(Rosenthal and Jacobs, 1998) Copyright © 2007 Pearson Prentice Hall, Inc.

Cancer cells travel in lymph and blood

- Cell division produces new cells in order to:
 - Heal wounds
 - Replace damaged cells
 - For growth
 - Also for reproduction

Asexual reproduction:

- Make exact copies
- Does not need two parents
- Single celled organisms, like amoebas, carry out asexual reproduction

Amoeba

Figure 5-4a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- Before dividing, a copy of DNA (deoxyribonucleic acid) must first be made
- DNA is located within the nucleus and carries genes – instructions for building the proteins that cells require

- DNA is organized into structures called chromosomes which can carry hundreds of genes along their length
- The number of in each cell depends on the organism: humans have 46

• DNA starts out in an string-like, uncondensed form...

Uncondensed DNA

Figure 5-5a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

- Before cell division begins:
 - DNA is condensed into short, linear chromosomes

- A chromosome is replicated during cell division
 the copy carries the same genes
- Each chromosome is copied
 the copy is called a sister chromatid
- The sister chromatid
 - is connected to the original DNA by a centromere

DNA condensed into chromosomes

Figure 5-5b Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

DNA Structure

- DNA is a double stranded molecule made of
 - two single strands of nucleotides that are bonded together
- The DNA molecule looks a lot like
 - a twisted rope ladder

Copyright © 200 Figure 5-6a Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

DNA structure

- The "rungs" of the molecule are the bases:
 - A (adenine)
 - T (thymine)
 - G (guanine)
 - C (cytosine)
- The bases across the "ladder" are connected in a specific way:
 - A always bonds with T
 - C always bonds with G
- This is complementary base pairing

Each strand is a chain of nucleotides.

Figure 5-6b Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

James Watson and Francis Crick:

- Determined the structure of the DNA molecule
- Published in *Nature* in 1953
- Based on Rosalind Franklin's experiments

Figure 2-14 Biology: Science for Life, 2/e © 2007 Pearson Prentice Hall, Inc.

Why do we care about DNA structure?

- Because the structure of DNA allows life as we know it to exist
- Because complementary base pairing allows
 - new cells to be made with exactly the same DNA as the original cell
 - If you can't do this, you will die!
 - A brain cell makes another brain cell, not a liver cell in your head
- Because complementary base pairing allows
 - DNA to make an exactly correct RNA
 - that then can make an exactly correct protein
 - People need to make insulin, stomach digestive enzymes, etc
 - If you can't do this, you will die!
- Because it is Nerdy fun...