1. Complete this table:

	Meters	Centimeters	Millimeters	Kilometers
2 meter sticks	2	200	2000	.002
Mo's height	1.83 m	183	1830	.00183
Width of Pencil	.0065	.65 cm	6.5	.0000065
Distance to admin	167 m	16700 cm	167000	.167

Find the perimeter. (Assume all angles that appear right are right.)

We need to find c:

$$P = 7m + 6m + 7m + 3m + 4m + 5m = 32 m$$

3. A B

Assume a circle is inscribed in a square ABCD as shown. If the square's perimeter is 15 inches, what is the total length of the curve drawn?

P of
$$\Box$$
 = 15 in \Rightarrow AB = 15/4 in \Rightarrow D of \odot = 15/4 in

So C of
$$\odot$$
 = Π •diameter = Π (15/4 in)

And
$$\underline{\text{Total}}$$
 Length of Curve = 15 in + Π (15/4 in)

4. A

Assume a circle is inscribed in a square ABCD as shown. Assume the circle has circumference $6\pi m$. What is the perimeter of the square?

$$C = 6\pi m = \pi \text{ (Diameter)} \implies D = 6m \implies \text{Side of } \square = 6m$$

P of square = $4 \cdot 6m = 24m$

The circle and square are equal in width!

5. Find the perimeter of the polygon shown.

We use the pythagorean theorem to find the lengths of the three sides.

$$c^2 = 3^2 + 5^2$$
 $d^2 = 1^2 + 4^3$

$$c = sqrt(34)$$
 $d = sqrt(17)$

So P =
$$\sqrt{34} + 2\sqrt{17}$$
 units

We notice that two sides of the \triangle are hypotenuses of identical 1-by-4 right \triangle s—,

6. What is the perimeter of a sector with central angle 40° from a circle of radius 10cm?

The circumference of the entire circle is C = 20 Tm cm

The length of an arc of a 40° sector is one-ninth* of that, since the arc is 1/9 of the complete circle.

So the Perimeter of the sector is $\frac{20 \text{ T}}{9}$ cm + 20cm

^{*} A 360° arc would be the whole circle; and ${}^{40}{}^{\circ}/{}_{360}{}^{\circ} = {}^{40}/{}_{360} = {}^{1}/{}_{9}$.