
Solutions to Section I: Similarity

I1. The diagram below from problem 1 includes labels of vertices.

Solution I: $\triangle DFB \sim \triangle ACB$ by AA. This is because the two triangles are right triangles and they share $\angle B$. Since corresponding sides of similar triangles are proportional,

$$\frac{x}{a} = \frac{b - x}{b}$$

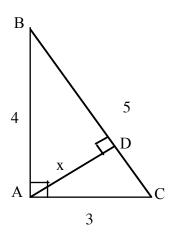
Now cross-multiply and solve for x:

$$xb = a(b-x)$$

$$xb = ab - ax$$

$$xa + xb = ab$$

$$x(a+b) = ab$$


$$x = \frac{ab}{a+b}$$

Solution II: $\triangle AED \sim \triangle ACB$ by AA. This is because the two triangles are right triangles and they share $\angle A$. Since corresponding sides of similar triangles are proportional,

$$\frac{a-x}{a} = \frac{x}{b}$$

Solving for x again gives $x = \frac{ab}{a+b}$.

I2. The diagram below from problem 2 includes labels of vertices.

Solution I: $\triangle DAC \sim \triangle ABC$ by AA. This is because the two triangles are right triangles and they share $\angle C$. Since corresponding sides of similar triangles are proportional,

$$\frac{3}{5} = \frac{x}{4}$$

Solving for x gives, x = 12/5.

Solution II: $\triangle DBA \sim \triangle ABC$ by AA. This is because the two triangles are right triangles and they share $\angle B$. Since corresponding sides of similar triangles are proportional,

$$\frac{4}{5} = \frac{x}{3}$$

Solving for x again gives, x = 12/5.

I3. Part a: Yes, $\triangle ABE \sim \triangle ACD$ because the two triangles share $\angle A$, and $\angle D \cong \angle BEA$ (since these two angles are corresponding angles for the transversal \overrightarrow{DA}).

2

Part b: The ratio of the measure of \overline{AE} to the measure of \overline{AD} is 7/10.

I4. Let y be the height of the flagpole in feet. We may assume that height of the flagpole and the length of its shadow are the linear dimensions of two legs of a right triangle, and the height of the man and the length of his shadow are the linear dimensions of two legs of a similar right triangle. Then,

$$\frac{y}{6} = \frac{52}{8}$$

Therefore, y = (6)(52)/8 = 39. The flagpole is 39 feet high.

I5.

a.
$$6/15 = 2/5$$

b.
$$(6/15)^2 = (2/5)^2 = 4/25$$

$$\mathbf{c.} \ 2/5$$

d.
$$(\frac{2}{5})^2 \times 300 = 48$$
 square units

d.
$$\frac{2}{5} \times 80 = 32$$
 units