3. All are algebraic expressions except for b, e and i.

Items a, d and h are numeric expressions, and therefore are algebraic expressions.

- b. $3 + \div 7$ has no meaning, cannot be evaluated, does not represent a number.
- e. 3x + 2 = 7 is an equation. It does not represent a number.
- i. $y \div 0$ for any choice of y, this does not represent a number (because $\div 0$ is undefined)
- 5. Fred is confused about the meaning of the equal sign. He wrote:

$$3(x+2) = 3x + 6 - x = 2x + 6 + 8 = 2x + 14$$
 the first two "=" are incorrect...

...because
$$3(x+2) = 3x + 6$$
 and

and
$$3(x+2) \neq 3x + 6 - x$$

...because
$$3x + 6 - x = 2x + 6$$
 and

$$3x + 6 - x \neq 2x + 6 + 8$$
.

Fred could have written:
$$3(x+2) - x + 8$$

Or:
$$3(x+2) = 3x + 6$$

$$= 3x + 6 - x + 8$$

$$3x + 6 - x = 2x + 6$$

$$= 3x - x + 6 + 8$$

$$2x + 6 + 8 = 2x + 14$$

- = 2x + 14
- 6a. The number of inches in m feet:

There are 12m inches in m feet.

- 6b. The perimeter of a square with side s cm is 4s cm.
- 6c. The value in cents of x nickels and y dimes is 5x + 10y.
- 6d. The number of pounds in 6z ounces.... is 6z/16
- Ge. Three consecutive whole numbers, the smallest of which is n... are n, n+1, n+2 (Note, these are THREE expressions, not one.)

There are 12 inches in 1 foot,

24 inches in 2 feet,

inches in 10 feet....

Inches in m feet.

Start with what you know:

The number of pounds in 16 oz is 1

The number of pounds in 32 oz is 2

Work your way up, then ask yourself how you are getting the answer.

The number of pounds in 32 oz is 32/16
The number of pounds in w oz is w/16
(w stands for whatever)

6f. The average speed of a plane that travels 600 miles in 2 hours is 300 mph.

The average speed of a train that travels w miles in 5 hours is w/5 miles per hour.

6g. Ann is 18 years younger than Bill.

$$A = B - 18$$
 If Bill is B yr old.

Carmen is 1/5 as old as Ann.

$$C = A/5 = (B-18)/5$$

Dana is 4 yr older than Carmen.

- D = C + 4 = (B 18)/5 + 4
- 7. The lengths in inches of the sides of a triangle are consecutive integers, P is 27".

Let \boldsymbol{x} be the number of inches length of the shortest side.

The next two are x+1 and x+2.

Perimeter = 27 (inches), and perimeter = x + (x+1) + (x+2) [inches], so...

$$x + (x + 1) + (x + 2) = 27$$

$$3x + 3 = 27$$

$$3x = 24$$

$$x = 8$$

The shortest side is 8 inches long.

8a. (Re PT5A p 25 #6): P stands for Peter's stickers, J for Jay's and E for Emily's.

If we give E 40 more stickers, she'd have the same as J. And the total would be 40 more.

Then
$$4 \text{ units} = 340$$
,

So
$$1 \text{ unit} = 340 \div 4 = 85$$

&... Peter has
$$2 \times 85 = 170$$
 stickers

USING ALGEBRA:

Let x = # stickers Jay has. Jay has x stickers, so Peter has 2x stickers.

and Emily has x - 40.

Altogether they have 300 stickers, so:

$$x + 2x + x - 40 = 300$$

$$4x - 40 = 300$$

$$4x = 340$$

$$x = 85 \text{ Peter has } 2.85 = 170$$

Alternate solution:

Here we think of the basic unit as E's amount, see that J has 40 more, etc.

$$3 \times 40 = 120$$

$$300 - 120 = 180$$

$$4 \text{ units} = 180$$

$$1 \text{ unit} = 180 \div 4 = 45$$

So Peter has 45+40+45+40 = 170 stickers

USING ALGEBRA:

Let x = # stickers Emily has. Then...

Jay has
$$x + 40$$

Peter has 2(Jay's #) = 2(x+40)

They have 300 altogether, so:

$$2(x+40) + x + 40 + x = 300$$

$$2x + 80 + x + 40 + x = 300$$

$$4x + 120 = 300$$

 $4x = 180$

$$x = 45$$

So Peter has 2(45+40) = 170 stickers.

9. (Re PT 6A pp 7-11)

#1. Alan is 8 yr old.

13, x+8 (yr); B

a. How old will he be in 5 yr?

b. How old will he be in x years?

[Although it may seem in part a that you are evaluating, that is more of a "warm-up" for building the expression requested in part b.]

#2 Jim has \$2 more than Travis. a. If Jim has \$10, how much does Travis have? b. If Jim has \$m....

\$8, m - 8 (\$); B [Very similar to #1]

#3 Tracy bought w kg of flour, used 5 kg. a. Express amount left. b. Tracy bought 8 kg. What's left? $w - 5 \leftarrow B$, $8 - 5 = 3 \leftarrow E$; B,E [part a is Building, part b is Evaluating.]

#4 There are 4 apples in each packet. a. How many in n packets? b. n = 8, # apples =? c. c. n = 11... 4n (apples) \leftarrow B, 32 (apples) \leftarrow E, 44 (apples) \leftarrow E; B, E, E

#5. 3 boxes, each containing p wings. a. Express total of wings. B. If each box contains 7 wings.... 3p, 7p (wings); B, B

#6. A rectangular tile is k cm by 8 cm. Express area in terms of k. 8k (sq cm); B

#7. Ali has 8 boxes, each to have equal # of marbles. a. # = 96 How many in each box? b. # = x... 96/8 = 12, x/8; B [This is another where it may seem we start off E, but the purpose is B.]

9. Continued

#8. Meihua bought 3 books. a. Total cost \$12, find average cost. b. If total cost is \$m....

\$12/3 = \$4, m/3 (\$); B

[see comment above.]

#9 Find the value of each of the following when n = 6.

 $6+4 = 10, 10+6 = 16, 9, 0, 24, 60, 3, 1, \frac{1}{2}$; all parts are E

#10. Tyrone puts x marbles in each bag, 5 bags plus 3 marbles. a. total marbles? b. If x = 10...

5x+3←B 50+3 = 53←E

#11. Find the value of 2x - 3 when x = 5.

7; E

#12. Jeff had \$50, gave \$y to his son. 2 daughters split rest equally. a. Girls get? b. If y=12....

 $(50 - y)/2 \leftarrow B, 19 \leftarrow E; B,E$

[part a is Building, part b is Evaluating.]

#13. Find the value of (x-4)/2 when x = 12.

4; E

#14. a. Find the value of (4n+3)/5 when n=8 b. ...of (45-3r)/3 when r=5.

7, 10; E,E

10c. (Re PT 6A p14 #6-9)

#6. The admission fee to a bird park is \$y, to an amusement park is \$1 more.

a. Express the admission fee to the amusement park in terms of y.

(y + 1)

b. If admission fee to bird park is \$8, find admission fee to amusement park.

\$9

#7. Rope is x m long. Iron rod is 3 times as long.

a. Express length of iron rod in terms of x.

Зx

b. If the rope is 9 m long, how long is the iron rod?

27m

#8. Henry is x yr old. Betty is 3 times as old as Henry. Peter is 4 yr older than Betty.

a. Express Peter's age in terms of x.

4 + 3x yr

b. If Henry is 4 yr old, how old is Peter?

16 yr

#9 Huili bought cartons of milk at \$2 each. She gave the cashier \$50 and received \$y change.

a. Express the number of cartons of milk Huili bought in terms of y.

(50 - y)/2

b. If y = 38, how many cartons of milk did Huili buy?

6

11. Write a short word problem which builds the given expression in the given context.

Make clear what each letter represents.

11a. The expression 12c in the context of baking cookies:

Margo has 12 cookie sheets. She can put c cookies on each baking sheet.

How many cookies will her cookie sheets hold?

11b. The expression 13r+3s in the context of shopping:

Incredible Bargains has ruanas on sale for \$13 each, and scarves for \$3 each.

At these prices, what will be the total cost for r ruanas and s scarves?

11c. 2w + 13, allowance: John had \$13 when he began saving two dollars each week from allowance. How

much will he have after saving \$2 per week for w weeks?

11d. (240-x)/50 time It is 240 miles to San Francisco. We have driven x mi, at a steady 50 mph.

If we continue at this rate, how long will it take to get to San Francisco? to complete trip:

- 3. Illustrate the addition of $x^2 + 3x + 4$ and $2x^2 + x + 7$...
- 3a. Using apicture involving rectangular arrays of areas x^2 , x and 1:

3b. $x^2 + 3x + 4 + 2x^2 + x + 7$ $= x^2 + 2x^2 + 3x + x + 4 + 7$ $= (1+2)x^2 + (3+1)x + (4+7)$ $= 3x^2 + 4x + 11$

By repeated use of commutative and associative properties, \hookrightarrow we know these terms can be rearranged in any order. ...by the distributive property applied to $x^2 + 2x^2$ and to 3x + x

4. $(a + b)^2 = a^2 + 2ab + b^2$ specifically where b = 1 says: $(a + 1)^2 = a^2 + 2a + 1$ 50 21 ² = 20 ² +2·20 + 1 = 400 + 40 + 1 = 441 similarly $31^2 = 30^2 + 2.30 + 1 = 900 + 60 + 1 = 961$ and 41 2 = (do it mentally) = 1600 + 80 + 1 = and $51^2 = (do it mentally) = __00 + __0 + 1 = 2601$

 $(a - b)^2 = a^2 - 2ab + b^2$ specifically where b = 1 says: $(a - 1)^2 = a^2 - 2a + 1$ so 19² = 20² +2·20 + 1 = 400 - 40 + 1 = 361 similarly $29^2 = 30^2 + 2.30 + 1 = 900 - 60 + 1 = 841$ and $39^2 = (do it mentally) = 1600 - 80 + 1 =$ and $49^2 = (do it mentally) = 00 - 0 + 1 = 2401$

- 5. $15^2 = (10 + 5)^2 = 100 + 2.50 + 25 = 225$ $150^2 = (15\cdot10)^2 = 15^2 \cdot 10^2 = 225\cdot100 = 22500$ $151^2 = (150 + 1)^2 = 150^2 + 2.150 + 1 = 22500 + 300 + 1 = 22801$
- 6a. $14\cdot16 = (15-1)(15+1) = 15^2-1 = 225-1 = 224$

6b. $13 \cdot 17 = (15 - 2)(15 + 2) = 15^2 - 4 = 225 - 4 = 221$

The product of any two numbers that differ by 2 is $(n-1)(n+1) = n^2 - 1$ (and n is the average of the two)

8. $(a+b)^3 = (a+b)(a+b)^2 = (a+b)(a^2+2ab+b^2)$ Viewing (a+b) as a number, get $= (a+b) a^2 + (a+b) 2ab + (a+b) b^2$ $= a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3$ also by dist. prop. $= a^3 +$ $3a^2b$ $3ab^{2} + b^{3}$ combining like terms,

by the distributive property. ...which also uses the D.P.

9. а

The area of the entire large square at left is $(a + b)^2$. The area of the smaller square in the middle is $(a - b)^2$. The DIFFERENCE between these areas is made up of the four a-by-b rectangles. So: $(a + b)^2 - (a - b)^2 = 4ab$ This can be verified using the distributive a - b property of \times over + on the integers.

Decreasing amounts of work details are shown on higher-numbered problems. If unclear, review lower-numbered problems.

1. a.
$$32 \cdot 32 = 2^5 \cdot 2^5 = 2^{5+5} = 2^{10} = 1024$$

b.
$$1024 \div 256 = 2^{10} \div 2^8 = 2^{10-8} = 2^2 = 4$$

c.
$$4096 \div 32 = 4 \cdot 1024 \div 32 = 2^2 2^{10} \div 2^5 = 2^{12} \div 2^5 = 2^{12-5} = 2^7 = 2^{8-1} = 2^8 \div 2 = 256 \div 2 = 128$$

2. a.
$$2^8 \cdot 2^7 \div 2^{11} = 2^{15} \div 2^{11} = 2^4 = 16$$

b.
$$(2^3)^5 \div 2^9 = 2^{15} \div 2^9 = 2_6 = 64$$

c.
$$256 \cdot 128 \div 2048 = 2^8 \cdot 2^7 \div 2^{11}$$

3. (Re PT 6A p 11 15, 16, 17ghi):

4. a.
$$(5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = (5.5)(5.5)(5.5) = 5^{2 \cdot 3} = 5^6$$

b.
$$(5^2)^m = 5^2 \cdot 5^2 \cdot 5^2 \cdot \cdots \cdot 5^2 = (5 \cdot 5) (5 \cdot 5) (5 \cdot 5) \cdot \cdots \cdot (5 \cdot 5) = 5^{2m}$$

c.
$$(a^2)^3 = a^2 \cdot a^2 \cdot a^2 = (a \cdot a)(a \cdot a)(a \cdot a) = a^2 \cdot a^3 = a^6$$

5. a.
$$3^4 5^4 = (3 \cdot 3 \cdot 3 \cdot 3) \cdot (5 \cdot 5 \cdot 5 \cdot 5) = (3 \cdot 5) (3 \cdot 5) (3 \cdot 5) (3 \cdot 5) = (3 \cdot 5)^4 = 15^4$$

b.
$$3^4 b^4 = (3 \cdot 3 \cdot 3 \cdot 3) \cdot (b \cdot b \cdot b \cdot b) = (3 \cdot b) (3 \cdot b) (3 \cdot b) (3 \cdot b) = (3b)^4$$

6. a.
$$\frac{2^5 6^2 (18)^2}{3^4 \cdot 4^2} = \frac{2^5 (2 \cdot 3)^2 (2 \cdot 3^2)^2}{3^4 (2^2)^2} = \frac{2^5 2^2 3^2 2^2 3^4}{3^4 2^4} = \frac{2^9}{2^4} \frac{3^6}{3^4} = 2^5 3^2$$

b.
$$\frac{2^5 (2b)^2 (2b^2)^2}{b^4 \cdot (4)^2} = \frac{2^5 2^2 b^2 2^2 b^4}{b^4 (2^2)^2} = \frac{2^5 2^2 b^2 2^2 b^4}{b^4 2^4} = \frac{2^9 b^6}{2^4 b^4} = 2^5 b^2$$

c.
$$\frac{a^5 (ab)^2 (ab^2)^2}{b^4 (a^2)^2} = \frac{a^5 a^2 b^2 a^2 b^4}{b^4 a^4} = \frac{a^9}{a^4} \frac{b^6}{b^4} = a^5 b^2$$

d. Letting 3=b and 2=a makes all the above identical. Interesting to note part c is shortest.

7. a.
$$\frac{5^3 \cdot 24^2 \cdot 10^0}{8 \cdot 15^2 \cdot 3} = \frac{5^3 (2^3 \cdot 3)^2 \cdot 1}{2^3 (3 \cdot 5)^2 \cdot 3} = \frac{5^3 2^6 3^2}{2^3 3^3 5^2} = \frac{2^6 3^2}{2^3 3^3 5^2} = \frac{2^3 5}{3}$$

b.
$$\frac{a^3 \cdot (bc^3)^2 \cdot (ac)^0}{c^3 \cdot (ab)^2 \cdot b} = \frac{a^3 (c^3 \cdot b)^2 \cdot 1}{c^3 (b \cdot a)^2 \cdot b} = \frac{a^3 c^6 b^2}{c^3 b^3 a^2} = \frac{c^6 b^2}{c^3 b^3 a^2} = \frac{c^3 a}{b}$$

c. Replace a with 5, b with 3, and c with 2.

Distributive

property!

Steps are combined for brevity. If unclear, review lower-numbered problems.

8. a.
$$\frac{6^{21} \cdot 10^{18} \cdot 15^{22}}{30^{11} \cdot 16^{7}} = \frac{(2 \cdot 3)^{21} \cdot (2 \cdot 5)^{18} \cdot (3 \cdot 5)^{22}}{(2 \cdot 3 \cdot 5)^{11} \cdot (2^{4})^{7}} = \frac{2^{21+18}}{2^{11+28}} \frac{3^{21+22}}{3^{11}} = \frac{5^{18+22}}{5^{11}} = \frac{2^{39}}{2^{39}} \frac{3^{43}}{3^{11}} = 3^{32} 5^{29}$$

7 is replaced by n:

b.
$$\frac{6^{3n} \cdot 10^{n+11} \cdot 15^{22}}{30^{11} \cdot 16^{n}} = \frac{(2 \cdot 3)^{3n} \cdot (2 \cdot 5)^{n+11} \cdot (3 \cdot 5)^{22}}{(2 \cdot 3 \cdot 5)^{11} \cdot (2^{4})^{n}} = \frac{2^{4n+11}}{2^{11+4n}} \cdot \frac{3^{3n+22}}{3^{11}} \cdot \frac{5^{n+33}}{5^{11}} = 2^{0} \cdot 3^{3n+11} \cdot 5^{n+22} = 3^{3n+11} \cdot 5^{n+22}$$

11 is replaced by m:

$$\frac{6^{3n} \cdot 10^{n+m} \cdot 15^{2m}}{30^m \cdot 16^n} = \frac{(2 \cdot 3)^{3n} \cdot (2 \cdot 5)^{n+m} \cdot (3 \cdot 5)^{2m}}{(2 \cdot 3 \cdot 5)^m \cdot (2^4)^n} = \frac{2^{4n+m}}{2^{m+4n}} \cdot \frac{3^{3n+2m}}{3^m} \cdot \frac{5^{n+3m}}{5^m} = 2^{0} \cdot 3^{3n+m} \cdot 5^{n+2m} = 3^{3n+m} \cdot 5^{n+2m}$$

10. Write each number in scientific notation:

a.
$$1030 = 1.03 \times 10^3$$

 $15600 = 1.56 \times 10^4$
 $345,000,000 = 3.45 \times 10^8$

b.
$$3.4 \times 10^7 + 5.2 \times 10^7 = (3.4 + 5.2) \times 10^7 = 8.6 \times 10^7$$

 $6 \times 10^8 + 9.3 \times 10^8 = (6 + 9.3) \times 10^8 = 15.3 \times 10^8 = 1.53 \times 10^9$

c.
$$(2 \times 10^4) \times (3.2 \times 10^5) = 2 \times 3.2 \times 10^4 \times 10^5 = 6.4 \times 10^9$$

 $(8 \times 10^4) \times (96 \times 10^{23}) = 8 \times 96 \times 10^4 \times 10^{23} = 768 \times 10^{27} = 7.68 \times 10^{29}$

d.
$$\frac{6 \times 10^9}{3 \times 10^4}$$
 = $\frac{6}{3} \times \frac{10^9}{10^4}$ = 2×10^5
 $\frac{5.4 \times 10^8}{9 \times 10^5}$ = $\frac{5.4}{9} \times \frac{10^8}{10^5}$ = $.6 \times 10^3$ = 6×10^2

e.
$$(2 \times 10^7)^3 = 2^3 \cdot (10^7)^3 = 8 \times 10^{21}$$

 $(5 \times 10^4)^3 = 5^3 \cdot (10^4)^3 = 125 \times 10^{12} = 1.25 \times 10^{14}$

Then there's the one they didn't warn you about: $5.67 \times 10^{14} + 3.33 \times 10^{15}$

How do you add these?

Try it and see if you get the answer below.