1a. 315
$+672$
09080
987
2. Easiest to hardest:
$+69$

1b. 483 $+832$

1315

$$
30 \quad 39
$$

$$
39
$$

$$
+70
$$

$$
+71
$$

4a. (Re 3A pp25-27 \#2-9)... which place values are rebundled?
\#2: $2048+2$ requires rebundling ONES.
\#3: $5840+60$ requires rebundling TENS.
\#4: $3700+300$ requires rebundling HUNDREDS.
\#5a: 1028+234 ONES
\#5c. 4190+649 TENS
\#5e. 6204+993 HUNDREDS
4d. (Re 3A p 27 \#9b):
Chip Model:
3587+3813

Box with Arrows:

5. Sam:

$$
\begin{array}{r}
25 \\
+89 \\
\hline 104
\end{array}
$$

Julie:
 25 $\begin{array}{r}+89 \\ \hline 141\end{array}$ Frank:

$$
\begin{array}{r}
25 \\
+\quad 89 \\
\hline 1014
\end{array}
$$

Sam lost the 1 ten he should have "carried" from the ones' column.
Julie "carried" a 4, and left 1 in the ones' column, when it should have been the reverse:
$5+9=14$, which is $10+4$. So 4 (4 ones) should have been left, and 1 (1 ten) carried.
Frank ignores place value when writing his totals. The sum of 5 and 9 ones, which is 14 , should have been bundled to make 1 ten, leaving 4 behind. He then compounds the error by adding the tens, then writing 10 in the hundreds place, thereby saying it is 10 hundreds, or a thousand.

1．The number 832 in expanded form is $800 \& 30 \& 2$ ．To find $832-578$ ，it is convenient to think of 832 as 7 hundreds， 12 tens and 12 ones．

2．To find $1221-888$ ，regroup 1221 as 11 hundreds， 11 tens， 11 ones． $1221=1100+110+11$
3． 1000 is＂ 9 hundred ninety ten＂．So $1000-888$ is $900-800+90-80+10-8$ $100+10+2$
4．Order these easiest to hardest：

$$
\begin{array}{rrrr}
8256 & 8256 & 8003 \\
-7145 & \underline{-6589} & \underline{-6007}
\end{array} \quad \begin{aligned}
& \text { (No unbundling; Unbundling; Unbundling across 0) }
\end{aligned}
$$

5a．（ $\operatorname{Re} 3 A p 30 \# 5 b)$ ：
Chip Model for 5645－1317：

$$
\begin{array}{r}
5315 \\
5445 \\
-1317 \\
\hline 4328
\end{array}
$$

5b．（ $\operatorname{Re} 3 A p 30$ \＃7b）
Chip Model for 8450－4262：

14
410
8450
-4262
4188

	THousands	HUNDREDS	TENS	ONES
$8450 \rightarrow$	$\begin{aligned} & \text { OOOO } \\ & 0000 \end{aligned}$	oos	OO	
－ 4262			めめめめ১	O00d¢
	4	1	8	8

5c．（ $\operatorname{Re} 3 A p 32$ \＃12d）
Chip Model for 5000－2074：

$$
\begin{array}{r}
49910 \\
51 Q 1 Q Q \\
-2074 \\
\hline 2926
\end{array}
$$

Box with Arrows：

6．（Re 3A p29 \＃1－14）which place values are rebundled？For the illustrated problems only： \＃2 shows a ten unbundled．\＃3 a hundred is unbundled \＃4 thousand unbundled \＃6 a ten，then a hundred \＃8 ten，hundred，thousand \＃10 regroups across zeroes： 1000 becomes 9 hundreds， 9 tens，and 10 ones．
$\# 13$ regroups across zero： 100 is exchanged for 9 tens \＆ 10 ones．A thousand is unbundled．
8．Sam subtracts the smaller digit from the larger digit in each column．
Julie exchanged a ten for ten ones，but left＂ 10 ＂in the tens column，instead of reducing to 9 ．
Frank：a hundred is ten TENS，not ten ONES

1c. Compute 236×382 via lattice:

The product is 90152

3. ($\operatorname{Re} 3 A p 53$ \#9g)

$$
\begin{array}{r}
22 \\
289 \\
\times \quad 3 \\
\hline 867
\end{array}
$$

6. (Re 4A Practice 2B 8 only)
\#8: 300 children are divided into two groups. 50 more in the $1^{\text {st }}$ than $2^{\text {nd }}$. How many in $2^{\text {nd }}$?
 The numbers to the left of the red line sum to $300-50$, which is $250.250 \div 2=125$
The second group contains 125 children.
Check: ${ }^{15 t}$ group contains $125+50=175 ; 125+175=300$
\#9 Difference between two numbers is 2184. Bigger number is 3 times the smaller. Find sum.

Two units $(i)=2184$
Four units $=2 \times 2184=4368$
The sum of the two numbers is 4368 .
8. Sam:

$$
\begin{array}{r}
32 \\
\times 7 \\
\hline 2114
\end{array}
$$

Sam is ignoring place value. He is multiplying 7×2 and 7×3 and writing those products without regard to place value. When he multiplied 7×2, and got 14, he should have "carried" the 1 (1 ten) to the tens column to add onto the product of 7×3. That 7×3 product is really 7×30 which is 210 , not $2100 \ldots 7 \times 3$ tens $=21$ tens, not 21 hundreds!

Julie apparently forgot to add the "carried" 2 to the product of 4×2.
Frank may have multiplied 4×3 incorrectly, then added two, or not. It is hard to tell just what he did.

1. (Re 3A p 57 examples) make a word problem using quotient and remainder.

Gery has 67 hard candies, which he is putting into party favor bags, 6 in each bag. How many party favor bags can be filled, and how many candies will be left over? $67 \div 6=11$ $67=6 \times 11+1 \quad$ Gery can fill 11 party favor bags with 6 candies each, and 1 candy will be left.
4. (Re 3 A p 62 example) draw chip model for $243 \div 3$

2 cannot be split into 3 equal parts, $\underline{24}$ so we exchange or unbundle 2 100s 3 for/to 20 tens.

Then split the resulting 24 tens

HUNDREDS	TENS	ONES
		$\bigcirc \bigcirc$

$$
\begin{equation*}
\text { Showing } 243=3 x \tag{array}
\end{equation*}
$$

Box with Arrows:

5. Cupcakes are put into boxes of 8 each for the bake sale. How many boxes can be filled if there are 45 cupcakes? How many cupcakes will be left over?

How many 85 are in 45 ?

$\begin{aligned} \frac{5}{45} & \leftarrow \text { number of segments } \\ \frac{40}{5} & \leftarrow 5 \text { segments of length } 8 \\ & \leftarrow \text { units remaining to complete } 45 .\end{aligned}$
6. Show $17456 \div 8$ in the manner of example 4.7 This is shown at right.

2187
$8 \longdiv { 1 7 4 5 6 }$
$16000 \leftarrow 2$ segments of 8000
$1456 \leftarrow$ left over, still to go
$\frac{800}{656} \leftarrow 1$ segment of 800
$640 \leftarrow 8$ segments of 80
$56 \leftarrow$ remaining
$56 \leftarrow 7$ segments of 8
$O \leftarrow$ happiness is O remainder.

Estimation, like mental math, is an art. Techniques vary, and what occurs to one person at one point in time might well differ from the approach seen by someone else, or by the same person at another time.
3. ($\operatorname{Re} W B 5 A[p 14-17] E x 5 \& E x 6):$

Exercise 5 (pp14-15)
\#1*** These are all essentially multiplication by powers of 10 .
Do them mentally \& use a calculator to check. [That's appropriate use of calculator.] EG $392 \times 800=(392 \times 8) \times 100=(784 \times 4) \times 100=(1568 \times 2) \times 100=313,600$
\#2a. $326 \times 47 \approx 300 \times 50=3 \times 5 \times 100 \times 10=150,000$
\#2b. $78 \times 586 \approx 80 \times 600=48,000$
[Since both factors were rounded up, this is high. Calc. says 45,708.]
\#2d. $4165 \times 53 \approx 4200 \times 50=210,000$
\#3. $28 \times 229 \approx 30 \times 230=6900$...both were rounded up, so this is definitely high. $28 \times 229 \approx 30 \times 200=6000$...rounded 229 down substantially, so this is low. Cost of radio sets is between $\$ 6000$ and $\$ 6900$.... Say $\$ 6450$.
\#4. $114 \times 92 \approx 110 \times 90=9900$ low. Area is close to, and above, 9900 square inches.

Exercise 6 (pp16-17)

\#1 Mental math - see comment*** at \#1 above.
\#2a. $282 \div 52 \approx 300 \div 50=30 \div 5=6$
\#2b. $324 \div 42 \approx 320 \div 40=32 \div 4=8$
\#2c. $4406 \div 49 \approx 4400 \div 50=440 \div 5=88$
\#2d. $1705 \div 31 \approx 1800 \div 30=60$
$1705 \div 31 \approx 1710 \div 30=171 \div 3=57$ (and this is still high)
\#3. $805 \div 28 \approx 800 \div 28=200 \div 7 \approx 30$ Each CD cost him approximately $\$ 30$.
\#4. $1044 \div 36 \approx 261 \div 9 \approx 270 \div 9=30$ The width of the hall is about 30 m .
5. $351+456$ if rounded to the nearest hundred, before addition, we get $400+500=900$.

But in fact $351+456$ is very close to $350+450=800$. The true total is 807 .
6a. To get a high estimate for $1556-371$, round 1556 up to 1600 , and 371 down to, say, 350, get 1250 .

6b. To underestimate $3462 \div 28$, round 28 up to 30 .

$$
3462 \div 28 \approx 3462 \div 30 \approx 346 \div 3 \approx 115
$$

6c. $5750 \div 800 \approx 5600 \div 800=7$ and that's an UNDERestimate, so we can SAFELY say the elevator should lift 7 of those 800 -pound gorillas.

2a. (Re PT5A p 29 \#5adgj):
\#5a. $1 7 \longdiv { \frac { 3 } { 6 3 } } \mathrm { R } ^ { 1 2 }$
Estimation: $63 \div 17 \approx 60 \div 20=3$

$$
\frac{51}{12}
$$

\#5d. $3 4 \longdiv { 7 6 }$ R8

$$
\frac{68}{8}
$$

Estimation: $\approx 70 \div 35=2$ (Or just think $2 \times 34=68$)
\#5g. $67 \frac{2}{149}$ R15 Estimation: $\approx 140 \div 70=2$ (Or just think $3 \times 67>180$) $\frac{134}{15}$
\#5j. $72 \begin{aligned} \frac{968}{668} \\ \frac{648}{20}\end{aligned}$ Estimation: $\approx 630 \div 70=9$ (Or just think $10 \times 72=720>668$)
2b. On pages 29-30, what component skill is emphasized?
Answer: a lot of estimation is being flaunted, such as in problem 1: $14 \phi \div 2 \phi$
2c. Why no chip models here?
The purpose of the chip model is to make sense of the algorithm, and is feasible with very small divisors. Further, at this point, the students have had man y opportunities to understand the division algorithm. The division process should be nearly automatic. Finally, the divisors are growing quite large, too unwieldy for the chip model.
2d. ($\operatorname{Re} 5 A$ p 31 \#16abd)

\#16a. $2 8 \longdiv { 6 6 9 2 } \Rightarrow$ RO Estimation: $66 \div 28 \approx 70 \div 30=2^{+} \quad($ Or $3 \times 28>3 \times 25=75>66)$ | $\frac{56}{109}$ |
| :--- |
| $\frac{84}{252}$ |
| $\underline{252}$ |

\#16b. $1 8 \longdiv { 2 4 0 9 } \stackrel { 1 3 3 } { \Rightarrow } \stackrel { \text { R } 1 5 } { }$ Estimation: $24 \div 18 \approx 1$
Est: $60 \div 20=3$
54
69
Est: Since $3 \times 18=54$, and $54+18>69$, this quotient is also 3 .
$\frac{54}{15} \quad$ or $70 \div 20=3+$, not 4 .
\#16d. $5 6 \longdiv { 1 0 7 } \begin{array} { l } { \text { R15 } } \\ { \Rightarrow 0 0 8 } \end{array}$ Estimation: $60 \div 54 \approx 1$
$\frac{56}{40}$
$\frac{0}{408}$
$\frac{392}{18}$
4. What do you tell Tracy when she writes the following?

$$
\begin{array}{r}
6 \longdiv { 4 2 5 } \\
\begin{array}{r}
42 \\
435 \\
30 \\
30
\end{array} \\
\begin{array}{r}
705 \\
6235 \\
\frac{42}{035} \\
\frac{30}{5}
\end{array}
\end{array}
$$

I would tell Tracy that the "7" must be in the hundreds place, because she was dividing 6 into the 42 hundreds; and an easy way to make sure it is right is to always place the quotient digit in the ending column of the division taking place.

I would then point out that when she "brought the 3 down", she should have completed the step, that is to divide 6 into "O3". The result is O and that goes above the 3 .

Every time we bring a digit down, we should complete the process, which is to find the correct digit in the quotient. This makes sure that all the quotient digits keep their correct place value.

