1. Sketch the graph of $f(x)=\sqrt{x}$. What is the domain of f ? $[0, \infty)$

Use transformations to sketch the graph of $g(x)=\sqrt{-x}-2$. What is the domain of g ?
2. a. Given $f(x)=\frac{1}{3 x-2}$ and $g(x)=\frac{1}{x}$

What are the domains of f and g ? Find $f \circ g(x)$ and the domain of $f \circ g$.
3. Find the formula for $f^{-1}(x)$ given $f(x)=\frac{x}{3 x-2}$. State the domain and range of f.

4a. Analyze the function given by $f(x)=\frac{x-6}{x+2}$ and sketch the graph, labelling everything.
4b. Analyze the function given by $f(x)=\frac{x^{2}+4}{x^{2}-4}$ and sketch the graph, labelling everything.
5. Solve $\frac{x}{x+4} \leq 2$. Express the solution set using interval notation.
6. For $f(x)=2 x^{2}-5 x+3$, find \& simplify completely the difference quotient $\frac{f(x+h)-f(x)}{h}$

7a. Find the center and radius of the circle with equation $x^{2}+y^{2}-4 x-6 y-3=0$
7b. Identify the curve and show any vertices, foci, asymptotes or axes: $x^{2}-4 y^{2}+8 y=8$.
8. a,b. Write an equation that would have the graph shown \Rightarrow
9. Sketch the graph of $P(x)=-x^{3}+4 x^{2}-4 x$. Label everything!
10. For $P(x)=2 x^{3}+8 x^{2}+3 x-10$,
a. List all the possible rational zeros of $P(x)$
b. Show that -2 is a zero of $P(x)$.
c. Find all the zeroes of P.

11. Find a fourth degree polynomial $P(x)$ with $1+2 i$ a zero, 1 a zero of multiplicity 2 , and a constant term of 10. Express your answer in the form $P(x)=a x^{3}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, e, are integers.
12. Simplify completely: $4 \log _{4}(2 x)-\log _{4} x^{5}+\log _{4}(4 x)$.
13. Sketch the graph of $f(x)=e^{x-2}$ and the graph of $g(x)=\ln x+2$.

Describe the relationship between these graphs, and the relationship between $\mathrm{f} \& \mathrm{~g}$.
14. Solve for $\mathrm{x}: \quad \log _{6}(\mathrm{x}-3)+\log _{6}(\mathrm{x}+2)=1$
15. Solve for x (exact answer.): $\quad e^{x-2}=3^{x}$
16. Find the maximum for $P(x, y)=2 x+3 y$, subject to conditions:
$x \geq 0 ; \quad y \geq 0 ; \quad y \geq x+1 ; \quad x+y \leq 12 ; y \leq x+6$. Complete justification required.
17. Find all points on the line $x-y=7$ that lie exactly 5 units from the origin.
(Hint: the points of the plane that lie 5 units from $(0,0)$ form a conic section known as....)
18. $\$ 2000$ is invested in an account that pays 3% (annual percentage rate) compounded continuously. How long will it take for the balance to reach $\$ 3000$?
19. A colony contained 2000 bacteria at $6 \mathrm{AM}, 3000$ at 8 AM . How many will there be at noon? When will there be 10,000 bacteria?
20. Find the quadratic function passing through the points $(-1,8) \&(1,-4) \&(2,-1)$.

Hint: $f(x)=a x^{2}+b x+c$.
21. Find the dimensions of a rectangle whose perimeter is 105 meters and area is 441 square meters.

Additional word problems are recommended:, for instance:
Text §4.1 page 308 \#69
Text §6.3 page 512 \#73
Text §7.1 page 545 \# 59, 61
Text §7.2 page 562 \#77 (at least set it up)
Text Chapter 7 Review page 628 \#100, 102

Practice Math 102 Final Exam

PRACTICE MECHANICS- THESE ARE NOT TYPICAL FINAL QUESTIONS

These problems are included as a reference for those who need a brush-up on such details.
A. Simplify completely. Express your answer without negative exponents.
$\left(2 x^{4} y^{-45}\right)^{5}\left(16 y^{4}\right)^{-1 / 4}$
First we give ourselves a little space to think in, then distribute the exponents, 5 and $-1 / 4$:

$$
\begin{aligned}
& \left(2 x^{4} y^{-4 / 5}\right)^{5}\left(16 y^{-4}\right)^{-1 / 4} \\
& =2^{5} x^{20} y^{-4}\left(16 y^{-4}\right)^{-1 / 4} \text { e............. }\left(y^{-4 / 5}\right)^{5}=y^{(-4 / 5) 5}=y^{-4} \\
& =2^{5} x^{20} y^{-4} \quad 16^{-1 / 4} y^{-4(-1 / 4)} \\
& =2^{5} x^{20} y^{-4} \quad 16^{-1 / 4} y \text { Regroup to facilitate com bining like factors... } \\
& =2^{5} 16^{-1 / 4} x^{20} y^{-4} y \\
& =2^{5}\left(2^{4}\right)^{-1 / 4} x^{20} y^{-4} y \\
& =\quad 2^{5} 2^{-1} x^{20} y^{-4} y \\
& =2^{4} x^{20} y^{-3} \\
& =\frac{2^{4} x^{20}}{y^{3}} \quad \text { This simplification requires only one or two steps, } \\
& y^{3}
\end{aligned}
$$

B. Factor completely. $x^{3 / 2}+6 x^{1 / 2}+9 x^{-1 / 2}$

$$
\begin{aligned}
& \frac{x^{1 / 2}\left(x^{3 / 2}+6 x^{1 / 2}+9 x^{-1 / 2}\right)}{x^{1 / 2}} \\
& \frac{\left(x^{3 / 2+1 / 2}+6 x^{1 / 2+1 / 2}+9 x^{-1 / 2+1 / 2}\right)}{x^{1 / 2}} \\
& \frac{\left(x^{2}+6 x^{1}+9\right)}{x^{1 / 2}} \\
& \frac{(x+3)^{2}}{x^{1 / 2}}
\end{aligned}
$$

Observation: Multiplication by $\mathrm{x}^{1 / 2}$ would make that a lot nicer!
C. Multiply as indicated. Express the result in the form "a + bi".

$$
\frac{6 i+9}{1-3 i}=\frac{(6 i+9)(1+3 i)}{(1-3 i)(1+3 i)}=\frac{9 \cdot 1-6 \cdot 3+9 \cdot 3 i+6 i}{1+9}=-0.9+3.3 i
$$

D. Multiply: $(x-(2+3 i))(x-(2-3 i))=x x-(2-3 i) \mathrm{x}-(2+3 i) \mathrm{x}+(2+3 i)(2-3 i)$

$$
\begin{aligned}
& =x^{2}-2 x+3 i x-2 x-3 i x+4-9 i^{2} \\
& =x^{2}-2 x-2 x+4-9(-1)^{2}=x^{2}-4 x+13
\end{aligned}
$$

E. Divide $x^{7}-128$
by $\mathrm{x}-2$
and express
$x^{7}-128$ as a product....

2	1	0	0	0	0	0	0	-128
	2	4	8	16	32	64	128	
	2	4	8	16	32	64	0	

$x^{7}-128=(x-2)\left(x^{6}+2 x^{5}+4 x^{4}+8 x^{3}+16 x^{2}+32 x\right)$

PRACTICE MECHANICS- THESE ARE NOT TYPICAL FINAL QUESTIONS

These problems are included as a reference for those who need a brush-up on such details.
F. Let $A=(2,-5)$ and $B=(-1,3)$ be points in the $x y$-plane.
a. Find the length of segment $A B$. (simplify the answer)

Length of $\mathrm{AB}=\sqrt{(\overline{\Delta x})^{2}+(\bar{y})^{2}}=\left(3^{2}+8^{2}\right)^{1 / 2}=73^{1 / 2}$
b. Find the midpoint of segment $A B$.

$$
\begin{aligned}
\text { Midpoint of } \mathrm{AB} & =\text { (halfway between } 2 \&-1 \text {, halfway between }-5 \& 3) \\
& =((2+-1) / 2,(-5+3) / 2) \\
& =(1 / 2,-1)
\end{aligned}
$$

G. Solve. Express your answer using interval notation.

$$
\begin{array}{rc}
2|(1 / 2) x+3|+3 \leq 15 & \begin{array}{l}
\text { I like to see the } x \text { with coefficient 1, so } \\
\text { go ahead and multiply } 2|(1 / 2) x+3|
\end{array} \\
|x+6|+3 \leq 15 & \text { Here I LOOK at it and solve intuitively: } \\
|x+6| \leq 12 & \text {.. } \begin{aligned}
\text { says "distance between } x \&-6 " \leq 12 \\
{[-6-12,-6+12] } \\
{[-18,6] }
\end{aligned}
\end{array}
$$

But this works, too:
$|x+6| \leq 12$ if and only if
$-12 \leq x+6 \leq 12$
$-18 \leq x \leq 6$ so x is in $[-18,6]$
H. Simple word problem: The manager of a cheap plastic furniture factory finds that it costs $\$ 2400$ to produce 200 chairs in a day, and $\$ 6200$ to produce 400 chairs in a day. Assuming that the relationship between cost (y) and the number of chairs produced (x) is linear, find an equation that relates x and y.

Reduced to its essence, this problem asks us to find the equation of a line through $(x, y)=(200,2400)$ and $(400,6200)$.

SLOPE $=\Delta y / \Delta x=3800 / 200=19 \quad$ Here l use the point-slope form:
the equation is $y-y_{0}=19\left(x-x_{0}\right) \quad$ where $\left(x_{0}, y_{0}\right)$ is any point on the line

$$
\begin{aligned}
& y-2400=19(x-200) \leftarrow \text { THIS IS SUFFICIENT } \\
& y=19 x-1400 \quad \leftarrow \text { But you may also write this. }
\end{aligned}
$$

Here I use the slope-intercept form: to find b , I take advantage of the fact that when $x=200, y=2400$:

$$
y=19 x+b
$$

$$
\begin{aligned}
2400 & =19(200)+b \\
\text { So } \quad b & =2400-19(200)=-1400
\end{aligned}
$$

1. Sketch the graph of $f(x)=\sqrt{x}$. What is the domain of f ? $[0, \infty)$

Use transformations to sketch the graph of $g(x)=\sqrt{-x}-2$. What is the domain of g ? We used the intermediate function $y=\sqrt{-x}$

2. Given $f(x)=\frac{1}{3 x-2} \quad \& \quad g(x)=\frac{1}{x}$
a. What are the domains of f and g ?
b. Find $f \circ g(x)$ and its domain.
a. Domain f is $(-\infty, 2 / 3) \cup(2 / 3, \infty)$...because $3 x-2$ must not be 0 , thus x may not be $2 / 3$. Domain g is all reals except 0 ...aka $(-\infty, 0) \cup(0, \infty)$
b. $\quad f \circ g(x)=f(g(x))=\frac{1}{3 g(x)-2}=\frac{1}{3 \frac{1}{x}-2} \leftarrow$ Here we see that $3 \frac{1}{x}-2$ must not be 0 .

So the domain of $f \circ g$ is all reals except for 0 and $3 / 2$.
3. Find the formula for $f^{-1}(x)$ given $f(x)$ below:
$f(x)=\frac{x}{3 x-2} \quad$ or $\quad y=\frac{x}{3 x-2} \quad$ We could solve this for x in tems of y, but instead
$x=-\frac{y}{3 y-2}$
$3 x y-2 x=y$ we switch $x \& y$, then solve for y in terms of x.
$3 x y=y+2 x$
Keep in mind you are solving for y !
$3 x y-y=2 x$
$y!$
$y!$
$y!$
$y(3 x-1)=2 x$

$$
y=\frac{2 x}{3 x-1} \quad \text {...so: } \quad f^{-1}(x)=\frac{2 x}{3 x-1}
$$

4a. Analyze the function given by $f(x)=\frac{x-6}{x+2}$ and sketch the graph, labelling everything.
A typical linear rational function.
Vertical asymptote where denominator $=0 \ldots$ at $x=-2$. Horizontal asymptote at $\mathrm{y}=1$ because as $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow 1$.
x-intercept when $x-6=0 \ldots$ at $(x=6, y=0)$ y-intercept $f(0)=(0-6) /(0+2)=-3$...i.e. at $(x=0, y=-3)$

4b. Analyze the function given by $f(x)=\frac{x^{2}+4}{x^{2}-4}$ and sketch the graph, labelling everything. Notice this function is EVEN: $f(-a)=f(a)$ for every a. (Graph should be symmetric about the y-axis.) Horizontal asymptote at $\mathrm{y}=1$ because $f(x)=\frac{x^{2}+4}{x^{2}-4}=\frac{1+4 / x^{2}}{1-4 / x^{2}} \rightarrow \frac{1+0}{1-0} \quad$ as $x \rightarrow \infty$

Vertical asymptotes where $x^{2}-4=0 \ldots x= \pm 2$
y-intercept: $f(0)=-1$
x-intercept: $x^{2}+4$ is never 0 . (None)

5. Solve. Express your answer in interval notation.
$\frac{x}{x+4} \leq 2 \quad$ Resist the temptation to multiply both sides.
$\frac{x}{x+4}-2 \leq 0$
$\frac{x}{x+4}-\frac{2(x+4)}{(x+4)} \leq 0$
$\frac{x-2(x+4)}{x+4} \leq 0$
$\frac{-x-8}{x+4} \leq 0$
State your conclusion

Statement is true for x in $(-\infty,-8] \cup(-4, \infty)$
6. For $f(x)=2 x^{2}-5 x+3$, find \& simplify completely:

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{2(x+h)^{2}-5(x+h)+3-\left(2 x^{2}-5 x+3\right)}{h} \\
& =\frac{2\left(x^{2}+2 x h+h^{2}\right)-5(x+h)+3-\left(2 x^{2}-5 x+3\right)}{h} \text { Distribute that -!! }
\end{aligned}
$$

$$
=\frac{2 x^{2}+4 x h+2 h^{2}-5 x-5 h+3-2 x^{2}+5 x-3}{h} \quad \text { Notice many terms "cancel"! }
$$

$$
=\quad \frac{4 x h+2 h^{2}-5 h}{h}
$$

... And there you have it,

$$
=\quad 4 x+2 h-5
$$

7a. Find the center and radius of the circle with equation ...

So we see this is the equation of a circle with center at $(2,3)$ and radius 4.
8. a. Write an equation that would have the graph shown \Rightarrow

Make note of the major and minor axes of the ellipse!
These tell us a lot... enough to write the equation...
We see the center is at $(-1,3)$ \&
the distance to the major vertices, at $(-5,3 \&(3,3)$, is a $=4$.
The minor axis (from (($-1,0$) to $(-1,6)$) is 6 units long, so $\mathrm{b}=3$.
This provides sufficient information to write the equation:

$$
\frac{(x+1)^{2}}{4^{2}}+\frac{(y-3)^{2}}{3^{2}}=1
$$

b. Assuming this is the graph of a parabola (in x), the equation and seeing the vertex at $(2,0)$, the equation could be:

$$
\begin{aligned}
(y-0) & =A(x-2)^{2} \\
y & =A(x-2)^{2}
\end{aligned}
$$

But what is A ? Well, we have not used all the information available in the illustration... for instance, the y-interceptsubstituting $x=0, y=-2$:

$$
\begin{array}{rlr}
-2 & =\mathrm{A}(0-2)^{2} & \\
\mathrm{~A} & =-1 / 2 & \text { Thus: }
\end{array}
$$

$$
y=-(1 / 2)(x-2)^{2}
$$

9. Sketch the graph of $P(x)=-x^{3}+4 x^{2}-4 x$. Label everything!

As $x \rightarrow \infty, P(x) \rightarrow-\infty$
since as x grows larger, the leading term dominates; that is, as $x \rightarrow \infty$, $-x^{3} \rightarrow-\infty$ faster than $4 x^{2}-4 x \rightarrow+\infty$, so their sum $\rightarrow-\infty$.
Similarly, as $x \rightarrow-\infty, P(x) \rightarrow+\infty$.
$P(0)=0$, so that's the $y=$ intercept, at $(0,0)$
x-intercepts:

$$
\begin{aligned}
& -x^{3}+4 x^{2}-4 x=0 \\
& -x\left(x^{2}-4 x+4\right)=0 \\
& -x(x-2)(x-2)=0
\end{aligned}
$$

... we see x-intercepts at 0,2 , and 2 .
Repeated root at $2 \rightarrow$ brush with x-axis. (make allowances for the graphing...)

10. For $P(x)=2 x^{3}+8 x^{2}+3 x-10$,
a. List all the possible rational zeros of $P(x)$

Because the coefficients of $P(x)$ are all integers, any rational zero of P must be of the form:
$\pm \frac{p}{q}$ where p divides (is a factor of) the constant term -10 , and q divides the leading coefficient 2.
That gives us: $\pm \frac{10 \text { or } 5 \text { or } 2 \text { or } 1}{2 \text { or } 1}= \pm 1,2,5,10, \frac{1}{2}, \frac{5}{2}$
b. Show that -2 is a zero of $P(x)$.

> | -2 | 2 | 8 | 3 | -10 |
| :---: | ---: | ---: | ---: | ---: | :--- |$\quad \begin{aligned} & \text { This synthetic division shows, with the zero } \\ & \\ & \\ & 2\end{aligned} r-4 \begin{array}{ll}\text { remainder, that }-2 \text { is a zero of } P(x) .\end{array}$

c. Find all the zeros of $P(x)$. Simplify your answers.

The remaining roots of P must be found in $\left(2 x^{2}+4 x-5\right)$
Using the quadratic formula to solve $2 x^{2}+4 x-5=0 \ldots$ we find:

$$
x=\frac{-4 \pm \sqrt{16+40}}{4} \quad=\quad-1 \pm \frac{\sqrt{14}}{2}
$$

The third root of this cubic polynomial is -2 , the root we found above.
11. Find a fourth degree polynomial $P(x)$ with $1+2 i$ a zero, 1 a zero of multiplicity 2 , and a constant term of 10. Express your answer in the form $P(x)=a x^{3}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, e, are integers.

If a,b,c,d and e are all integers. they must be real numbers.
Since P has only real coefficients, any complex roots must occur in conjugate pairs (that is, for every root a+bi there must also be a root a - bi).

Thus we know the four roots of P must be $1+2 \mathrm{i}, 1-2 \mathrm{i}, 1$ and 1.
And P must be the product of these factors:
$P(x)=A(x-(1+2 i))(x-(1-2 i))(x-1)(x-1) \quad$ where A is some non-zero constant.
$P(x)=A\left(x^{2}-2 x+5\right)\left(x^{2}-2 x+1\right)$ which has constant term 5A.
Since they want the constant term to be 10, A had better be 2. $\quad(5 A=10)$

$$
\begin{aligned}
& P(x)=2\left(x^{2}-2 x+5\right)\left(x^{2}-2 x+1\right) \\
& P(x)=2 x^{4}-4 x^{3}+20 x^{2}-24 x+10
\end{aligned}
$$

12. Simplify completely: $4 \log _{4}(2 x)-\log _{4} x^{5}+\log _{4}(4 x)$.

One way:

$$
4 \log _{4}(2 x)-\log _{4} x^{5}+\log _{4}(4 x)
$$

$$
\log _{4}(2 x)^{4}-\log _{4} x^{5}+\log _{4}(4 x)
$$

$$
\log _{4} \frac{(2 x)^{4}(4 x)}{x^{5}}
$$

$$
\begin{aligned}
& 4 \log _{4}(2 x)-\log _{4} x^{5}+\log _{4}(4 x) \\
& 4 \log _{4} 2+4 \log _{4} x-5 \log _{4} x+\log _{4} 4+\log _{4} x \\
& \log _{4} 16+\log _{4} 4+(4-5+1) \log _{4} x \\
& 2+1+0
\end{aligned}
$$

Alternate method:
Using the properties of logarithm functions, we can expand \& separate these terms so the $\log _{4} x$ terms are alone.
13. Sketch the graph of $f(x)=e^{x-2}$ and the graph of $g(x)=\ln x+2$.

Describe the relationship between these graphs, and the relationship between $f \& g$.
Working from the known graph of $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$,
$f(x)=e^{x-2}$ is the same graph,
shifted to the right two units
Again, working from a known graph, we sketch $y=\ln x$, then shift two units up to obtain the graph of $g(x)=\ln x+2$

The relationship between the graphs
$f(x)=e^{x-2}$ and $g(x)=\ln x+2$:
They are reflections of each other across the line $y=x$.
That is appropriate, since $\mathrm{f} \& \mathrm{~g}$ are inverses of each other.
14. Solve for $\mathrm{x}: \quad \log _{6}(x-3)+\log _{6}(x+2)=1$

$$
\begin{gathered}
\log _{6}(x-3)+\log _{6}(x+2)=1 \\
\log _{6}((x-3)(x+2))=1 \\
((x-3)(x+2))=6^{1} \\
x^{2}-x-6=6 \\
x^{2}-x-12=0 \\
(x-4)(x+3)=0 \\
x=4 \text { or }-3
\end{gathered}
$$

15. Solve for x (exact answer.):

$$
e^{x-2}=3^{x}
$$

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{x}-2}=3^{\mathrm{x}} \\
& \ln \left(\mathrm{e}^{\mathrm{x}-2}\right)=\ln \left(3^{\mathrm{x}}\right) \\
&(\mathrm{x}-2) \ln (\mathrm{e})= \mathrm{x} \ln (3) \\
& \mathrm{x}-2 \quad= \mathrm{ln} 3 \\
& \mathrm{x}-\mathrm{x} \ln 3= 2 \\
&(1-\ln 3) \mathrm{x}= 2
\end{aligned}
$$

$$
x=2 /\left(1-\ell_{n} 3\right) \quad \text { That's an exact answer. }
$$

16. Find the maximum for $P(x, y)=2 x+3 y$, subject to conditions:
$x \geq 0 ; y \geq 0 ; \quad y \geq x+1 ; \quad x+y \leq 12 ; y \leq x+6 . \quad$ Complete justification required.
We first graph the "region of feasibility"- that part of the plane where the conditions are met: Conditions $x \geq 0 \& y \geq 0$ restrict us to the first quadrant.
$y \geq x+1$ ON \& ABOVE the line $y=x+1$
$x+y \leq 12$ ON \& BELOW the line $y=12-x$
$y \leq x+6 \quad O N \& B E L O W$ the line $y=x+6$
The vertices (corners) of this region are:
$(0,1)(0,6)(3,9)$ and $(6,6)$
Then we are guaranteed that the linear function $P(x, y)=2 x+3 y$ has both a maximum value and a minimum value somewhere in this polygonal region, and that those extreme values must be seen at the vertices.
So evaluating P at all the vertices will provide sufficient information to locate them.
$P(0,1)=2 \cdot 0+3 \cdot 1=3$
$P(0,6)=18$
$\mathrm{P}(3,9)=33 \leftarrow$ Maximum value
$P(6,6)=30$
17. Find all points on the line $x-y=7$ that lie exactly 5 units from the origin.
(Hint: the points of the plane that lie 5 units from $(0,0)$ form a conic section known as....)
A point (x, y) lies 5 units from the origin if, and only if, $x^{2}+y^{2}=5^{2}$. If (x, y) lies on the line given, then (x, y) must satisfy $x-y=7$. We must solve this system.

We solve $x-y=7$ for either x or y, then substitute into the statement: $x^{2}+y^{2}=5^{2}$.

Let's choose y : $\quad y=x-7$

Substituting:

$$
\begin{aligned}
& x^{2}+(x-7)^{2}=5^{2} \\
& x^{2}+x^{2}-14 x+49=25 \\
& 2 x^{2}-14 x+24=0 \\
& x^{2}-7 x+12=0 \\
& (x-3)(x-4)=0 \\
& x=3 \text { or } 4
\end{aligned}
$$

There are two points on the line $x-y=7$ that lie 5 units from $(0,0)$:

$$
(3,-4) \text { and }(4,-3)
$$

18. $\$ 2000$ is invested in an account that pays 3% (annual percentage rate) compounded continuously. How long will it take for the balance to reach $\$ 3000$?

When amount P_{0} is invested at r \% interest compounded N times per year, the value of the account at time t years is

As $\mathrm{N} \rightarrow \infty$, this approaches

$$
P(t)=P_{0}(1+r / N)^{\mathrm{Nt}}
$$

... the value achieved with continuous compounding.
So, the value of this account after t years is $\$ 2000 e^{.03 t}$ and we want to solve for t so that this value will be $\$ 3000$.

$$
\begin{aligned}
\$ 2000 \mathrm{e}^{.03 \mathrm{t}} & =\$ 3000 \\
\mathrm{e}^{.03 \mathrm{t}} & =1.5 \\
.03 \mathrm{t} & =\ln 1.5 \\
\mathrm{t} & \left.=\frac{\ln 1.5 \text { years }(\doteq 13.52 \text { years })}{} \quad \begin{array}{rl}
.03
\end{array}\right)
\end{aligned}
$$

19. A colony contained 2000 bacteria at 6 AM, 3000 at 8 AM. How many will there be at noon? When will there be 10,000 bacteria?

Bacteria multiply just like continuous compounding, but usually a lot faster!
So we can expect the amount (A) of bacteria at time t to be $A(t)=A_{0} e^{r t}$.
Since $A(0)=A_{0} e^{r \cdot 0}=A_{0} \& A(0)=2000$ (considering 6AM to be time 0), we say $A_{0}=2000$. Next we find r :

At 8AM (t=2) there are 3000 bacteria, so: $\quad A(2)=2000 e_{r 2}^{r 2}=3000$. Solve for r :
$e^{r 2}=3000 / 2000=3 / 2$ or 1.5
Taking In of both sides, we get:

$$
2 r=\ln 1.5
$$

$$
r=(1 / 2) \ln 1.5
$$

So we now have a complete model for the bacteria population:

$$
\mathrm{A}(\mathrm{t})=2000 \mathrm{e}^{(1 / 2) \mathrm{t}} 1.5
$$

At noon $(t=6)$ there will be: $\quad A(6)=2000 e^{(1 / 2) 6 \ln 1.5}=2000(1.5)^{3}=6750$
There will be 10000 bacteria when $A(t)=10000$.... When $2000 e^{(1 / 2) t \ln 1.5}=10000$ We solve:
$e^{(1 / 2) t \ln 1.5}=5$
$(1 / 2) t \ln 1.5=\ln 5$
$t=\frac{2 \ln 5}{\ln 1.5}$ (Hours after 6 am)
20. Find the quadratic function passing through the points $(-1,8) \&(1,-4) \&(2,-1)$.

Hint: $f(x)=a x^{2}+b x+c$.
$\begin{array}{ll}f(-1)=a(-1)^{2}+b(-1)+c \text { must }=8: & a-b+c=8 \\ f(1)=a(1)^{2}+b(1)+c \quad \text { must }=-4: & a+b+c=-4 \\ f(2)=a(2)^{2}+b(2)+c \quad \text { must }=-1: & 4 a+2 b+c=-1\end{array}$
This system is easily solved for $a \& b \& c$ (they are $3 \&-6 \&-1$), so $f(x)=3 x^{2}-6 x-1$.
21. Find the dimensions of a rectangle whose perimeter is 105 meters and area is 441 square meters.

A rectangle's perimeter and area are understood in terms of its length and width, so we will call those dimensions x and y.

Perimeter $=105$ meters $\Rightarrow 2 x+2 y=105 m$
Area $=441 \mathrm{~m}^{2} \quad \Rightarrow \quad \mathrm{xy}=441 \mathrm{~m}^{2} \quad$ Note this is a nonlinear system
Solving the first equation for y in terms of $\mathrm{x}: \mathrm{y}=52.5-\mathrm{x}$
Substituting in the second equation for y : $\quad x(52.5-x)=441$
which yields the quadratic equation: $\quad x^{2}-52.5 x+441=0$
using either the quadratic formula on this or factoring the equivalent: $2 x^{2}-105 x+882=0$

$$
(2 x-21)(x-42)=0
$$

we solve for x, obtaining $x=10.5$ and $x=42$ as candidates...
If $x=10.5$, then $y=42$. If $x=42$, then $y=10.5$.
The dimensions of the rectangle are 10.5 m by 42 m .

Additional word problems:
Text §4.1 page 308 \#69 Answer in text
Text §6.3 page 512 \#73 Answer in text
Text §7.1 page 545 \# 59, 61 Answer in text
Text §7.2 page 562 \#77 (set-up at right) Answer in text

Text Chapter 7 Review page 628 \#100, 102 \#100 answer: 466.25 acres in corn, 533.75 acres in soybeans. \#102 answer: $\mathrm{x} \geq 0$; $\mathrm{y} \geq 0 ; 4 \mathrm{x}+3 \mathrm{y} \leq 960 ; 2 \mathrm{x}+3 \mathrm{y} \leq 576$.

Setup for \#77: (Using S B A)
protein: $30 S+15 B+3 A=78$
Carbs: $\quad 20 S+2 B+25 A=59$
Vitamin: $\quad 2 S+20 B+32 A=75$

