- 1. $P(x) = 2x^5 + 3x^4 + 10x^3 + 14x^2 5$
 - a. The degree of polynomial P is $\underline{5}$ and P must have $\underline{5}$ zeros (roots).
 - b. The y-intercept of the graph of P is (0, -5). The number of vertical asymptotes of P is 0×1 .
 - c. According to Descartes' Rule of Signs, P can have 1 positive real zeros.

There is only one sign change in P(x).

According to Descartes' Rule of Signs, there must be exactly 1 positive real root.

d. Similarly, P can have <u>0 or 2 or 4</u> negative real zeros.

P might have 4 or 2 or 0 negative real roots because :

$$P(-x) = 2(-x)^5 + 3(-x)^4 + 10(-x)^3 + 14(-x)^2 - 5$$

= $-2x^5 + 3x^4 - 10x^3 + 14x^2 - 5$

... four sign changes \rightarrow 4 or 2 or 0 positive roots for P(-x) \rightarrow 4 or 2 or 0 negative roots for P(x).

2. List all theoretically possible rational roots of the polynomial: $P(x) = 2x^5 + 3x^4 + 10x^3 + 14x^2 - 5$

Since this polynomial has all coefficients in the set of integers, any rational roots must be of the form p/q where p is a factor of the constant term (so $p = \pm 5$ or 1) and q is a factor of the leading coefficient (so $q = \pm 2$ or 1).

Thus candidates for rational roots of this polynomial are:

$$\pm$$
 $\frac{1 \text{ or 5}}{1 \text{ or 2}}$ Generates the list: \pm 1 , 5 , $\frac{1}{2}$, $\frac{5}{2}$ (There are 8 in all.)

Have trouble keeping p&q straight? Just ask yourself: what is the zero/root of P(x) = 2x+3? -3/2...

3 in the numerator, 2 in the denominator!

Polynomials

don't have Vertical

Asymptotes!!

3. Construct the smallest degree polynomial with: real coefficients, roots -1, 1 and 2i, with leading coefficient 3. You may leave the polynomial in factored form.

Real coefficients plus having root 2i requires that it also have root -2i. If "r" is a root, then (x - r) must be a factor, so...

$$P(x) = A(x - 1)(x - 1)(x - 2i)(x + 2i) = A(x^2 - 1)(x^2 + 4) = A(x^4 + 3x^2 - 4)$$

The leading coefficient now is A, so A must be 3. $P(x) = 3(x^4 + 3x^2 - 4) = 3x^4 + 9x^2 - 12$

4. The polynomial $P(x) = 3x^4 - 8x^3 - 9x^2 + 16x + 6$ might have a zero at x = 2 or at x = 3. Use synthetic division to demonstrate that one of these IS, indeed, a zero, and the other is NOT. Identify which of these is a zero, and which is not.

Telling us that P(2) = 14

Showing us that P(3) = 0...

(So 2 is NOT a zero of P .)

(So 3 is a zero of P.)

...and, furthermore, $P(x) = (x - 3)(3x^3 + x^2 - 6x - 2)$

5. For each function below, list the equation(s) of the vertical and horizontal asymptote(s), if any. If there are none, write "none". Vertical asymptote(s) Horizontal asymptote(s)

$g(x) = \frac{4x^2 - 1}{x^2 - 4}$	x = -2, x = 2	y = 4
$f(x) = \frac{3x + 9}{x^2 + 1}$	NONE	y = 0
$h(x) = \frac{6 x^2 + 3}{2x + 1}$	$\chi = -\frac{1}{2}$	Oblique: NONE $y = 3x - \frac{3}{2}$

Vertical asymptotes of rational functions occur where the function grows unboundedly large because the denominator shrinks toward 0 while the numerator does not shrink to 0. Horizontal asymptotes occur when the function settles toward a particular value as $x \to \infty$. More on asymptotes- see next page.

6. The graph at right could be the graph of:

$$P(x) = (x + 3)^2 (3 - x)$$

$$A(x) = (x-3)(x+3) + 23$$
 Parabola!

$$B(x) = (x-3)(x+3) + 4$$
 Parabola!

$$C(x) = (x-3)^2 (x+3)$$
 Roots 3,3,-3 and increasing

$$D(x) = (x + 3)^2 (3 - x)$$
 Negative cubic, roots -3 , -3

$$E(x) = (x + 3)^{2} (x - 3)^{2}$$
 Fourth degree!

$$F(x) = -(x + 3)^{2} (x - 3)^{2}$$
 Fourth degree!

This graph is NOT the graph of a polynomial of EVEN degree !!! That leaves the two cubic polynomials as contenders.

But C has leading term +x³ so would start low, run high.

Furthermore, C has a double zero at 3, and a single zero at -3.

D has leading term $-x^3$, AND has zeroes in the right places.

7. Find all the roots of the polynomial $P(x) = 2x^5 + 3x^4 + 10x^3 + 14x^2 - 5$

First we look to see if there are any advantageous factors. No, none this time. Then we look for rational zeroes. Candidates are ± 1 , 5, $\frac{1}{2}$, $\frac{5}{2}$ (Discussed in #2)

2

0

10

All this shows that $P(x) = (x+1)(x+1)(x-1/2)(2x^2+10) = 2(x+1)(x+1)(x-1/2)(x^2+5)$ We obtain the last two zeroes from the quadratic factor x^2+5 .

The zeroes of P are -1, -1, $\frac{1}{2}$, and $\sqrt{5}$ and $-\sqrt{5}$.

Not. Sketch the graph of $y = \frac{4-2x}{3-x}$ Label all the intercepts & asymptotes.

This is a RATIONAL function, therefore:

Domain: y is defined for all values except where denominator = 0: x = 3

As x approaches 3, 4 - 2x approaches -2,

while 3 - x approaches 0,

so the quotient approaches \pm infinity**

Thus there is a vertical asymptote

at x = 3.**

When x is large, y gets close to 2.

When x is large negative, same thing....

(More about this at *** below.)

Thus the function has a horizontal asymptote at y = 2.

y-intercept? when x = 0, y = 4/3

x-intercept? when x = 2, y = 0(For P/Q to be 0, P must be 0.)

** More on the Vertical Asymptote:

As x approaches 3 from below e.g. take x = 2.5, 2.8, 2.9, 2.99, 2.9999... $\rightarrow 3$ y grows unboundedly large, negative: $y = \frac{-1}{.5}$, $\frac{-1.6}{-.2}$, $\frac{-1.8}{-.1}$, $\frac{-1.999}{-.01}$, $\frac{-1.9998}{-.0001}$

Similarly, computing function values for x that are just above 3, demonstrates that the function values are positive and grow unboundedly large (& we sometimes say "approaches infinity") as x-values approach 3 from above.

*** The right way to discover the horizontal (and any other non-vertical) asymptote:

...divide & conquer (the safe way to decipher these things):

$$\frac{-2x+4}{-x+3} = \frac{2x-4}{x-3} \quad \text{(Now you divide! ...)} = 2 + \underbrace{2}_{x-3} \quad \text{As } x \to \text{infinity }, \\ \text{this fraction shrinks toward 0}$$
 & so $f(x)$ approaches $2 + 0$ (as $x \to \text{infinity}$)

or, for a quick and only slightly dangerous view, observe that when x is very large, 2x is so much larger than 4, and x is so much larger than 3, we can say the quotient behaves like $\frac{2x}{x}$ — which is just 2.

Vertical asymptotes of rational functions occur where the function grows unboundedly large (or because the denominator shrinks toward 0 while the numerator does not shrink. This can only happen where the denominator of the rational function is 0.

Regarding #5:

	Vertical asymptote(s)	Horizontal asymptote(s)
$g(x) = \frac{4x^2 - 1}{x^2 - 4}$	x = -2, x = 2	y = 4
$f(x) = \frac{3x + 9}{x^2 + 1}$	NONE	y = 0
$h(x) = \frac{6 x^2 + 3}{2x + 1}$	$x = -\frac{1}{2}$	Oblique: NONE $y = 3x - \frac{3}{2}$

Vertical asymptotes of rational functions occur where the function grows unboundedly large

For g, the denominator, $x^2 - 4 = (x+2)(x-2)$, is 0 at -2 and 2. The numerator is not 0 at x = -2 or 2. Therefore, it is clear that f grows unboundedly large as x approaches -2 and as x approaches 2.

For f, the denominator, $x^2 + 1$, is never 0, so g cannot have a vertical asymptote.

For h, the denominator is 2x + 1. This is 0 when $x = -\frac{1}{2}$. $6x^2 + 3$ does not shrink toward 0 as x approaches $-\frac{1}{2}$. Thus there is a vertical asymptote at $x = -\frac{1}{2}$.

Horizontal asymptotes of rational functions occur when the function values approach one particular number as x approaches infinity. This cannot occur if the degree of the numerator exceeds the degree of the denominator. (If degree of numerator = degree of denominator + 1, there is a linear asymptote that is neither horizontal nor vertical... called an oblique asymptote.)

g(x) approaches 4 as x approaches infinity... so g has HA y = 4.

Note that division demonstrates this: $g(x) = 4 + \frac{15}{x^2 - 4}$ and this fraction shrinks toward 0 as $x \to \infty$

f(x) approaches 0 as x approaches infinity... so f has HA y = 0.

This is clear because the degree of the denominator > degree of numerator, so these fractions shrink as the denominator grows faster than the numerator.

Degree of numerator exceeds degree of denominator of h, so h has no horizontal asymptote (note that h resembles y = 3x when x is very large).

... and, further, division again shows us the non-horizontal asymptote:

$$3x - \frac{3}{2}$$

$$2x+1 \overline{\smash{\big)}\ 6x^2 + 3}$$

$$\underline{-3x + 3}$$

$$-3x - \frac{3}{2}$$
... telling us that:
$$h(x) = \frac{6x^2 + 3}{2x + 1} = 3x + 4.5 - \frac{15}{2x + 1}$$
Since the last part shrinks toward 0 as x

Since the last part shrinks toward 0 as $x \to \infty$ h(x) must become ever closer to y = 3x + 4.5. Thus h is asymptotic to the line y = 3x + 4.5. (This asymptote is called "oblique".)

8.
$$P(x) = 4x^5 + 20x^4 - x - 5$$

In each underlined space below, place the LETTER of the best completion of the statement.

- a. The degree of polynomial P is <u>5</u>. And P must have <u>5</u> zeros (roots).
- b. The graph of P has y-intercept <u>-5</u> and has <u>0</u> vertical asymptotes.
- c. According to Descartes' Rule of Signs, P can have ______ positive real zeros.
- d. According to Descartes' Rule of Signs, P can have <u>4or2or0</u> negative real zeros.
- 9. According to the rational zeros theorem, only certain rational numbers may be zeros of P. Make a COMPLETE LIST of the possible rational zeros predicted by that theorem for the function: $P(x) = 2x^4 x^3 4x^2 x 6$ (This question does NOT ask if any are actual roots.)

According to the rational zeroes theorem, any rational zeroes of P must be $\pm \frac{1,2,3,6}{1,2}$... which generates the list: $\pm 1,2,3,6,\frac{1}{2},\frac{3}{2}$

10. Use synthetic division to demonstrate that 2 is a zero of the polynomial $P(x) = x^3 + x - 10$. Then find the remaining zeroes of the polynomial.

2 1 0 1 -10 2 4 10 1 2 5 0
$$\leftarrow$$
 Remainder 0 tells us P(2) = 0.

So $P(x) = (x - 2) (x^2 + 2x + 5)$ We find the remaining zeroes for the quadratic factor.

$$x^{2} + 2x + 5 = 0$$

$$x = \frac{-2 \pm \sqrt{4 - 20}}{2} = -1 \pm 2i$$

Thus the three zeroes of P are 2 and -1+2i and -1 - 2i.