ANSWERS to Chapter P Quiz sample questions (revised 2/08/06)

- 1. Express number sets using interval notation, graphs, and inequalities.
 - The interval $[2,\infty) = \{x \mid 2 \le x\}$ a)
 - b) $\{x \mid -2 < x \le 5\} = (-2, 5]$
 - c) This: $\langle -\infty, 2 \rangle$ is $(-\infty, 2]$ and is $\{x \mid x \leq 2\}$
 - $[-4, 0) = \{ x \mid -4 \le x < 0 \} =$ d)
 - e) $\{x \mid x \leq -1\} = (-\infty, -1] = < ---$
- 2. Find the intersection & union of two sets of numbers. Express answers using interval notation.
 - i) $A \cap B$... and ii) $A \cup B$... for each of the following pairs of sets
 - a) $A = \{x \mid x < 3\} \text{ and } B = \{x \mid -2 < x \le 5\}$ Putting these
 - together (union!) **A**: 🔩 🗧 we get this... B:
 - $= (-\infty, 5]$
 - And $A \cap B$ = only the overlap, what is in both:
 - A = [-1, 6) and B = [5, 8]b) $A \cap B = [5,6)$ $A \cup B = [-1, 8]$
 - $A = \{ x \mid x \le 0 \} \text{ and } B = \{ x \mid x < -3 \}$ $A \cap B = B = (-\infty, -3)$ $A \cup B = (-\infty, 0]$ c)
 - $A = (-\infty, 2]$ and $B = [2, \infty)$ $A \cup B = (-\infty, \infty)$ d) $A \cap B = \{2\}$
 - $A = [-1, \infty) \text{ and } B = (1, 3]$ $A \cap B = (1,3]$ $A \cup B = [-1, \infty)$ e)
- Simplify expressions, with rational exponents, as much as possible (no negative exponents). 3.
 - $(2 x^4 v^{-4/5})^3 (8 v^2)^{\frac{2}{3}}$ a) The exponent 3 belongs to all factors in the parentheses () $2^{3} x^{3\cdot4} v^{-4/5\cdot3} 8^{\frac{2}{3}} v^{2(\frac{2}{3})}$ Similarly, the exponent $\frac{2}{3}$ applies to factors 8 & y^2 as well. $8 x^{12} y^{-12/5} (4) y^{4/3}$ Combining like factors gives us...
 - Which further simplifies to : $32 x^{12} y^{-16/15} = \frac{32 x^{12}}{v^{16/15}}$ 8.4 $x^{12} v^{-12/5 + 4/3}$
 - $(27 x^9)^{-\frac{4}{3}} = 27^{-\frac{4}{3}} (x^9)^{-\frac{4}{3}} = (27^{\frac{1}{3}})^{-4} (x^9)^{-\frac{4}{3}} = 3^{-4} x^{-9^{\frac{4}{3}}} = 3^{-4} x^{-12} = \frac{1}{81 x^{12}}$ b)

Once you get to this stage there are many ways to think about simplifying... ($y^9 z^{-3}$) $^{1/3}$ $y^{9 \cdot 1/3} z^{-3 \cdot 1/3}$ $y^3 z^{-1}$ $y^3 z^{-1} z \cdot y$ y^4 $\frac{(y^{-2}z^{-3})^{\frac{1}{14}}}{(y^{-4}z^{2})^{\frac{1}{14}}} = \frac{y^{\frac{9}{1}}z^{-3} \cdot z^{-3}}{y^{-4}z^{\frac{1}{14}}} = \frac{y^{\frac{3}{14}}z^{-1}}{y^{-1}z^{\frac{1}{14}}} = \frac{y^{\frac{3}{14}}z^{-1}}{y^{-1}z^{\frac{1}{14}}} = \frac{y^{\frac{4}{14}}z^{-1}}{y^{-1}z^{\frac{1}{14}}} = \frac{y^{\frac{4}{14}}z^{-1}}{z^{\frac{3}{14}}}$ c)

ANSWERS to Chapter P Quiz sample questions, continued (page 2)

Parts (d) and (e) are shown using the most "reliable" method:

$$d) \qquad \frac{(9\,s\,t\,)^{\,3/2}}{(27\,s^3\,t^{\,-4})^{\,2/3}} \;\; = \qquad \frac{9^{\,3/2}\,s^{\,3/2}\,t^{\,3/2}}{27^{\,2/3}\,s^{\,3\cdot2/3}\,t^{\,-4\cdot2/3}} \qquad = \qquad \frac{27}{9}\,\,\frac{s^{\,3/2}}{s^2}\,\frac{t^{\,3/2}\,t^{\,8/3}}{t^{\,-8/3}\,t^{\,8/3}} \; = \qquad \frac{3\,\,t^{\,25/6}}{s^{\,1/2}}$$

e)
$$\frac{3x^{1/2}y^3}{x^2y^{-1/2}} = \frac{3x^{1/2}x^{-1/2}y^3y^{1/2}}{x^2x^{-1/2}y^{-1/2}y^{1/2}} = \frac{3y^{3+1/2}}{x^{2-1/2}} = \frac{3y^{3/2}}{x^{3/2}}$$

4. Factor an expression involving rational exponents. EG: Factor completely:

*USEFUL FACT: $x^p \cdot x^{-p} = x^0 = 1$ So, for instance, multiply $x^{-\frac{1}{2}}$ by $x^{\frac{1}{2}}$ & get 1. BUT: you cannot just multiply by $x^{\frac{1}{2}}$, which would change the value.

So you multiply by ONE in the form of $\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}$

a)
$$x^{-\frac{3}{2}} + 2x^{\frac{-1}{2}} + x^{\frac{1}{2}} = \frac{x^{\frac{3}{2}}}{x^{\frac{3}{2}}} (x^{\frac{-3}{2}} + 2x^{\frac{-1}{2}} + x^{\frac{1}{2}})$$

$$= \frac{1}{\frac{3}{2}} (1 + 2x + x^{2})$$

Observations: These powers are not descending, as is more obvious after being multiplied by $x^{3/2}$ to kill off* the negative exponents.

 $= \frac{(1 + x)^{2}}{x^{3/2}}$

You may read advice to "factor out the largest negative power", but that is easier said, and this method eliminates the negative exponents right at the start!

Plus: This method avoids the confusion

to figure out that factoring $x^{-3/2}$ "out of" $x^{1/2}$ "leaves" x^2 .

Here are the two methods (try it yourself on part c):

b)
$$x^{-1/2}(x+1)^{1/2} + x^{-1/2}(x+1)^{2} = x^{-1/2}(x+1)^{-1/2}((x+1) + x) = \frac{2x+1}{1/2}$$
(Here we "factor out" the factors with negative exponents.)
(It's fun figuring out what's left when you factor out $x^{-1/2}$)

b)
$$x^{-\frac{1}{2}}(x+1)^{\frac{1}{2}} + x^{\frac{1}{2}}(x+1)^{\frac{1}{2}} = \frac{x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}}{x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}} (x+1)^{\frac{1}{2}} + x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}) = \frac{x+1+x}{x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}}$$

Here we multiply to "kill" $x^{\frac{1}{2}}(x+1)^{\frac{1}{2}}(x+1)^{\frac{1}{2}}(x+1)^{\frac{1}{2}}(x+1)^{\frac{1}{2}}(x+1)^{\frac{1}{2}}(x+1)^{\frac{1}{2}})$

or "cancel" the factors with negative exponents....

c)
$$4x^{\frac{1}{2}} + 5x^{\frac{1}{2}} + x^{\frac{3}{2}} = \frac{x^{\frac{1}{2}} (4x^{\frac{1}{2}} + 5x^{\frac{1}{2}} + x^{\frac{3}{2}})}{x^{\frac{1}{2}}} = \frac{4x + 5x + x^{\frac{2}{2}}}{x^{\frac{1}{2}}} = \frac{x^{2} + 5x + 4}{x^{2}} = \frac{(x+4)(x+1)}{x^{\frac{1}{2}}}$$

ANSWERS to Chapter P Quiz sample questions, continued (page 3)

d)
$$3(1+x)^{\frac{1}{3}} - x(1+x)^{\frac{-2}{3}} = \frac{(1+x)^{\frac{2}{3}}}{(1+x)^{\frac{2}{3}}} \left(3(1+x)^{\frac{1}{3}} - x(1+x)^{\frac{-2}{3}}\right) = \frac{3(1+x)^{\frac{1}{3}} - x(1+x)^{\frac{2}{3}}}{(1+x)^{\frac{2}{3}}} = \frac{3+2x}{(1+x)^{\frac{2}{3}}}$$

e)
$$3x^{\frac{3}{2}} - 9x^{\frac{1}{2}} + 6x^{\frac{-1}{2}} = \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} (3x^{\frac{3}{2}} - 9x^{\frac{1}{2}} + 6x^{\frac{-1}{2}}) = \frac{3x^2 - 9x + 6}{x^{\frac{1}{2}}}$$

f)
$$x^2 - 64 = (x - 8)(x + 8)$$
 $A^2 - B^2 = (A - B)(A + B)$

g)
$$x^3 - 64 = (x - 4)(x^2 + 4x + 16)$$
 $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$

5. Simplify a complex rational expression. EG: Simplify completely:

a)
$$\frac{\frac{1}{t+h} - \frac{1}{t}}{h} = \frac{t - (t+h)}{h t (t+h)} = \frac{-h}{h t (t+h)} = \frac{-1}{t (t+h)}$$

b)
$$\frac{1}{1+a^{n}} + \frac{1}{1+a^{-n}} = \frac{1}{1+a^{n}} + \frac{1}{(1+a^{-n})\cdot a^{n}} = \frac{1}{1+a^{n}} + \frac{a^{n}}{a^{n}+1} = 1$$
Provided $a^{n} \neq -1$

c)
$$x^{2} - \frac{y^{2}}{\left(\frac{1}{x^{2}} + \frac{1}{y^{2}}\right)} \frac{x^{2}y^{2}}{x^{2}y^{2}} = x^{2} - \frac{x^{2}y^{4}}{x^{2} + y^{2}} = x^{2} \frac{x^{2}(x^{2} + y^{2})}{(x^{2} + y^{2})} - \frac{x^{2}y^{4}}{x^{2} + y^{2}}$$

$$= \frac{x^{4} + x^{2}y^{2} - x^{2}y^{4}}{x^{2} + y^{2}} = \frac{x^{2}(x^{2} + y^{2}) - \frac{x^{2}y^{4}}{x^{2} + y^{2}}}{x^{2} + y^{2}}$$
... provided $xy \neq 0$

d)
$$\frac{1 + \frac{2}{c - 2}}{1 - \frac{2}{c - 2}} \cdot \frac{c - 2}{c - 2} = \frac{c - 2 + 2}{c - 2 - 2} = \frac{c}{c - 4}$$
 provided $c \neq 2$

e)
$$\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}} \cdot \frac{xy}{xy} = \frac{y^2 - x^2}{x - y} = \frac{(x + y)(y - x)}{x - y} = -(x + y)$$
...provided $x \neq 0$ and $y \neq 0$ and $x \neq y$!

ANSWERS to Chapter P Quiz sample questions (revised 9/10)

note: solution....

1. Express number sets using interval notation, graphs, and inequalities.

The interval $[2,\infty) = \{x \mid 2 < x\}$ a)

 $\{x \mid -2 < x \le 5\} = (-2, 5]$ b)

- c) This: →
- is $(-\infty, 2]$ and is $\{x \mid x \le 2\}$
- d) $[-4, 0) = \{ x \mid -4 \le x < 0 \} =$

- $\{ x | x \le -1 \} = (-\infty, -1] =$ e)
- 2. Find the intersection & union of two sets of numbers. Express answers using interval notation. Find i) $A \cap B$... and ii) $A \cup B$... for each of the following pairs of sets
 - $A = \{x \mid x < 3\} \text{ and } B = \{x \mid -2 < x < 5\}$

 $A \cup B = [-1, 8]$

B:

A: ▼

b)

And $A \cap B =$ only the overlap, what is in both:

A = [-1, 6) and B = [5, 8]

- $A \cap B = [5,6)$ $A = \{ x \mid x \le 0 \} \text{ and } B = \{ x \mid x < -3 \}$ $A \cap B = B = (-\infty, -3)$ $A \cup B = (-\infty, 0]$ c)
- d) $A = (-\infty, 2]$ and $B = [2, \infty)$ $A \cap B = \{2\}$ $A \cup B = (-\infty, -\infty)$
- $A = [-1, \infty) \text{ and } B = (1, 3]$ $A \cap B = (1,3]$ $A \cup B = [-1, \infty)$ e)
- 3. Simplify expressions, with rational exponents, as much as possible (no negative exponents).
 - $(2 x^4 v^{-4/5})^3 (8 v^2)^{\frac{2}{3}}$ a) The exponent 3 belongs to all factors in the parentheses() $2^{3} \times {}^{3.4} \vee {}^{-4/5.3} \times {}^{2/3} \vee {}^{2(2/3)}$
 - Similarly, the exponent $\frac{2}{3}$ applies to factors 8 & v^2 as well.
 - $8 x^{12} y^{-12/5} (4) y^{4/3}$
 - Combining like factors gives us
 - 8.4 $x^{12} v^{-12/5 + 4/3}$
- Which further simplifies to : 32 $x^{12} y^{-16/15} = \frac{32 x^{12}}{v^{-16/15}}$
- $(27 \text{ x}^9)^{-\frac{4}{3}} = 27^{-\frac{4}{3}} (x^9)^{-\frac{4}{3}} = (27^{\frac{1}{3}})^{-4} (x^9)^{-\frac{4}{3}} = 3^{-4} x^{-9} \cdot \frac{4}{3} = 3^{-4} x^{-12} = \frac{1}{81 x^{12}}$ b)

Once you get to this stage there are many ways to think about simplifying...

- c)
 - $= \frac{y^{3-(-1)}}{z^{\frac{1}{2}-(-1)}} = \frac{y^4}{z^{3/2}}$ Here's another, using the fact