1. A rectangle has its base (one side) on the x-axis, and two vertices on the graph of \(y = 4 - x^2 \). Find an expression for the area of this rectangle in terms of \(x \).

2. Sketch the graphs of:
 a. \(y = x^3 \)
 b. \(y = (x+2)^3 - 1 \)
 c. \(y = 1 - (x+2)^3 \)

1. First we sketch the setting.

Since we know \(y = x^2 \) we readily see that \(y = 4 - x^2 \) is an inverted parabola raised up 4 units.

Then placing a rectangle with a side on the x-axis, and two vertices on \(y = 4 - x^2 \), we see the shaded rectangle as one of many possibilities. Another is outlined.

Since we need the area of the rectangle in terms of \(x \), we locate \(x \) in this scenario...\(x \) (just >1), for the shaded rectangle, is shown. (Where is \(x \) for the outlined rectangle?)

The Area of a rectangle is the product of its two dimensions:

\[
\text{Area} = \text{length} \cdot \text{height} = (2x) \cdot (4 - x^2) = 2x(4 - x^2) \quad (\text{for} \ -2 \leq x \leq 2)
\]