1. \(P(x) = 2x^5 - 2x^4 - 3x^3 - 6x^2 - 2x + 4 \)

a. The degree of polynomial \(P \) is \(5 \) and \(P \) must have \(5 \) zeros (roots).

b. The y-intercept of the graph of \(P \) is \((0,4)\). The number of vertical asymptotes of \(P \) is \(0 \).

c. According to Descartes’ Rule of Signs, \(P \) can have \(0 \) or \(2 \) positive real zeros.

 There are two sign changes in \(P(x) = 2x^5 - 2x^4 - 3x^3 - 6x^2 - 2x + 4 \).
 According to Descartes’ Rule of Signs, there can be either 2 or 0 positive roots.

d. Similarly, \(P \) can have \(1 \) or \(3 \) negative real zeros.

 \(P \) cannot have 3 or 1 negative real roots because:
 \[
 P(-x) = 2(-x)^5 - 2(-x)^4 - 3(-x)^3 - 6(-x)^2 - 2(-x) + 4 \\
 = -2x^5 - 2x^4 + 3x^3 - 6x^2 + 2x + 4 \\

 \text{... three sign changes, so 3 or 1 positive roots for } P(-x), \text{ so 3 or 1 negative roots for } P(x).
 \]

2. List all theoretically possible rational roots of the polynomial: \(P(x) = 4x^4 + 4x^3 + 9x^2 + 12x - 9 \)

 Since this polynomial has all coefficients in the set of integers, any rational roots must be of the form \(\frac{p}{q} \) where \(p \) is a factor of the constant term (so \(p = \pm 9, 3 \) or \(1 \)) and \(q \) is a factor of the leading coefficient (so \(q = \pm 4, 2 \), or \(1 \)).

 Thus candidates for rational roots of this polynomial are:
 \[
 \pm 9 \quad \pm 3 \quad \pm 1 \quad \pm 9/2 \quad \pm 3/2 \quad \pm 1/2 \quad \pm 9/4 \quad \pm 3/4 \quad \pm 1/4
 \]
 (There are 18 in all.)

3. Construct the smallest polynomial with: real coefficients, roots \(-2 \) and \(2 \) and \(3 + i \), with leading coefficient 5. You may leave the polynomial in factored form.

 Real coefficients + having root \(3+i \) requires that it also have root \(3-i \).
 If “\(r \)” is a root, then \((x - r) \) must be a factor, so...
 \[
 P(x) = A \left((x - 2)(x - 2)(x - (3+i))(x - (3-i))\right)
 \]

4. The polynomial \(P(x) = 2x^4 - 3x^3 - 7x^2 - 8x + 6 \) might have a zero at \(x = \frac{1}{2} \) or at \(x = 2 \).
 Use synthetic division to demonstrate that one of these IS, indeed, a zero, and the other is NOT. Identify which of these is a zero, and which is not.

 Telling us that \(2x^4 - 3x^3 - 7x^2 - 8x + 6 \) = \((x - \frac{1}{2})(2x^3 - 2x^2 - 8x - 12) \)
 (So \(\frac{1}{2} \) is a zero of \(P \).)
 Showing us that \(P(2) = -3 \)
 (So \(2 \) is NOT a zero of \(P \).)
5. For each function below, list the equation(s) of the vertical and horizontal asymptote(s), if any. If there are none, write “none”.

<table>
<thead>
<tr>
<th>Function</th>
<th>Vertical asymptote(s)</th>
<th>Horizontal asymptote(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x) = \frac{x^2 - 9}{x^2 + 4})</td>
<td>NONE</td>
<td>(y = 1)</td>
</tr>
<tr>
<td>(f(x) = \frac{3x^4 + x}{x^2 - 9})</td>
<td>(x = 3) and (x = -3)</td>
<td>NONE</td>
</tr>
<tr>
<td>(h(x) = \frac{6x + 3}{x^2 + 2x + 1})</td>
<td>(x = -1)</td>
<td>(y = 0)</td>
</tr>
</tbody>
</table>

Vertical asymptotes of rational functions occur where the function grows unboundedly large (or 0 or -
because the denominator shrinks toward 0 while the numerator does not shrink. This can only happen where the denominator of the rational function is 0.

For \(g \), the denominator, \(x^2 + 4 \), is never 0, so \(g \) cannot have a vertical asymptote.

For \(f \), the denominator, \(x^2 - 9 = (x+3)(x-3) \), is 0 at -3 and 3. The numerator is not 0 at \(x = -3 \) or 3. Therefore, it is clear that \(f \) grows unboundedly large as \(x \) approaches -3 and as \(x \) approaches 3.

For \(h \), the denominator is \(x^2 + 2x + 1 = (x+1)^2 \). This is 0 when \(x = -1 \). 6x+3 does not shrink toward 0 as \(x \) approaches -1. Thus there is a vertical asymptote at \(x = -1 \).

Horizontal asymptotes of rational functions occur when the function values approach one particular number as \(x \) approaches infinity. This cannot occur when the degree of the numerator exceeds the degree of the denominator.

So \(f \) has no horizontal asymptote (\(f \) resembles \(y = 3x^2 \) when \(x \) is very large).

\(g(x) \) approaches 1 as \(x \to \infty \) so \(g \) has HA \(y = 1 \).

\(h(x) \) approaches 0 as \(x \to \infty \) so \(h \) has HA \(y = 0 \).

6. Sketch the graph of \(y = P(x) = \frac{1}{2} \ (x + 2)^2 \ (x - 3) \)

Polynomial, domain is all of \(R \), continuous, etc.

\(y \)-intercept: \(P(0) = \frac{1}{2} \ (0+2)^2 \ (0 - 3) = -6 \)

\(x \)-intercept(s): \(P(x) = 0 \)
only when \(\ (x+2)^2 \ (x-3) = 0 \)
... when \(x = -2 \) (twice), \(x = 3 \)

What happens to \(y=P(x) \) when \(x \to \infty \) (increases towards \(\infty \))? Consider that \((x + 2)^2 \) and \((x - 3) \) both grow unboundedly large, both positive, as \(x \to \infty \). So \((\frac{1}{2}) \ (x + 2)^2 \ (x - 3) \to \infty \) as \(x \to \infty \).

(i.e. grows unboundedly large)

... And when \(x \to -\infty \), \((x + 2)^2 \) & \((x - 3) \) both grow unboundedly large, but \((x-3) \) is large negative, so the product is large & negative. \((\frac{1}{2}) \ (x + 2)^2 \ (x - 3) \to -\infty \) as \(x \to -\infty \).

Plotting a few additional points, such as (-5,-36) & (-4,-14) & (1,-9) & (2,-8) & (4,18) adds accuracy & serves as a check on the analysis.
Sketch the graph of $y = \frac{4 - 2x}{3 - x}$ Label all the intercepts & asymptotes.

Rational function, therefore:
Domain: y is defined for all values except where denominator = 0: $x = 3$

As x approaches 3, $4 - 2x \to -2$,

while $3 - x \to 0$,

so the quotient $\to \pm \infty$

Thus there is a vertical asymptote at $x = 3$.**

As $x \to \infty$ $y \to 2$
As $x \to -\infty$ $y \to 2$

Thus the function has a horizontal asymptote* at $y = 3$.

y-intercept: when $x = 0$
$y = \frac{4}{3}$

x-intercept: when $x = 2$, $y = 0$

** More on the Vertical Asymptote:

As x approaches 3 from below e.g. take $x = 2.5, 2.8, 2.9, 2.99, 2.9999 \ldots \to 3$
y grows unboundedly large, negative:
$y = \frac{-1}{2}, \frac{-1.6}{2}, \frac{-1.8}{2}, \frac{-1.98}{2}, \frac{-1.9998}{2}$

Similarly, computing function values for x that are just above 3, demonstrates that the function values are positive and grow unboundedly large ($\to \infty$) as x-values approach 3 from above.

*Another way to discover the horizontal asymptote:

...divide & conquer:

$$\frac{-2x + 4}{-x + 3} = \frac{2x - 4}{x - 3} = 2 + \frac{2}{x - 3}$$

As $x \to \infty$, the latter portion $\to 0$

& $f(x) \to 2 + 0$ as $x \to \infty$