1. For \(f(x) = x^2 + 2x - 5 \), find \(\frac{f(x+h) - f(x)}{h} \) and simplify completely.

\[
f(x+h) - f(x) = \frac{(x+h)^2 + 2(x+h) - 5 - (x^2 + 2x - 5)}{h}
\]
\[
= \frac{x^2 + 2xh + h^2 + 2x + 2h - 5 - (x^2 + 2x - 5)}{h}
\]
\[
= \frac{x^2 + 2xh + h^2 + 2x + 2h - 5 - (x^2 + 2x - 5)}{h}
\]
\[
= \frac{2xh + h^2 + 2h}{h}
\]
\[
= \frac{h(2x + h + 2)}{h}
\]
\[
= 2x + h + 2
\]

NOTE:
- \(f(x+h) \) is NOT \(f(x)+h \)!
- \(f(x+h) \) is NOT \(f(x)\) \((x+h)\)!

2. Use the graph of the function at right to answer the following questions.

a. What is \(f(-2) \)? \(f(-2) = 2 \) (See \(\bullet \) on graph.)

b. What is the domain of \(f \)? \([-6, 4.5]\) (estimated)

c. What is the range of \(f \)? \([-4, 3]\)

d. On what interval(s) is \(f \) increasing?
 - \(f \) increases when \(-6 \leq x \leq -3 \) & \(1.2 \leq x \leq 3 \) (roughly)
 - On the interval \([-6, -3]\) & on \([-1.2, ~3]\)

e. What is the average rate of change of \(f \) on the interval \([-3, 4]\)?

The height of the graph at \(x = -3 \) is \(y = 3 \). The height at \(x = 4 \) is \(y = -1 \). (See \(\bullet \) points on graph.)

So while \(x \) increased 7 units, \(y \) dropped from 3 to -1 \((3 - -1 = 4)\).

The slope of the line connecting the two points is thus:

\[
\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{4 - (-3)} = \frac{-4}{7}
\]
3. Sketch the graph of \(y = -2(x+1)^3 \) using transformations of a familiar function.

Adding 1 to the argument shifts the graph 1 unit left. Multiplying by -1 “flips” the curve about the x-axis. Multiplying by 2 stretches it vertically.

4. Sketch the graph of \(f(x) = 2x^2 + 6x + 3 \). Label the coordinates of the vertex & y-intercept. Does this function have a maximum or minimum value? What is it?

\[
f(x) = 2(x^2 + 3x) + 3 = 2(x + ?)^2 + 3
\]

This is clearly the squaring function... Shifted left \(\frac{3}{2} \), stretched by the factor 2, shifted down \(\frac{3}{2} \). Thus \(-\frac{3}{2} \) is the minimum value.

ANOTHER WAY to reach this conclusion:
An alternative is to know that \(f(x) = ax^2 + bx + c \) has its extreme point at \(-b/2a\), which in this case is \(-6/4 = -\frac{3}{2}\).

The leading coefficient in \(f(x) = 2x^2 + 6x + 3 \), which is \(+2\), informs us the parabola opens upward, so we know the extreme point is a minimum.

Finally we evaluate \(f(x) \) at \(x = \frac{3}{2} \):

\[
f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^2 + 6\left(\frac{3}{2}\right) + 3 = -\frac{3}{2}
\]

... to obtain the minimum value.
5. Sketch the graph of the function \(f(x) = x^2(x-2)(x+1) \). Label all intercepts with their coordinates, and describe the "end behavior" of \(f \).

That \(f(x) \) is a 4\(^{th}\)-degree POLYNOMIAL* function is clear without computing: \(f(x) = x^4 - x^3 - 2x^2 \).

The ROOTS of \(f \) are 0, 0, 2, and -1.

\[
\begin{array}{c|cccccc}
\text{f(x)} & + & 0 & - & 0 & - & 0 & + \\
\hline
-1 & 0 & 2
\end{array}
\]

and when \(x \) is large (+ or -), \(f(x) \) is dominated by, and behaves like \(x^4 \), with \(y \) rising towards infinity.

* Therefore, the graph of \(f \) is smooth, continuous, and behaves like its largest power as \(x \to \infty \).

6. Sketch the graph of \(f(x) = \frac{2x}{x^2 - 1} = \frac{2x}{(x+1)(x-1)} \).

Domain: all reals except -1 & 1

RATIONAL function with vertical asymptotes at \(x=1 \) and \(x=-1 \).

\(f(0) = 0 \) Thus (0,0) is both x-intercept and y-intercept. There are no more intercepts.

As \(x \to \infty \), denominator (degree 2) grows much faster than numerator (degree 1); function behaves like \(\frac{2}{x} \), which we know \(\to 0 \) as \(x \to \infty \). So \(y=0 \) is horizontal asymptote.

It helps a lot to determine whether \(f(x) \) is positive or negative on each interval between points of interest.

\[
\begin{array}{c|cccc}
\text{f(x)} & - & ! & + & 0 & - & ! & + \\
\hline
-1 & 0 & 1
\end{array}
\]

One final comment on this: \(F \) is an ODD function; note the symmetry.
7. Solve the inequality, and express your answer in INTERVAL notation.

\[
\frac{5}{x + 3} \geq \frac{3}{x - 1}
\]

Q:

\[
\begin{array}{cccc}
-3 & + & 1 & - & 7 \\
\end{array}
\]

\[
\frac{5}{x + 3} - \frac{3}{x - 1} \geq 0
\]

Q is + for all \(x\) between -3 & 1 and above 7.

Noting that the fractions do not exist at -3 & 1 eliminates -3 & 1 as solutions.

Testing 7, we get 0 ≥ 0, so 7 is a solution.

\[
\frac{2x - 14}{(x + 3)(x - 1)} \geq 0
\]

critical values (where the signs of the factors can change) are 7, -3, 1.

The solution set for this inequality is:

\((-3, 1) \cup [7, \infty)\)

8. For \(P(x) = 2x^3 + 5x^2 - 15x + 6\),

a. List ALL the possible rational zeroes of \(P(x)\).

\(P(x)\) has all integer coefficients,
so any rational roots must be of the form \(\frac{p}{q}\), where \(p\) divides 6 and \(q\) divides 2.

The possibilities consist of all viable combinations of

\[\pm 6, 3, 2, 1\]...which gives us the LIST: \(\pm 1, 2, 3, 6, \frac{1}{2}, \frac{3}{2}\) (Notice there are twelve!)

b. Use synthetic division to show that \(\frac{1}{2}\) is a zero of \(P(x)\).

\[
\begin{array}{c|cccc}
\frac{1}{2} & 2 & 5 & -15 & 6 \\
& & 1 & 3 & -6 \\
--- & --- & --- & --- & --- \\
2 & 6 & -12 & 0 \\
\end{array}
\]

The zero remainder tells us \(x - \frac{1}{2}\) is a FACTOR of \(P(x)\).

Thus \(\frac{1}{2}\) is a ROOT (aka “ZERO”) of \(P(x)\).

c. Find ALL the zeroes of \(P(x)\). Simplify your answers.

To find the remaining zeroes of \(P(x)\), we use the quotient, \(Q(x) = 2x^2 + 6x - 12\).
Aside from \(x = \frac{1}{2}\), only values of \(x\) that make \(Q(x) = 0\) will make \(P(x) = 0\).

\[2x^2 + 6x - 12 = 0\]
\[x^2 + 3x - 6 = 0\]...Does not factor. So we resort to the useful quadratic formula.

\[
x = \frac{-3 \pm \sqrt{9 - 4(-6)}}{2} = \frac{-3 \pm \sqrt{33}}{2}
\]

The third zero is the one we verified in part b: \(\frac{1}{2}\)
9. Find a fourth-degree polynomial \(P(x) = ax^4 + bx^3 + cx^2 + dx + e \) with REAL coefficients, and with 0 a root (zero) of multiplicity 2, and with 1+i a root or zero.

\((x - 0) \) is a factor ... twice, and \((x - (1+i)) \) is a factor and \((x - (1- i)) \) is a factor.

Since any number \(r \) is a root of \(P \) if and only if \((x - r) \) is a factor of \(P \) of multiplicity \(k \)

So \(P(x) = (x -0) (x-0) (x - (1+i)) (x - (1- i)) \)

**See Details below.

\[\begin{align*}
&= x^2 (x^2 - 2x + 2) \\
&= x^4 - 2x^3 + 2x^2
\end{align*} \]

(Note: The given specifications do not fully determine \(P \). Any polynomial of the form \(P(x) = A (x^4 - 2x^3 + 2x^2) \) would answer the request.)

**Details: \((x - A) (x - B) = x^2 + (- A - B)x + AB \) ...for any numbers A & B

Here, \(A = 1 + i \) and \(B = 1 - i \),

so \(- A - B = -1 - i -1 + i = -2 \)

and \(AB = (1 + i)(1 - i) \)

\[\begin{align*}
&= 1 + i - i - i^2 \\
&= 1 + 1
\end{align*} \]

10. A rectangular storage space is to be enclosed with 200 yards of fencing. One side of the storage space faces an existing fenced yard and does not require fencing. Let \(x \) be the length of the side that projects out from the existing fance.

a. Express the area of the storage space in terms of \(x \).

\[\text{AREA} = \text{length} \times \text{width} \]

\[A(x) = (200 - 2x) x = 2(100 -x) x \]

If \(x = 60 \) yd, then 120 yd are used up by x-fences, so “y” can be only 200 – 120 yd.

If \(x = a \) yd, then 2a yd are used up by x-fences, so only 200 - 2a remain for “y”.

b. For what value of \(x \) will the area be maximum?

We see the function above is a parabola, opening down, with x-intercepts at 0 and 100. Therefore, the maximum value for \(A \) must occur when \(x \) is midway between these zeroes. ... when \(x = \boxed{50} \) (yd)

Alternatively, we can observe \(A(x) = -2x^2 + 200x \) and complete the square or use the formula to obtain \(x = -200/4 \).

(Not requested, but the maximum area is 50 yd•100yd = 5000 square yards.)