1. (§4.1) Identifying properties of linear functions

EG Given $f(x)=-\frac{3}{2} x+2$
a) Determine the slope and y-intercept of f.
b) Use the slope and y-intercept to graph f.
c) Determine the average rate of change of f on the interval
d) Determine whether f is increasing, decreasing, or constant.
2. (§4.1) Using linear functions as models

EG In 2002, major league baseball signed a labor agreement with the players. In this agreement, any team whose payroll exceeds $\$ 128$ million starting in 2005 must pay a luxury tax of 22.5% (for first-time offenses). The linear function describes the luxury tax T of a team whose payroll is p (in millions of dollars).
a) What is the implied domain of this function?
b) What is the luxury tax for a team whose payroll is is $\$ 160$ million?
c) What is the payroll of a team that pays a luxury tax of $\$ 11.7$ million?
3. (§4.3) Graph a quadratic function.

EG Sketch the graph of the quadratic function $f(x)=-2 x^{2}-4 x-3$. Label the vertex and y-intercept.
4. (§4.3) Find optimal values using quadratic models .

EG Paradise Travel Agency's monthly profit P (in thousands of dollars) depends on the amount of money x (in thousands of dollars) spent on advertising per month according to the rule $\mathrm{P}(\mathrm{x})=7-2 \mathrm{x}(\mathrm{x}-4)$. What is Paradise's maximum monthly profit?
5. (§4.4) Constructing and using quadratic models

EG A farmer with 2000 meters of fencing wants to enclose a rectangular plot that borders on a straight highway. If the farmer does not fence the side along the highway, what is the largest area that can be enclosed?

Brief Answers:

1. a) $-3 / 2,2$ b) locate $(0,2)$, then locate the point down three and right two units. c) $-3 / 2 \quad$ d) dec.
2. a) $[128, \infty)$
b) $\$ 7.2$ million c) $\$ 180$ million
3. Vertex is at $(-1,-1)$, opens down, and y-intercept is $(0,-3)$.
4. $\$ 15,000$
5. 500,000 square meters
6. Identify properties of linear functions

EG Given $f(x)=-\frac{3}{2} x+2$
a) By comparison with the slope-intercept form of the equation of a line

$$
y=m x+b
$$

m , the slope, is $-3 / 2$ and b, the y-intercept, is 2 .
b) The y-intercept, " 2 ", says point: $(0,2)$ is on the graph.

The slope, $-\frac{3}{2}$ (" -3 over 2"), lets us know that as x "moves over 2" $(\rightarrow \rightarrow)$, y must change by -3 .
"Moving over2", "down 3", the point (2, -1)
belongs to the graph,
To maintain good habits, we also label the x-intercept.
c) Find the average rate of change of f on the interval $[0.3,4 / 9]$

Method ONE:
The line has a constant slope- i.e. constant rate of change of y with respect to x . That slope is $-3 / 2$.

Method TWO:

$$
\begin{aligned}
& f(0.3)=-3 / 2(.3)+2 \\
& f(4 / 9)=-3 / 2(4 / 9)+2 \\
& \text { So } \\
& \frac{\Delta y}{\Delta X}=\frac{f(4 / 9)-f(.3)}{4 / 9-.3}=\frac{-3 / 2(4 / 9)+2-\{-3 / 2(.3)+2\}}{4 / 9-.3} \\
& =\frac{-3 / 2(4 / 9)--3 / 2(.3)}{4 / 9-.3}=\frac{-3 / 2(4 / 9-.3)}{4 / 9-.3}=-3 / 2
\end{aligned}
$$

d) Determine whether f is increasing, decreasing, or constant.

The values for $y=f(x)$ decrease as x increases. The slope is negative.
Either of these facts indicate f is decreasing.
2. In 2002, major league baseball signed a labor agreement with the players. In this agreement, any team whose payroll exceeds $\$ 128$ million starting in 2005 must pay a luxury tax of 22.5% (for first-time offenses). The linear function $T(p)=0.225(p-128)$ describes the luxury tax T of a team whose payroll is p (in millions of dollars).
a) What is the implied domain of this function?
" p " stands for payroll, so p must be non-negative.
But, further, the description prior to the expression for T states that the luxury tax (T) is imposed only on those teams whose payrolls exceed 128 million. So p must be at least 128 million for this formula to apply. Thus the "implied domain" is $[128, \infty)$.
b) What is the luxury tax for a team whose payroll is is $\$ 160$ million? $T(160)=.225(160-128)=.225(32)=7.2$ The tax is $\$ 7.2$ million, or $\$ 7,200,000$.
c) What is the payroll of a team that pays a luxury tax of $\$ 11.7$ million?

If $T(p)=11.7$, then $.225(p-128)=11.7$. So $p=128+11.7 / .225=180$.
That team's payroll must be 180 million.
3. Sketch the graph of the quadratic function $f(x)=-2 x^{2}-4 x-3$. Label the vertex and y-intercept.

The most direct way to do this, in general, is by completing the square.
We can also use the zeroes (x-intercepts) to locate the x-coordinate of the vertex.

$$
\begin{aligned}
f(x) & =-2 x^{2}-4 x-3 \\
& =-2\left(x^{2}+2 x \quad\right)-3 \\
& =-2\left(x^{2}+2 x+1\right)-3+2 \\
& =-2(x+7)^{2}-1
\end{aligned}
$$

$$
\text { (First factor out the }-2 \text {, carefully of course!) }
$$

Then, seeing $x^{2}+2 x$, we know the square we need is $(x+1)^{2} \quad$...and we know $(x+1)^{2}$ is $x^{2}+2 x+1$ so we add the needed +1 in the middle, \& offset at end [+2 since we added $-2(+1)=-2]$.

We now can say this is a parabola (like the graph of $y=x^{2}$)
...shifted left one unit $\left(y=(x+1)^{2}\right)$
...stretched vertically by factor $2\left(y=2(x+1)^{2}\right)$
...flipped upside down over the x-axis $\left(y=-2(x+1)^{2}\right)$
...then shifted down one unit $\left(y=-2(x+1)^{2}-1\right)$
The vertex is $(-1,-1)$.
The y-intercept is $(0,-3)$
(since $f(0)=-2 \cdot 0^{2}-4 \cdot 0-3$)
(Borrowed graph $\boldsymbol{\nabla}$)

4. Find optimal values using quadratic models .

Paradise Travel Agency's monthly profit P (in thousands of dollars) depends on the amount of money x (in thousands of dollars) spent on advertising per month according to the rule $P(x)=7$ $2 x(x-4)$. What is Paradise's maximum monthly profit?

$$
\begin{align*}
P(x) & =7-2 x(x-4) \\
& =-2 x^{2}+8 x+7 \\
& =-2\left(x^{2}-4 x \quad+7\right. \\
& =-2\left(x^{2}-4 x+4\right)+7+8 \\
& =-2(x-2)^{2}+15
\end{align*}
$$

We complete the square

First factor out the -2
Then, seeing $x^{2}-4 x$, we know the square we need is $(x-2)^{2} \ldots$ and we know that $(x-2)^{2}$ is $x^{2}-4 x+4$
we add the necessary adjustments in the middle \& end.

We identify this as a parabolic function (opening down) with a maximum at $(2,15)$. So maximum is 15 (thousand) and the advertising budget should be 2 (thousand)
5. A farmer with 2000 meters of fencing wants to enclose a rectangular plot that borders on a straight highway. If the farmer does not fence the side along the highway, what is the largest area that can be enclosed?

$$
\begin{aligned}
\text { Area } & =\text { width } \cdot \text { length } \\
& =x(2000-2 x)
\end{aligned}
$$

... a parabola opening down, so its vertex is a max.
2000-2x
x-intercepts are obvious: $x=0$ and $x=1000$, so by symmetry the vertex must be halfway between, at $x=500$. (That is x should be 500 meters to maximize the area enclosed.)
The maximum area is $500 \mathrm{~m}(2000 \mathrm{~m}-2 \cdot 500 \mathrm{~m})=500 \mathrm{~m}(1000 \mathrm{~m})=500,000 \mathrm{~m}^{2}$.

