1. Graph these polynomial functions. Label all intercepts and describe the end behavior.

b.
$$P(x) = x^5 - 5x^3 + 4x$$
.

2. Use polynomial long division.

EG: Divide ...
$$\frac{6x^4 + 2x^2 + 22x}{2x^2 + 5}$$

3. Construct a polynomial to specifications!

a. Find a second-degree polynomial with real coefficients, with zeroes –3 and 2, passing through (4,3).

b. Find a polynomial whose graph is be similar to that shown here <.

c. Find a polynomial of minimal degree, with real coefficients, having zeroes 2i and 1 - i, and constant term 16.

4. Find all the zeros of these polynomial functions.

a. For $P(x) = 5x^3 - 22x^2 + 18x - 4$, list all the theoretically possible rational zeroes of P; use synthetic division to locate a zero; then find the remaining zeroes.

b. Find all the zeroes of $P(x) = 4x^5 + 15x^3 - 4x$

5. Graph these rational functions. Include the following:

• Find the x and y intercepts.

• Find the equation of any vertical asymptote.

• Find the equation of any horizontal asymptote.

Sketch the graph.

a. $f(x) = \frac{3x - 4}{x - 2}$

b. $f(x) = \frac{x^2 - 3x - 4}{x - 2}$

c. $f(x) = \frac{x^3 - 1}{x}$

d. $f(x) = \frac{x^2 - 2x - 15}{x^2 - 4}$

6. Miscellaneous:

a. Find the value of $P(x) = 2x^5 - 20x^4 - 20x^3 - 20x^2 - 20x - 22$ without raising 11 to a power.

b. If $P(x) = (x - 2)(x^3 - 4x^2 + 7x + 13) + 7$, what is P(2)?

- 1. Graph a polynomial function. Label all intercepts and describe the end behavior.
 - $P(x) = x^4 2x^3 15x^2$.
 - (1)Domain = R, of course (since this is a polynomial function... domain must be R.)
 - (2) y-intercept: $P(0) = 0^4 - 2 \cdot 0^3 - 15 \cdot 0^2 = 0$
 - x-intercepts: $x^4 2x^3 15x^2 = 0$ (3) SIGNS: P(x) is $x^2 (x^2 - 2x - 15) = 0$ when x is between $x^{2}(x-5)(x+3)=0$ x = 0 or 0 or 5 or -3
 - the outer limits: As $x \to \infty$, x^4 dominates the other terms, so $f(x) \to \infty$. (4) (i.e. f(x) grows unboundedly large) Likewise, as $x \to \infty$, x^4 , dominating the other terms, takes $f(x) \to \infty$
 - (5) ...the graph:

- b. $P(x) = x^5 - 5x^{3}$
- (1)Domain = R
- (2) y-intercept: when x = 0, y = P(0) = 0
- when $x^5 5x^3 + 4x = 0$ SIGNS: P(x) is $\frac{-0 + 0 0 + 0 0 + 0}{-0 + 0 0 + 0}$ when $x(x^4 5x^2 + 4) = 0$ when x is between $\frac{-2}{-1}$ 0 1 2 x-intercepts: y = 0 when $x^5 - 5x^3 + 4x = 0$ (3) $x(x^2-4)(x^2-1)=0$ x(x+2)(x-2)(x+1)(x-1) = 0x = 0,-2, 2, -1, 1
- as $x \to \infty$, f(x), dominated by x^5 , $\to \infty$ (4) the outer limits: ax $x \to -\infty$, f(x), again ruled by x^5 , $\to -\infty$
- (5) graph above, right. P is an odd function.

NOTE: The curve is smoother than this pathetic illustration indicates. It is just difficult to draw these curves with a mouse and flaky software. After the seventeenth try, patience vanishes. When I win the lottery, I will buy some fancy software.

2. Use polynomial long division.

EG: Divide ...
$$\frac{6x^4 + 2x^2 + 22x}{2x^2 + 5}$$

$$2x^2 + 5 \qquad \frac{3x^2 - \frac{13}{2}}{96x^4 + 0 + 2x^2 + 22x + 0}$$

$$\frac{6x^4 + 15x^2}{-13x^2}$$

$$\frac{-13x^2 - \frac{65}{2}}{22x + \frac{65}{2}}$$
SO
$$\frac{6x^4 + 2x^2 + 22x}{2x^2 + 5} = 3x^2 - \frac{13}{2} + \frac{22x + \frac{65}{2}}{2x^2 + 5}$$
OR
$$6x^4 + 2x^2 + 22x = (3x^2 - \frac{13}{2})(2x^2 + 5) + 22x + \frac{65}{2}$$

Notice the last statement shows the way to check your division results (→ multiply & add) !!

3. a. Find a second-degree polynomial with real coefficients with zeroes –3 and 2, passing through (4,3).

r is a zero of polynomial P if, and only if, (x - r) is a factor of P(x).

Having zeroes -3 and $\frac{2}{3}$ requires that both (x - -3) and $(x - \frac{2}{3})$ be factors. Since P must be a 2^{nd} -degree polynomial, the only other possible factor is a constant. So:

P(x) = A(x + 3)(x - 2) where A is some currently undetermined constant.

The additional requirement that the curve contain (4,3) determines A:

$$P(4) = A (4+3) (4-2) = A (7) (2) = 14A$$

But $P(4)$ must be 3... so 14A must be 3. therefore $A = 3/14$ and $P(x) = (3/14) (x + 3) (x - 2) = (3/14) (x^2 + x - 6)$

b. The graph shows us there is a repeated zero*, of even order, at x = 0, and a simple zero at x = 3. It also tells us P(2) must be 8.

The zeroes inform us that (x-0)(x-0)(x-3) must be part of the factorization of P. Therefor, $P(x) = x \cdot x \cdot (x-3) \cdot (\text{other factors})$. The degree of P, which is 3, tells us that the "other factors" can be only constant.

Stated briefly, we know:

Zeroes are 0, 0, and 3 & polynomial has degree 3, so $P(x) = K x^2 (x-3)$

Since P(2) = 8:
8 = P(2) =
$$K \cdot 2^2(2-3) = -4K$$
, so K must be -2.

Therefore,
$$P(x) = -2 x^2 (x-3)$$
, or $P(x) = -2x^3 + 6 x^2$

Find a fourth degree polynomial with real coefficients, with zeroes 2i and 1 - I, and C. constant term 16.

The complex zeroes of a polynomial with REAL coefficients must occur in conjugate pairs.

Since we are required to find a polynomial with real coefficients, and since 1 - 1 is a zero, its conjugate, 1 + I must also be a zero. (Otherwise we'd end up with complex coefficients.)

Likewise, since 2i is a zero, -2i must also be a zero. Therefore:

$$P(x) = A(x - (1+i))(x - (1-1))(x-2i)(x+2i)$$

$$= A(x^2 - (1+i+1-1)x + (1+i)(1-i))(x^2 - 4i^2)$$

$$= A(x^2 - 2x + 2)(x^2 + 4)$$

The additional requirement that the constant term be 16 determines A.

A(2)(4) must be 16.... thus A must be 2, and P(x) = 2 (
$$x^2 - 2x + 2$$
) ($x^2 + 4$) = 2 ($x^4 - 2x^3 + 6x^2 - 8x + 8$) = 2 $x^4 - 4x^3 + 12x^2 - 16x + 16$

- Find all the zeros of a polynomial function. 4.
 - For $P(x) = 5x^3 22x^2 + 18x 4$, list all the theoretically possible rational zeroes of P; a. and use synthetic division to locate one; then find the remaining zeroes.

RATIONAL zeroes of a polynomial with INTEGER coefficients must be of the form p/q where p divides the constant term and q divides the leading coefficient.

So any rational zeroes of $5x^3 - 22x^2 + 18x - 4$ must be of the form:

$$\frac{\pm 4 \text{ or } \pm 2 \text{ or } \pm 1}{\pm 5 \text{ or } \pm 1}$$
 which yields: $\pm 1 \pm 2 \pm 4 \pm \frac{1}{5} \pm \frac{2}{5} \pm \frac{4}{5}$

$$\begin{bmatrix} -\frac{1}{5} & 5 & -22 & 18 & -4 \\ & -1 & -\frac{23}{5} & \odot \\ \hline 5 & -23 & \frac{67}{5} & \odot \end{bmatrix}$$

$$\begin{bmatrix} 2/5 \\ 2 \\ -20 \\ 10 \\ 0 \end{bmatrix}$$

So
$$P(x) = (x - \frac{2}{5})(5x^2 - 20x + 10) = (5x - 2)(x^2 - 4x + 2)$$

For the remaining zeroes we solve:
$$x^2 - 4x + 2 = 0$$
 ... using the quadratic formula: $x = \frac{4 \pm \sqrt{16 - 8}}{2} = 2 \pm \sqrt{2}$

PS P(-x) = $-5x^3 - 22x^2 - 18x - 4$, so, by Descartes' Rule of Signs, there are no negative real zeroes. (We could have saved time **here!!!)

Find all the zeroes of $P(x) = 4x^5 + 15x^3 - 4x$ b.

$$4x^5 + 15x^3 - 4x =$$
 Notic

Notice you can factor this!

$$x(4x^4 + 15x^2 - 4) =$$
 ...and this!

$$x (4x^2 - 1)(x^2 + 4) =$$

 $x(2x+1)(2x-1)(x+2i)(x-2i)$

$$x(2x+1)(2x-1)(x+2i)(x-2i)$$

So the zeroes of P are: $0, -\frac{1}{2}, \frac{1}{2}, -2i, 2i$

• Find the x and y intercepts.

$$f(0) = 2$$
; $f(x) = 0$ when $3x - 4 = 0 ... $x = \frac{4}{3}$$

Find the equation of the vertical asymptote.

Near
$$x = 2$$
, numerator $\rightarrow 2$, denominator $\rightarrow 0$, so fraction $\rightarrow \pm \infty$... vertical asymptote at $x = 2$.

Find the equation of the horizontal asymptote.

As
$$x \to \infty$$
, $(3x - 4)/(x - 2) \to 3$

so y = 3 is the horizontal asymptote.

· Division also shows us:

$$\frac{3x-4}{x-2} = 3 + \frac{2}{x-2}$$
, which would have to be ...

y=1/x, shifted 2 units right, stretched vertically by factor 2,

(In reality, curve has no "squiggles". Mice!!!!)

(0,2)

y = 3

EPRP-p5

b.
$$f(x) = \frac{x^2 - 3x - 4}{x - 2} = \frac{(x - 4)(x + 1)}{x - 2}$$

• Intercepts: f(0) = 2.

$$f(x) = 0$$
 when $x = 4, -1$.

Vertical asymptote

At x = 2, for the usual reason.

Horizontal asymptote

None. As $x \to \infty$, $f(x) \to \infty$

Divide to see non-horizontal asymptote:

$$\frac{x^2 - 3x - 4}{x - 2} = x - 1 + \frac{-6}{x - 2}$$

So we can see that y = x - 1 is an oblique linear asymptote for y = f(x). (Since -6/(x - 2) diminishes towards 0 as x meanders out towards infinity.)

c.
$$f(x) = \frac{x^3 - 1}{x} = \frac{(x - 1)(x^2 + x + 1)}{x}$$

x-intercept (1,0)** vertical asymptote at x = 0

$$f(x) = \frac{x^3 - 1}{x} = x^2 - \frac{1}{x}$$

... this shows the given f is x^2 + an amount that is very small when x is very large. So when x is large, the graph of y = f(x) is very close to the graph of the familiar curve $y = x^2$. And as $x \rightarrow \infty$, the difference \rightarrow zero. This is asymptotic behavior (but not a linear asymptote).

NO worries: The only asymptotes you will be asked to find are linear asymptotes!!!

**of course, we determined that the remaining zeroes are complex, and thus not on the graph:

$$x^{2} + x + 1 = 0$$
 $x = \frac{-1 \pm \sqrt{1-4}}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$

d.
$$f(x) = \frac{x^2 - 2x - 15}{x^2 - 4} = \frac{(x-5)(x+3)}{(x-2)(x+2)}$$

 $f(x) = \frac{x^2 - 2x - 15}{x^2 - 4} = \frac{(x-5)(x+3)}{(x-2)(x+2)}$ \leftarrow Here we see x = 5, x = -3 make f(x) = 0 (x-int.) \leftarrow Here we see x = 2, x = -2 cause 0 in the domain, and, since the numerator is not 0 at the same time, cause vertical asymptotes VAs at x = -2 & x = 2

$$f(0) = {}^{-15}/_{-4} = {}^{15}/_{4}$$
 is the y-intercept.

$$f(x) = \frac{x^2 - 2x - 15}{x^2 - 4}$$

 $f(x) = \frac{x^2 - 2x - 15}{x^2 - 4}$ Numerator is dominated by x^2 ... behaves "like" x^2 when $x \to \infty$ Denominator is dominated by x^2 ... behaves "like" x^2 when $x \to \infty$ So f(x) should behave "like" x^2/x^2 when $x \to \infty$.

$$f(x) = \frac{1 - 2/x - 15/x^2}{1 - 4/x^2} \leftarrow \text{Another way to reach that conclusion...}$$

SIGNS:

when x is between

One final investigation helps us determine an important feature affecting the graph's shape. Does the function cross its horizontal asymptote?

 $\frac{x^2 - 2x - 15}{x^2 - 4} = 1$ Can

We solve:

$$x^{2} - 2x - 15 = x^{2} - 4$$

 $-2x - 15 = -4$
 $-2x = 11$
 $x = -\frac{11}{2}$

And see that f crosses its horizontal asymptote at (x = -5.5, 1)

- 6. The Remainder Theorem gives us the answers: If polynomial P(x) = (x - c) Q(x) + R(x) where Q & R are the quotient and remainder polynomials for $P \div (x-c)$, then R(x) is a constant, and P(c) = that constant.
 - a. Find the value of $P(x) = 2x^5 20x^4 20x^3 20x^2 20x 22 @ 11 without raising 11 to a power.$

11
$$\begin{bmatrix} 2 & -20 & -20 & -20 & -22 \\ 22 & 22 & 22 & 22 \end{bmatrix}$$

2 2 2 2 2 0 This tells us that $P(11) = 0$, thus 11 is a zero, and $(x - 11)$ is a FACTOR of P .
In fact, this tells us: $P(x) = (x - 11) \ 2(x^4 + x^3 + x^4 + x^3 + x + 1)$

b. If
$$P(x) = (x-2)(x^3 - 4x^2 + 7x + 13) + 7$$
, what is $P(2)$?
$$P(2) = (2-2) \text{ (whatever)} + 7$$

$$= 0 + 7$$

SO: P(2) = 7 ... JUST as the remainder theorem states. (Go ahead, check it out!)