Essential Skills Chapter 3&4 – additional practice

Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$ for a polynomial function. 1.

EG. for
$$H(x) = x^3$$

EG. for
$$H(x) = x^3$$
 find $\frac{H(x+h) - H(x)}{h}$...and simplify completely.

2. Sketch the graph of a function using basic shapes combined with transformations.

E.G.: Apply transformations to basic functions to obtain the graph of a new function.

a)
$$f(x) = 2 - \sqrt{x + 1}$$

b)
$$g(x) = \frac{1}{2} |-x| + 2$$

c)
$$h(x) = F(x + 2) - 3$$

d)
$$G(x) = F(x/2)$$

e)
$$H(x) = F(-x)$$

Identify the extreme value & graph of a quadratic function by changing the form 3. $f(x) = ax^2 + bx + c$ to the form $f(x) = a(x - h)^2 + k$ (completing the square).

E.G.: For $f(x) = 2x^2 - 8x + 11$

- a) Express f(x) in the form $f(x) = a(x h)^2 + k$.
- b) Find the extreme value of f(x). What type of extreme value is it?
- Sketch f(x), including all the important points. c)
- Find the average rate of change of a function on a specified interval. 4.
 - Find the average rate of change of $f(x) = x^3 + 2$ on the interval [0, 2].
 - Given the graph of y = f(x) below, b)

- find the average rate of change of f on [-3, 2] and
- · identify the intervals on which f is increasing, and
- identify the intervals on which f is decreasing.
- (Does f appear to have any extreme points? Explain.)

5. Find the domain of the function.

EG For $f(x) = \frac{1}{x+3}$ and $g(x) = \frac{x+1}{x-2}$... find:

- a) the domain of f + g b) the domain of $\frac{f}{g}$
- the domain of $h(x) = \sqrt{g(x)}$ c)
- the domain of $k(x) = \sqrt{g(x) + 1}$ d)

Solutions to E S Chapter 3&4 – additional practice

1.
$$\frac{H(x+h) - H(x)}{h} = \frac{\left(\frac{(x+h)^3}{h} - (x^3)\right)}{h}$$

$$= \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - (x^3)}{h}$$

$$= \frac{3x^2h + 3xh^2 + h^3}{h}$$

$$= \frac{h(3x^2 + 3xh + h^2)}{h} = 3x^2 + 3xh + h^2 \quad ... \text{provided } h \neq 0$$

2a. The graph of $y = \sqrt{x}$ is

The graph of $y = \sqrt{x + 1}$ is the graph $y = \sqrt{x}$

$$y = -\sqrt{x + 1} + 2$$

$$y = -\sqrt{x + 1}$$

& the graph of
$$y = -\sqrt{x + 1}$$

& finally the graph of
$$y = -\sqrt{x + 1} + 2$$

2b. The graph of y = |-x| is the reflection (or "flip") of y = |x| through the y-axis.

At each x, the graph of $y = (\frac{1}{2}) |-x|$ is half as high as that of y = |-x|At each x, the graph of $y = (\frac{1}{2}) - x + 2$ is 2 units higher than that of $y = (\frac{1}{2}) - x$ (so we shift upwards by 2).

Another way to show the graph of F(x/2)— Change the x-scale.

Solutions to ES Chapter 3&4 additional, cont'd.

3. Given: $f(x) = 2x^2 - 8x + 11$ we complete the square $f(x) = 2x^2 - 8x + 11$

We identify this as a parabola whose $\underline{\text{minimum}}$ occurs at (2,3)—a parabola that is "stretched twice as tall" as the basic $y = x^2$, shifted 2 units to the right, and 3 units upward.

4. At x = -3 the value of the function (y = f(-3)) appears to be 2.
 At x = 2 the value of the function appears to be -1.
 Therefore the average rate of change of f on the interval [-3, 2] is

$$\frac{\triangle f}{\triangle x}$$
 or $\frac{\triangle y}{\triangle x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 2}{2 - -3} = \frac{-3}{5}$

f appears to decrease on $(-\infty, -1]$ and on $[4, \infty)$. f appears to increase on [-1, 4] and has a local minimum at (-1, -2), and a local maximum at (4, 4).

- 5. a. In order for f+g to be defined, both f & g must be defined. This is the case as long as x is not -3 or 2. So the domain of f+g is $(-\infty, -3) \cup (-3,2) \cup (2,\infty)$.
 - b. For f/g to be defined, not only must the conditions in part a be true, but we must also note that g(x) may not be 0, so the domain must be further restricted to avoid -1. So the domain of f/g is $(-\infty, -3) \cup (-3, -1) \cup (-1, 2) \cup (2, \infty)$.
 - c. To find $\sqrt{g(x)}$ we must first be able to find g(x) ... so x must not be 2. But, in addition, to take the $\sqrt{g(x)}$, g(x) must not be negative... so: $g(x) \geq 0 \quad \text{we solve:} \quad E = \frac{x+1}{\sqrt{-2}} \geq 0$

Critical values (where the factors x+1 and x-2 can change sign) are -1 & 2.

So we see the required condition holds for $-\infty < x \le -1$ and for $2 < x < \infty$

The domain of $h(x) = \sqrt{g(x)}$ is $(-\infty, -1] \cup (2, \infty)$

d) For $k(x) = \sqrt{g(x) + 1}$, we must have $g(x) + 1 \ge 0$... for which we solve:

$$\frac{x+1}{x-2}+1 \ge 0 \qquad \qquad \frac{x+1+x-2}{x-2} \ge 0 \qquad \qquad \frac{2x-1}{x-2} \ge 0$$

Critical values (where the factors 2x - 1 and x - 2 can change sign) are $\frac{1}{2}$ & 2.

So we see the required condition holds for $-\infty < x \le \frac{1}{2}$ and for $2 < x < \infty$

The domain of
$$k(x) = \sqrt{g(x) + 1}$$
 is $(-\infty, \frac{1}{2}] \cup (2, \infty)$