RESPIRATORY EXCHANGE RATIO

 $RER = VCO_2/VO_2$

Oxidation of a molecule of Carbohydrate

 $6 O_2 + C_6 H_{12}O_6 \longrightarrow 6 CO_2 + 6 H_2O + 38 ATP$

 $RER = VCO_2/VO_2 = 6 CO_2/6 O_2 = 1.0$

Oxidation of a molecule of Fatty Acid

 $23 O_2 + C_{16}H_{32}O_2 \longrightarrow 16 CO_2 + 16 H_2O + 129 ATP$

 $RER = VCO_2/VO_2 = 16 CO_2/23 O_2 = 0.7$

Now that I know how to calculate R, what does this mean to me?

1. You can determine what fuel is being used for energy production

2. You can calculate energy expenditure for a given activity

R	Energy Expenditure kcal/L O ₂
0.71	4.69
0.75	4.74
0.80	4.80
0.85	4.86
0.90	4.92
0.95	4.99
1.00	5.05

For example, if I am exercising and consuming 2.0 L of O_2 /min and my R value is 0.85 I will be expending 9.72 kcal/min (2.0 L of O_2 x 4.86 kcal/ O_2 = 9.72 kcal/min). Thus, if I exercise for 30 min I will burn 292 kcal.

If however, I exercise at a lower intensity and my oxygen consumption is 1.0 L/min with an R of 0.71, I will burn only 4.69 kcal/min (1.0 L of $O_2 \times 4.69$ kcal/ $O_2 = 4.69$ kcal/min). Thus, if I exercise for 30 min I will burn 140 kcal.

See TABLE 4.5 on Page 144 – Energy Expenditure

Excess Post-Exercise Oxygen Consumption (EPOC)

Due to:

- 1. Replenishing of the ATP/CrP stores
- 2. Increased levels of catecholamines in the blood
- 3. elevated rates of fatty acid oxidation
- 4. increased body temperature
- 5. continued substrate cycling

Maximal Oxygen Uptake (VO_{2max})

- 1. Regarded as the best measurement of aerobic capacity
- 2. Refers to the maximum volume of oxygen that can be consumed per minute and used for aerobic energy production
- 3. Linear relationship between VO_{2max} and exercise intensity

Lactate Threshold

1. Single best predictor of aerobic (i.e., endurance) exercise performance.

2. Usually expressed as % VO_{2max}

3. Aerobically trained individuals typically have a lactate threshold that is greater than that of untrained. This is a result of the aerobically trained athletes having a more developed ability to generate energy aerobically and results in less lactate being produced.

UT: 50-60% VO_{2max} TR: 70-80% VO_{2max}

CAUSES OF FATIGUE

1. Short duration, high intensity exercise

- a. CrP depletion
- b. Metabolic By-products
 - 1. Increased lactate concentration [HLa], which increases [H⁺].
 - a. Decreased pH
 - b. Decreased rate of glycolysis
 - c. Interferes with Ca^{2+} binding to troponin

2. Prolonged endurance exercise

- a. Glycogen depletion
 - 1. Muscle glycogen levels
 - a. Muscle glycogen declines throughout exercise
 - b. As muscle glycogen levels decline, there is an increased reliance on blood glucose
 - 2. Liver glycogen levels
 - a. Liver glycogenolysis attempts to maintain blood glucose levels
 - b. When liver glycogen levels fall and the rate of liver glycogenolysis is less than the rate of muscle glucose uptake the blood glucose concentration declines
 - c. Time to fatigue due to an inability to provide an adequate supply of carbohydrate to the muscle