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Abstract

Given a class C of geometric objects and a point set P , a C-matching of P is a set M =
{C1, . . . , Ck} ⊆ C of elements of C such that each Ci contains exactly two elements of P and
each element of P lies in at most one Ci. If all of the elements of P belong to some Ci, M
is called a perfect matching. If, in addition, all of the elements of M are pairwise disjoint, we
say that this matching M is strong. In this paper we study the existence and characteristics of
C-matchings for point sets in the plane when C is the set of isothetic squares in the plane. A
consequence of our results is a proof that the Delaunay triangulations for the L∞ metric and
the L1 metric always admit a Hamiltonian path.

1 Introduction

Let C be a class of geometric objects and let P be a point set with an even number, n, of elements
p1, . . . , pn in general position. A C-matching of P is a set M = {C1, . . . , Ck} ⊆ C of elements of C
such that each Ci contains exactly two elements of P and each element of P lies in at most one Ci.
If all of the elements of P belong to some Ci, M is called a perfect matching. If, in addition, all of
the elements of M are pairwise disjoint, we say that the matching M is strong.

Let GC(P ) be the graph whose vertices are the elements of P and whose edges join a pair of
points if there is an element of C containing the two points and no other points from P . Then, a
perfect matching in GC(P ) in the usual graph theory sense corresponds to our definition of perfect
C-matching.

If C is the set of line segments or the set of all isothetic rectangles, then we get a segment-
matching or a rectangle-matching, respectively. If C is the set of circles or of isothetic squares in
the plane, then M will be called a circle-matching or a square-matching, respectively. An example
is shown in Figure 1. Notice that these four classes of objects have in common the shrinkability
property: if there is an object C ′ in the class that contains exactly two points p and q in P , then
there is an object C ′′ in the class such that C ′′ ⊂ C ′, p and q lie on the boundary of C ′′, and the
relative interior of C ′′ is empty of points from P . In the case of rectangle-matchings, we can assume
the points p and q are at opposite corners of C ′′.

It is easy to see that P always admits a strong segment-matching, i.e., a non-crossing matching
in the complete geometric graph ([10]) induced by P . If no vertical or horizontal line contains
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two points from P , then P necessarily admits a strong rectangle-matching, which corresponds to a
non-crossing matching in the rectangle-of-influence graph of P , in which two points are adjacent if
the rectangle having them as opposite corners covers no third point from P [8, 9].

For the cases of circles and isothetic squares, however, the existence of matchings is not im-
mediate, and several interesting problems arise. In this paper we study the existence of perfect
and non-perfect, strong and non-strong square-matchings for planar point sets. In the concluding
remarks we compare our results for squares with those we obtained for circle-matchings [1]1.

It is worth mentioning that our results on square-matchings prove, as a side effect, the fact that
Delaunay triangulations for the L1 and L∞ metrics contain a Hamiltonian path, a question that to
the best of our knowledge remained unsolved since it was posed in the conference version of [4].

Since some of our results have quite long proofs and require several technical lemmas, for the
sake of clarity of exposition we present all of the results in Section 2 and present the corresponding
proofs in Section 3.

P

Figure 1: A point set P (center), a circle-matching of P (left) and a strong square-matching of P
(right).

2 Results

In this section, we consider geometric matchings of planar point sets using axis-aligned squares.
Throughout this section, we assume that no two points of P lie on a common vertical or horizontal
line; at the end of Section 3, we give detailed comments on how to handle degenerate cases.

Consider the geometric graph G(P ) in which the points P are the vertices of G(P ), two of
which are adjacent if there is an isothetic square containing them that does not contain another
element of P . In other words, G(P ) is the Delaunay graph of P in the L∞ metric (or the L1

metric, if the reference is rotated 45 degrees). Under certain non-degeneracy assumptions (no four
points lie on the boundary of an axis-aligned square whose interior contains no point of P ), G(P )
is a triangulation. We show that G(P ) always contains a perfect matching; this answers in the
affirmative a question posed in the conference version of [4] (to our knowledge, this question has
not previously been answered). In fact, we prove that G(P ) contains a Hamiltonian path; this
is perhaps somewhat surprising, since it is not the case for the Euclidean (L2) Delaunay graph.
Studying Hamiltonicity in Delaunay graphs/triangulations was the original motivation that lead
Dillencourt first to find a counterexample [6, 5] and then subsequently to prove that Euclidean

1A preliminary version of our results on circle-matchings and square-matchings appeared as an extended abstract
in the conference paper [1]
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Delaunay triangulations are always 1-tough and contain perfect matchings [4]. He also proved later
that deciding whether or not a Euclidean Delaunay triangulation contains a Hamiltonian cycle is
NP-complete [7]. In Section 3 we prove:

Lemma 1 G(P ) contains a Hamiltonian path. In particular, a Delaunay triangulation of a point
set in the L∞ metric or the L1 metric admits a Hamiltonian path.

By considering every other edge in a Hamiltonian path, we immediately obtain:

Theorem 1 Every planar point set P of even cardinality admits a perfect square-matching.

However, a perfect strong square-matching is not always possible. An example with 10 points is
shown in Figure 3. This example can be used to construct arbitrarily large sets that do not admit
perfect strong square-matchings:

Theorem 2 There are n-element point sets in the plane, for n arbitrarily large, such that at most
10

11
n of the n points can be strongly square-matched.

We also provide a lower bound on the fraction of points that can always be strongly square-
matched:

Theorem 3 Every planar point set P of n points in general position has a strong square-matching
using at least 2⌈n

5
⌉ points of P .

When the points to be matched are in convex position, one may have the intuition that a perfect
strong matching always exists. This is false for circle-matchings, as we show in [1], but correct for
squares, as established in the following result:

Theorem 4 Every planar point set P in convex position with an even number of elements admits
a perfect strong square-matching.

3 Proofs

3.1 Proof of Lemma 1

We now prove that any planar point set P of even cardinality admits a perfect square-matching. In
fact, we prove the stronger fact, Lemma 1, that the geometric graph G(P ) contains a Hamiltonian
path. We start with a result that is part of folklore, that the L∞ Delaunay graph in R

2 is planar;
we include a proof for completeness:

Lemma 2 For any planar point set P , G(P ) is planar.

Proof. Consider two edges, pipj and pkpl, of G(P ), and let Sij and Skl be corresponding isothetic
“witness” squares, not containing other points of P . We claim that two edges pipj and pkpl cannot
cross. If Sij and Skl are disjoint, then clearly the two edges do not cross. If Sij and Skl do intersect,
then their boundaries cross at two distinct points, a and b, except in degenerate situations. The
line through ab separates pipj from pkpl, since the points pi, pj must be on that portion of the
boundary of Sij that does not lie inside Skl, and similarly for pk, pl. 2
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Now, let C be a square that contains all of the elements of P in its interior, and P ′ be the point
set obtained by adding to P the vertices of C. Let G be the graph obtained from G(P ′) by adding
an extra point p∞ adjacent to the vertices of C. We will show that G is 4-connected; before that,
we prove a technical lemma.

Lemma 3 Let Q be a finite point set containing the origin O and a point p from the first quadrant,
such that all of the other points in Q lie in the interior of the rectangle R with corners at O and p.
Then, there is path in G(Q) from O to p such that every two consecutive vertices can be covered by
an isothetic square, empty of any other point from Q.

Proof. The proof is by induction on |Q|. If |Q| = 2, the result is obvious. If |Q| > 2, we grow
homothetically from O a square with bottom left corner at O, until a point q ∈ Q, different from
O, is found for the first time. This square gives an edge in G(Q) between O and q. Now we can
apply induction to the points from Q covered by the rectangle with q and p as opposite corners. 2

Clearly, the above lemma applies to any of the four quadrants with respect to any point of P
that is taken to be the origin.

Lemma 4 G is 4-vertex-connected.

Proof. We argue that the graph G′ resulting from the removal of any three vertices of G is connected.
Suppose first that none of the removed vertices is p∞, and we will see that p∞ can be reached

from any vertex v ∈ G′. If v is a corner of C, then it is adjacent to p∞. If v is not such a corner,
consider the four quadrants it defines. In at least one of them no vertex from G has been removed,
so we can apply Lemma 3 to this quadrant and obtain a path in G′ from v to a surviving corner of
C; from there we arrive at p∞.

If we remove from G the vertex p∞ together with two more points in P , then G′ contains the
4-cycle given by the corners of C. From any vertex v ∈ P in G′, we can reach one of these corners
(and therefore any of them), since in at least two of the quadrants relative to v no vertex has been
removed.

The cases in which p∞ and one or two corners of C are removed are handled similarly. 2

Figure 2: The final step in the proof of existence of square-matchings.

4



Since G is planar (Lemma 2), it follows from a classic result of Tutte [13] that G is Hamiltonian.
This almost proves our result, since the removal of p∞ from G results in a graph that has a
Hamiltonian path. Using this path, we can now obtain a perfect matching in G(P ′). A small
problem remains to find a matching in G(P ), since the perfect matching in G(P ′) may match some
elements of P to the corners of C.

To address this issue, we proceed in a way similar to that used in [3]. Consider the three shaded
squares and six points p1, . . . , p6 (represented by small circles) shown in Figure 2. Within each
of the shaded squares place a copy of P , and let P ′′ be the point set containing the points of the
three copies of P plus p1, . . . , p6. Consider the graph G(P ′′) and add to it a vertex p∞ adjacent
to p1, p2, p3, p4. The resulting graph is planar and 4-connected, and by Tutte’s Theorem, also
Hamiltonian. The removal of p∞ gives a Hamiltonian path w in the resulting graph, with extremes
in the set {p1, p2, p3, p4}. Since this path has exactly ten edges incident to points in p1, . . . , p6, then
one of the three copies of P gets exactly two of these edges. Finally, all points in this copy of P
have to be traversed consecutively by the Hamiltonian path. This is because no point in a copy of
P can be adjacent to a point in another copy of P .

3.2 Proof of Theorem 2

We show first a family of 10 points that admits no perfect strong square-matching. Consider the
set P10 of 10 points, illustrated in Figure 3: p1 = (60,−2), p2 = (2, 60), q1 = (9,−21), q2 = (11, 19),
s1 = (−1,−18), and their symmetric points about the origin p3, p4, q3, q4, and s2, respectively. Let
R denote the isothetic (dotted) rectangle with corners at the points (11, 18) and (−11,−18).

Figure 3: Ten points that do not admit a perfect strong square-matching.

Now, in any square matching of P10, the point p1 can be matched to q1 or to q2, but to no other
point (since the corresponding bounding square would contain some other point of P10). A similar
observation holds for p2, p3, and p4. Thus, in any perfect strong matching of P10, each p-point
must be matched to a q-point, forcing s1 and s2 to be matched. Let S be the square matching s1

to s2. Since the vertical distance between s1 and s2 is 36, then S has side at least 36. Since R has
width 22, then S must contain the right side of R or the left side of R. But the square matching
p1 (to q1 or q2) intersects the right side of R, and the square matching p3 (to q3 or q4) intersects
the left side of R, causing S to intersect one of these two squares.
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We now use the preceding construction to obtain arbitrarily large sets that do not admit perfect
strong square-matchings, as claimed in Theorem 2.

Let n = 11m, with m even. Consider the points with coordinates (i, i), i = 1, ..., 2m. For odd i
proceed as follows: Take a very small neighborhood of the point (i, i) and replace (i, i) with a copy
of the ten-point configuration P10, scaled down to fit within this ǫ-neighborhood. The remaining
points (i, i) with even i remaind singletons. Let P be the point set containing all of these 10m+m
points, and let M be a strong square-matching of P . See Figure 4.

Observe that the ten points close to the point (1,1) cannot be matched among themselves.
Thus, M matches at most 10 of these points. This leaves two points pending. One of these points
can be matched to point (2, 2). The remaining point cannot be matched to any point in P . In a
similar way, one of the points in the small neighborhood of (i, i) with odd i cannot be matched to
any element of P . This leaves at least m elements of P unmatched in M . Our result follows.

Figure 4: Extending the ten-point counterexample for strong square-matchings. The small squares
represent copies of the ten-point example; the other points are (2, 2), (4, 4), . . . , (2m, 2m).

3.3 Proof of Theorem 3

We prove a result slightly stronger than Theorem 3, from which that theorem follows immediately:

Lemma 5 Let S be a square that contains a point set P with n ≥ 2 elements. Then it is always
possible to find a strong square-matching of P with ⌈n

5
⌉ matched pairs of points.

Proof. The claim is obviously true for n = 2. Suppose, by induction, that it is true for n − 1, and
we now prove it for n, with n ≥ 3. Observe first that, if n = 5k + i, i = 2, 3, 4, 5, then ⌈n

5
⌉ = ⌈n−1

5
⌉,

and, by induction, we are done. Suppose then that n = 5k + 1 for some k.
Partition S into four squares S1, S2, S3, S4 of equal size containing r1, r2, r3, r4 points, respec-

tively. If all of the ri’s are greater than 2, or equal to zero, we are done, since for any integers such
that r1 + r2 + r3 + r4 = n we have

⌈r1

5

⌉

+ ... +
⌈r4

5

⌉

≥
⌈n

5

⌉

.

Suppose, then, that some of the ri’s are one. A case analysis follows.
Case 1: Three elements of the set {r1, r2, r3, r4} are equal to one (say, r2 = r3 = r4 = 1);

r1 = 5(k − 1) + 3.
Let S

′

1 be the smallest square that contains all of the elements of P in S1 except one, say p1.
Let p be the northwest corner of S

′

1. Suppose, without loss of generality, that p1 lies below the
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Figure 5: Proof of Case 1 in Lemma 5.

horizontal line through the bottom edge of S
′

1. Then S
′

1 contains 5(k − 1) + 2 points, and, thus, by
induction, we can find k disjoint squares in that square containing exactly two elements of P .

It is easy to see that there is a square contained in S − S
′

1 that contains p1 and the element of
P in S3. This square contains a square that contains exactly two elements of P . See Figure 5.

Case 2: Two elements of {r1, r2, r3, r4} are equal to one.
Suppose that ri and rj are not one. Observe that ri + rj = 5k − 1 and that ⌈ ri

5
⌉ + ⌈

rj

5
⌉ ≥

⌈n−1

5
⌉ = k. If ⌈ ri

5
⌉ + ⌈

rj

5
⌉ > ⌈n−1

5
⌉ = k, we are done. Suppose then that ⌈ ri

5
⌉ + ⌈

rj

5
⌉ = ⌈n−1

5
⌉ = k;

this happens only if one of them, say ri, is equal to 5r, and the other element, rj , is equal to 5s− 1
for some r, s ≥ 0.

Up to symmetry, two subcases arise: (i). r1 = 5r and r3 = 5s − 1, and (ii). r1 = 5r and
r4 = 5s − 1.

In case (i), let S
′

1 be the smallest square contained in S1 that contains all but three of the
elements, say p1, p2 and p3 of P in S1, such that p is a vertex of S

′

1.
If two of these elements, say p1 and p2, are below the horizontal line through the lower horizontal

edge of S
′

1, then there is a square S
′

3 contained in S − S
′

1 that contains all of the elements of P
in S3 and also contains p1 and p2; see Figure 6(a). Then, by induction, we can find in S

′

1 and S
′

3

⌈5r−3

5
⌉ = r and ⌈5s+1

5
⌉ = s + 1 disjoint squares. Thus, we have r + s + 1 = k + 1 disjoint squares

contained in S each of which contains exactly two elements of P .

(a). (b). (c).

Figure 6: Proof of Case 2 in Lemma 5.

If no two elements of p1, p2 and p3 lie below the horizontal line through the lower horizontal
edge of S

′

1, then there is a square contained in S1 ∪ S2 − S
′

1 that contains two of these elements.
See Figure 6(b). Applying induction to the elements of P in S

′

1, the elements of P in S3 and the

7



square we just obtained proves our result. Refer to Figure 6(b).
If r = 0, and thus s > 0, choose S

′

3 such that it contains all but two points of P in S3. If two
points in S3 lie above the line containing the top edge of S

′

3 or to the right of the line L containing
the rightmost vertical edge of S

′

3, an analysis similar to the one above follows. Suppose then that
there is exactly one point in S3 to the right of L. Then S

′

3 contains 5s − 3 ≥ 2 points, and there
is a square contained in S containing the point of P in S4. See Figure 6(c). By induction on the
number of elements in S

′

3, and using the last square we obtained, our result follows.
Case (ii) can be handled similarly.
Case 3: Only one of {r1, r2, r3, r4} is equal to one.

This case can be solved in a similar way to the previous cases and we omit the details. For example,
the subcase in which r4 = 1 (so that r1, r2 and r3 are multiples of 5), r1 6= 0, and r2 = 0 is solved
similarly to case (i) above. 2

3.4 Proof of Theorem 4

Construction of the matching. Consider a set P of n points in the plane in convex position
(n even) and such that no two points lie on the same vertical or horizontal line. Label the points
of P from 1 to n according to their counterclockwise order on the convex hull of P , starting with
the lowest point. For ease of notation, we sometimes refer to i, 1 ≤ i ≤ n, as an integer (when
it represents the label of a point in P ) and sometimes as a point in the plane (an element of P );
the meaning will be clear from the context. For all i ∈ P we denote by (i)x and (i)y the x- and y-
coordinates of the point i. Let S, E, N, and W be the south-, east-, north-, and west-most point in P ,
respectively (Figure 7); we use the preceding convention for their coordinates and we even omit the
brackets. It is possible that some of these points coincide. For convenience, in what follows 1 and n+
1 denote the same point, namely the point S. Assume, without loss of generality, that Sx < Nx. We
define the regions RSE =

{

(x, y) ∈ R
2 : x ≥ Sx, y ≤ Ey

}

, RNE =
{

(x, y) ∈ R
2 : x ≥ Nx, y ≥ Ey

}

,
RNW =

{

(x, y) ∈ R
2 : x ≤ Nx, y ≥ Wy

}

, RSW =
{

(x, y) ∈ R
2 : x ≤ Sx, y ≤ Wy

}

.
For i and j consecutive points in the convex hull of P , let H (i, j) be the closed half-plane

determined by the line joining i and j that contains P . Let S (i, j) be a square containing i and j
having the least area, and the least area of intersection with H (i, j) (i.e., S (i, j) is a smallest-area
square containing i and j and furthest away from P ). See Figure 7.

Figure 7: The cardinal regions and the squares S(i, i + 1).
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The length of the side of any square with least possible area containing i and j is equal to

l (i, j) = max
{

|(i)x − (j)x| ,
∣

∣

∣
(i)y − (j)y

∣

∣

∣

}

. Let

C1 = {S (i, i + 1) : 1 ≤ i < n, i odd} .

Note that, if i, j ∈ R for some R ∈ {RSE , RNE , RNW , RSW }, then S (i, j) ⊆ R. Also, any two
squares in C1 corresponding to points in the same region do not intersect. Since Sx < Nx, the only
two regions that may intersect are RSE and RNW . Moreover, this can only happen if Wy < Ey. In
other words, given that Sx < Nx, C1 is a strong square-matching of P if Ey < Wy.

Assume then that Sx < Nx and Wy < Ey and at least two squares in C1 intersect. Let
S (p1, p1 + 1) and S (q1 − 1, q1) be two squares in C1 that intersect and assume that such intersection
is the first from left to right among elements of C1. Formally,

p1 = min {1 ≤ i < n : S (i, i + 1) , S (j, j + 1) ∈ C1 intersect, for some i < j < n} ,

q1 = max {p1 + 1 < j ≤ n : S (j − 1, j) ∈ C1 intersects S (p1, p1 + 1)} .

Now we look again at consecutive squares along the boundary of the convex hull, until we find
another intersection. Let

C2 = {S (i, i + 1) : p1 < i < q1, i ≡ p1 + 1 (mod 2)} .

In general, for t ≥ 2, if at least two squares in Ct intersect, define

pt = min {pt−1 < i < qt−1 − 1 : S (i, i + 1) , S (j, j + 1) ∈ Ct intersect, for some i < j < qt−1 − 1} ,

qt = max {pt + 1 < j < qt−1 : S (j − 1, j) ∈ Ct intersects S (pt, pt + 1)} ,

and
Ct+1 = {S (i, i + 1) : pt < i < qt, i ≡ pt + 1 (mod 2)} .

Let r be the first t such that no two squares in Ct intersect. Note that pt ∈ RSE and qt ∈ RNW for
all 1 ≤ t ≤ r.

Now we define a second kind of square. For i, j ∈ P , and from all smallest-area squares
containing i and j, let S′ (i, j) be the right-most and upper-most square. Formally, the lower left

vertex of S′ (i, j) is (min {(i)x , (j)x} , min
{

(i)y , (j)y

}

) and the length of the side is l(i, j).

We can now define the perfect strong matching. Consider the sets of squares

M0 =























{S′ (p1, q1)} ∪ {S (i, i + 1) : i odd, 1 ≤ i < p1 or q1 < i < n}
if S′ (p1, q1) ∩ S (i, i + 1) = ∅ for i odd with 1 ≤ i < p1 or q1 < i < n,

{S (i, i + 1) : i even, 1 < i < p1 or q1 ≤ i ≤ n}
otherwise,

for 1 ≤ t ≤ r − 1,

Mt =
{

S′ (pt+1, qt+1)
}

∪ {S (i, i + 1) : i ≡ pt + 1 (mod 2) , pt < i < pt+1 or qt+1 < i < qt} ,

and
Mr = Cr = {S (i, i + 1) : i ≡ pr + 1 (mod 2) and pr < i < qr} .

Define M =
⋃r

t=0
Mt. Observe that every point in P belongs to some square in M . The following

lemmas will be used later to prove that M is a strong perfect matching.
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Figure 8: The matchings Mt.

Technical lemmas. Note that any line joining two points both in RSE or both in RNW has
positive slope. Then

(i)x < (j)x and (i)y < (j)y if i < j and i, j ∈ RSE , (1)

and
(i)x > (j)x and (i)y > (j)y if i < j and i, j ∈ RNW . (2)

In particular, for all 1 ≤ t ≤ r, since pt, pt + 1 ∈ RSE and qt, qt + 1 ∈ RNW , then

(pt)x < (pt + 1)x and (pt)y < (pt + 1)y , (3)

and similarly
(qt)x < (qt − 1)x and (qt)y < (qt − 1)y . (4)

It turns out that we can guarantee other similar order relationships among pt − 1, pt, pt + 1 and
qt − 1, qt, qt + 1.

Lemma 6 For any 1 ≤ t ≤ r we have that

(pt)x < (qt − 1)x and (pt)y < (qt − 1)y , (5)

(qt)x < (pt + 1)x and (qt)y < (pt + 1)y . (6)

and if t ≥ 2
(qt + 1)x < (pt)x and (pt − 1)y < (qt)y . (7)

Proof. Since qt − 1, qt ∈ RNW , the square S (qt − 1, qt) is completely to the left of the vertical line
x = max {(qt − 1)x , (qt)x} = (qt − 1)x and S (pt, pt + 1) is completely to the right of the vertical
line x = min {(pt)x , (pt + 1)x} = (pt)x. Since S (pt, pt + 1) ∩ S (qt − 1, qt) 6= ∅, we must have that

(pt)x < (qt − 1)x .
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Figure 9: Proof of Lemma 6.

We also know that qt − 1 belongs to

H (pt, pt + 1) =
{

(x, y) : y ≥ m (x − (pt)x) + (pt)y

}

,

where m = ((pt + 1)y − (pt)y)/ ((pt + 1)x − (pt)x) > 0. Thus,

(qt − 1)y ≥ m ((qt − 1)x − (pt)x) + (pt)y > m ((pt)x − (pt)x) + (pt)y = (pt)y .

This proves (5). The proof of (6) is similar. To prove the second inequality in (7), assume by
contradiction that (qt)y ≤ (pt − 1)y for some t ≥ 2. Then pt−1 is defined and S ≤ pt−1 ≤ pt − 1, so
both pt − 1 and pt are in RSE . Our assumption, together with (1) and (5), gives

(qt)y ≤ (pt − 1)y < (pt)y < (qt − 1)y and (pt − 1)x < (pt)x < (qt − 1)x .

Also, pt − 1 belongs to H (qt − 1, qt) (see Figure 9). Hence, pt − 1 belongs to the right triangle in
H (qt − 1, qt) bounded by the segment qt (qt − 1) and the lines x = (qt − 1)x and y = (qt)y. That is,
the point pt−1 is in the interior of S (qt − 1, qt). If pt−1 < pt−1 then since pt−1 and pt have different
parity, pt−1 < pt − 2 < pt < qt − 1. Moreover, S (pt − 2, pt − 1) ∈ Ct intersects S (qt − 1, qt), which
contradicts the definition of pt. If, on the other hand, pt−1 = pt − 1, then by (4), (2), our previous
observation, and (3) we have

(qt−1)x ≤ (qt−1 − 1)x ≤ (qt)x < (pt − 1)x = (pt−1)x < (pt−1 + 1)x ,

which means that S (qt−1 − 1, qt−1) and S (pt−1, pt−1 + 1) are separated by the vertical line x =
(qt)x , i.e., S (qt−1 − 1, qt−1)∩S (pt−1, pt−1 + 1) = ∅, a contradiction. The proof of the first inequal-
ity in (7) is similar. 2

Lemma 7 For 1 ≤ t ≤ r define

R+ (t) =
{

(x, y) : x > max {(pt)x , (qt)x} and y > max
{

(pt)y , (qt)y

}}

.

Then for all i such that pt + 1 ≤ i ≤ qt − 1 we have that i ∈ R+ (t) .

11



Figure 10: The region R+(t)

Proof. We know that S ≤ pt < pt + 1 ≤ E and N ≤ qt − 1 < qt ≤ W . So for all i such that
pt + 1 ≤ i ≤ qt − 1 we have that

i ∈
{

(x, y) : x ≥ min {(pt + 1)x , (qt − 1)x} and y ≥ min
{

(pt + 1)y , (qt − 1)y

}}

.

Indeed, if pt + 1 ≤ i ≤ E, then (i)x ≥ (pt + 1)x and (i)y ≥ (pt + 1)y by (1), if E ≤ i ≤ N , then
(i)x ≥ Nx ≥ (qt − 1)x and (i)y ≥ Ey ≥ (pt + 1)y , and if N ≤ i ≤ qt − 1, then (i)x ≥ (qt − 1)x and

(i)y ≥ (qt − 1)y by (2). Therefore it is enough to show that both pt +1 and qt − 1 belong to R+ (t).

But (3) and (6) imply that (pt + 1)x > max {(pt)x , (qt)x} and (pt + 1)y > max
{

(pt)y , (qt)y

}

;

and (4) and (5) imply that (qt − 1)x > max {(pt)x , (qt)x} and (qt − 1)y > max
{

(pt)y , (qt)y

}

. So

{pt + 1, qt − 1} ⊆ R+ (t). 2

Figure 11: Proof of Lemma 8.
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Lemma 8 If pt + 1 ≤ i < E, then S (i, i + 1) ⊆ R+ (t) or S (i, i + 1) is completely to the right of
S′ (pt, qt) , that is,

S (i, i + 1) ⊆ {(x, y) : x ≥ min {(pt)x , (qt)x} + l (pt, qt)} . (8)

If N ≤ i < qt − 1, then S (i, i + 1) ⊆ R+ (t) or S (i, i + 1) is completely above S′ (pt, qt) , that is,

S (i, i + 1) ⊆
{

(x, y) : y ≥ min
{

(pt)y , (qt)y

}

+ l (pt, qt)
}

. (9)

Proof. We denote by slope(i, j) the slope of the line passing through the points i and j. Assume
first that pt + 1 ≤ i < E. Then, by Lemma 7 we have that i and i + 1 are in R+ (t) . By definition
of S (i, i + 1), when i and i + 1 are in RSE we have that S (i, i + 1) ⊆ {(x, y) : x ≥ (i)x}. Hence, if
|slope (pt, qt)| ≤ 1 (see Figures 10(c) and 10(d)), then (8) holds. Also, if slope(i, i + 1) ≥ 1, then
S (i, i + 1) ⊆ R+ (t) .

Assume then that slope(i, i + 1) < 1 and |slope (pt, qt)| > 1 (Figures 10(a) and 10(b)). Since
S ≤ pt < pt +1 ≤ i < i+1 ≤ E, then by convexity slope (pt, pt + 1) < slope (i, i + 1) < 1. Consider
the points u and v given by the intersection of the lines with slope −1 or 1 passing through pt and the
horizontal line passing through pt + 1 (Figure 11). Since qt ∈ H (pt, pt + 1) , |slope (pt, qt)| > 1, and
(6) holds, then qt belongs to the interior of the triangle uptv. Hence, min {(pt)x , (qt)x}+ l (pt, qt) ≤
(v)x ≤ (pt + 1)x ≤ (i)x and (8) holds. The proof of (9) is similar. 2

Lemma 9 For 1 ≤ t ≤ r we have the following:

1. If 1 ≤ i ≤ pt − 1 then i ∈ R−

down (t) =
{

(x, y) : y < min
{

(pt)y , (qt)y

}}

.

2. If qt + 1 ≤ i ≤ W then i ∈ R−

left (t) = {(x, y) : x < min {(pt)x , (qt)x}} .

3. If t ≥ 2 and W ≤ i ≤ n + 1 then i ∈ R−

down (t) ∩ R−

left (t) .

(Here, n + 1 and 1 represent the same point.)

Proof. Consider 1 ≤ i ≤ pt − 1. If such i exists, then S ≤ pt − 1 < pt < E and so (pt − 1)y < (pt)y.

This and (7) imply that (pt − 1)y < min
{

(pt)y , (qt)y

}

. So, if 1 ≤ i ≤ pt−1, then (i)y ≤ (pt − 1)y <

min
{

(pt)y , (qt)y

}

. Similarly, if N ≤ qt < qt + 1 ≤ qt−1 ≤ W , then (qt + 1)x < (qt)x. Also by (7)

(qt + 1)x < (pt)x. So, if qt + 1 ≤ i ≤ W , then (i)x ≤ (qt + 1)x < min {(pt)x , (qt)x} . Finally, if
t ≥ 2, then pt−1 and qt−1 are defined. Note that since N ≤ qt < qt−1 ≤ W , Wy ≤ (qt)y by (2), and

Wy ≤ (qt−1)y < (pt−1 + 1)y < (pt)y by (6). So, if W ≤ i ≤ n, then (i)y ≤ Wy < min
{

(pt)y , (qt)y

}

.

Also, Sx < (pt)x and by (5), Sx ≤ (pt−1)x < (qt−1 − 1)x < (qt)x. So, if W ≤ i ≤ n, then
(i)x ≤ Sx < min {(pt)x , (qt)x} . 2
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Proof that M is a strong square-matching of P . The proof follows from the following three
claims:

Claim 1 If 1 ≤ t < u ≤ r, then S′ (pt, qt) ∩ S′ (pu, qu) = ∅.

Proof. Assume 1 ≤ t < u ≤ r. Then pt + 1 ≤ pu < qu ≤ qt − 1, and, by Lemma 7, puqu ∈ R+ (t).
Thus, by definition of S′ (pu, qu) we have S′ (pu, qu) ⊆ R+ (t) . On the other hand, by definition of
R+ (t) we have S′ (pt, qt) ∩ R+ (t) = ∅. Therefore S′ (pt, qt) ∩ S′ (pu, qu) = ∅. (see Figure 10) 2

Claim 2 If S (i, i + 1) , S′ (pt, qt) ∈ M then S (i, i + 1) ∩ S′ (pt, qt) = ∅.

Proof. Assume that S (i, i + 1) ∈ M. If pt + 1 ≤ i < i + 1 ≤ E or N ≤ i < i + 1 ≤ qt − 1, then the
result follows from Lemma 8. If E ≤ i < i + 1 ≤ N , then S (i, i + 1) ⊆ RNE . Also, by Lemma 7,
both N and E are in R+ (t). Thus, RNE ⊆ R+ (t). Since R+ (t) ∩ S′ (pt, qt) = ∅, the result holds.

If S′ (p1, q1) ∈ M , then, by definition of M0, S′ (p1, q1) does not intersect S (i, i + 1) for all
1 ≤ i < p1 or q1 < i < n. Assume, then, that t ≥ 2. Hence, by Lemma 9, if 1 ≤ i < pt − 1,
then i, i + 1 ∈ R−

down (t), and, since i, i + 1 ∈ RSE , S (i, i + 1) ⊆ R−

down (t). If qt − 1 ≤ i < W ,
then i, i + 1 ∈ R−

left (t), and, since i, i + 1 ∈ RNW , S (i, i + 1) ⊆ R−

left (t). Also, by Lemma 9, since

t ≥ 2, S and W are in R−

down (t) ∩ R−

left (t). Hence, if W ≤ i ≤ n + 1, then S (i, i + 1) ⊆ RSW ⊆

R−

down (t) ∩ R−

left (t). Finally, note that S′ (pt, qt) ∩
(

R−

down (t) ∪ R−

left (t)
)

= ∅, and, thus, in all

cases the result holds. 2

Claim 3 If S (i, i + 1) 6= S (j, j + 1) are in M , then S (i, i + 1) ∩ S (j, j + 1) = ∅.

Proof. The result is true if i, i+1, j, j+1 all belong to the same region R ∈ {RSE , RNE , RNW , RSW },
or if i, i + 1 ∈ RSW or j, j + 1 ∈ RNE . Assume that S (i, i + 1) ∈ Mt and S (j, j + 1) ∈ Mu for
some 0 ≤ t ≤ u ≤ r and one of the pairs {i, i + 1} or {j, j + 1} is contained in RSE and the other
in RNW .

If t < u we show that S′ (pu, qu) “separates” S (i, i + 1) and S (j, j + 1). In this case we have
that either

pu < j < j + 1 ≤ E and qu < i < i + 1 ≤ W, (10)

or
N ≤ j < j + 1 < qu and 1 ≤ i < i + 1 < pu. (11)

Then, by Lemma 7, j and j + 1 are in R+ (u). Moreover, if (10) holds, then Lemma 8 implies that

S (j, j + 1) ⊆ R+ (u) ∪ {(x, y) : x > min {(pu)x , (qu)x}} .

Also, by Lemma 9, S (i, i + 1) ⊆ R−

left (u) . Since R+ (u) ∪ {(x, y) : x > min {(pu)x , (qu)x}} and

R−

left (u) are disjoint, S (i, i + 1) ∩ S (j, j + 1) = ∅. Similarly, if (11) holds, then, by Lemma 8,

S (j, j + 1) ⊆ R+ (u) ∪
{

(x, y) : y > min
{

(pu)y , (qu)y

}}

.

Additionally, by Lemma 9, S (i, i + 1) ⊆ R−

down (u) . Since R+ (u)∪
{

(x, y) : y > min
{

(pu)y , (qu)y

}}

and R−

down (u) are disjoint, S (i, i + 1) ∩ S (j, j + 1) = ∅.
Now if t = u 6= 0, then the result is true by definition of pt+1 and qt+1, if t < r, or by definition

of r, if t = r. Finally, if t = u = 0, then we have two cases. First, if S′ (p1, q1) ∈ M , then
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S (i, i + 1) , S (j, j + 1) ∈ C1 and therefore, by definition of p1 and q1, S (i, i + 1)∩S (j, j + 1) = ∅.
Second, if S′ (p1, q1) /∈ M , then i and j are even and there is an odd k such that 1 ≤ k < p1 or
q1 + 1 ≤ k < n and S (k, k + 1) ∩ S′ (p1, q1) 6= ∅. By Lemma 9 (parts 1 and 2), if 1 ≤ k < p1 or
q1 + 1 ≤ k < W , then S (k, k + 1) ⊆ R−

down (1) ∪ R−

left (1) but R−

down (1) ∪ R−

left (1) and S′ (p1, q1)
are disjoint, so S (k, k + 1) and S′ (p1, q1) would also be disjoint. Hence, W ≤ k < n and so
S (k, k + 1) ⊆ RSW . Since S (k, k + 1) ∩ S′ (p1, q1) 6= ∅, RSW ∩ S′ (p1, q1) 6= ∅. Thus,

Sx ≥ min {(p1)x , (q1)x} and Wy ≥ min
{

(p1)y , (q1)y

}

. (12)

If slope(p1, q1) > 0, then either (q1)x > (p1)x ≥ Sx or (p1)y > (q1)y ≥ Wy. There are no two
points of P in the same horizontal or vertical line; thus, p1 = S or q1 = W by (12). In either case
S′ (p1, q1) does not intersect the interior of the region RSW contradicting S (k, k + 1)∩S′ (p1, q1) 6=
∅. Therefore, slope(p1, q1) < 0.

Consider the set P ′ = {i : 1 ≤ i ≤ p1 or q1 ≤ i ≤ n} ⊆ P . Note that the south-, east-, north-,
and west-most points of P ′ are S, p1, q1, and W respectively, and by (12) we have (S)x > (q1)x

and (W )y > (p1)y. This implies that the northeast region of P ′ only contains the points p1

and q1. Moreover, only the northeast and the southwest regions of P ′ intersect. This means that
M0 = {S (l, l + 1) : l ∈ P ′ and l even} is a perfect strong matching of P ′ and, therefore, S (i, i + 1)∩
S (j, j + 1) = ∅. 2

a

b
c

a

b
c

a

b
c

a

b
c

PP' P'P

Figure 12: A point set P with repeated coordinates (left), the perturbed set P ′ and the matchings
for P ′ and P .

3.5 A Remark on Degeneracies

We have assumed, for the preceding results, that the points P do not have a repeated x- or y-
coordinate. Without this assumption, it may be that a perfect matching, even a weak one, does
not exist, as shown in the example of Figure 12(left), where both a and b can only be matched
with c.

A natural approach would be to declare that two points can be matched with an object that
covers them when no third point is in the interior of the object. However, for a set of points on
a horizontal line, the matching graph for squares would then be the complete graph, violating the
proximity relationship that the Delaunay graph is expected to have for the L∞ metric.

Another natural and more restrictive extension is as follows. Consider all vertical and horizontal
lines defined by the points of P , and let δ be the smallest distance between any two of these lines
that are distinct and parallel. Let ε be an infinitesimal amount with respect to δ, e.g., ε = δ ·n−10.
From P , we define a perturbed associated set P ′ as follows. Points (x1, y), (x2, y), . . . , (xk, y) on a
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horizontal line, with x1 < x2 < · · · < xk, are transformed into points (x1, y), (x2, y+ε), . . . , (xk, y+
(k − 1)ε), and points (x, y1), (x, y2), . . . , (x, yk) on a vertical line, with y1 > y2 > · · · > yk are
transformed into (x, y1), (x, y2+ε), . . . , (x, yk)+(k−1)ε). (This is essentially the same perturbation
produced by an infinitesimal clockwise rotation of the coordinate axis.) Now the extended matching
definition for P is simply what results from applying the original definition to P ′, where no x- or
y-coordinates are repeated, and, thus, all of our preceding results apply.

With this definition, the matching graph for a set of points on a horizontal line is a path, as
is natural. Notice that points that would be matched in P with the original definition are still
matched with the extended definition via P ′, and that strong square-matchings in P ′ give squares
for P that have disjoint interiors, which is an acceptable definition for strong matching in the
extended scenario. An example of matching for the extended definition is shown in Figure 12. This
can be easily reformulated for the L1 metric, where repeated points of lines with slope ±1 must be
avoided.

4 Conclusion

4.1 Square-Matchings versus Circle Matchings

Let us briefly compare the results on matching points using squares with the analogous results
using circles; the interested reader is referred to [1] for details.

When C is the set of all circles in the plane, the graph GC(P ) is the Euclidean (L2) Delaunay
triangulation DT (P ); hence, a point set admits a perfect circle-matching if and only if the graph
DT (P ) contains a perfect matching, which is always the case, as proved by Dillencourt in 1990 [4].
Therefore, while we have had to prove the existence of square-matchings from scratch, the fact
that any point set of even cardinality admits a perfect circle-matching is a direct consequence of
Dillencourt’s result. On the other hand, he also proved that for the L2 metric, DT (P ) does not
contain in general a Hamiltonian path [5], contrary to the situation for the L∞ and the L1 metrics,
as we have established here.

There are point sets that do not admit strong-circle matchings, as is also the case for strong
square-matchings. However, the example described in this paper requires only 10 points, while the
smallest example we found for circles requires 74 points (Figure 13). Similarly, we have shown that,
given a point set P with n ≥ 2 elements, it is always possible to find a strong square-matching of
P with 2⌈n

5
⌉ matched points, while for circles the best fraction we know is that there is a strong

circle-matching using at least 2⌈(n − 1)/8⌉ points of P .
A final difference that is worth mentioning happens when P is a point set in convex position

with an even number of elements. While we have proved that in this situation P always admits
a perfect strong square-matching (Theorem 4), an example disallowing strong circle-matching is
shown in [1].

4.2 Open Problems

Since (weak) perfect matchings with circles and isothetic squares are always possible, it is natural
to ask which other classes of convex objects have the same property, and try to characterize them.
On the other hand, we have also shown that perfect strong matchings are not always possible using
either circles or squares; hence, it would be interesting to find some nontrivial class of objects that
allows them.

On the computational side, there are also decision and construction problems that are very
interesting; in particular, in the time since the conference presentation of our results, Bereg et.
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al. [2] were able to prove that deciding whether a point set P admits a perfect strong square
matching is NP -hard, while, given P and a specific combinatorial matching, deciding whether the
matching is realizable as a strong square-matching can be done in O(n log2 n) time. However,
similar problems for circles remain open.

Figure 13: The elements of a set S are n − 1 points evenly distributed on C and the center of C.
For n ≥ 74 this point set does not admit any strong perfect circle-matching.
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