Matching points with squares

Bernardo M. Ábrego ${ }^{1}$ Esther M. Arkin ${ }^{2} \quad$ Silvia Fernández-Merchant ${ }^{1}$
Ferran Hurtado ${ }^{3}$ Mikio Kano ${ }^{4}$ Joseph S. B. Mitchell ${ }^{2}$ Jorge Urrutia ${ }^{5}$

May 30, 2008

Abstract

Given a class \mathcal{C} of geometric objects and a point set P, a \mathcal{C}-matching of P is a set $M=$ $\left\{C_{1}, \ldots, C_{k}\right\} \subseteq \mathcal{C}$ of elements of \mathcal{C} such that each C_{i} contains exactly two elements of P and each element of P lies in at most one C_{i}. If all of the elements of P belong to some C_{i}, M is called a perfect matching. If, in addition, all of the elements of M are pairwise disjoint, we say that this matching M is strong. In this paper we study the existence and characteristics of \mathcal{C}-matchings for point sets in the plane when \mathcal{C} is the set of isothetic squares in the plane. A consequence of our results is a proof that the Delaunay triangulations for the L_{∞} metric and the L_{1} metric always admit a Hamiltonian path.

1 Introduction

Let \mathcal{C} be a class of geometric objects and let P be a point set with an even number, n, of elements p_{1}, \ldots, p_{n} in general position. A \mathcal{C}-matching of P is a set $M=\left\{C_{1}, \ldots, C_{k}\right\} \subseteq \mathcal{C}$ of elements of \mathcal{C} such that each C_{i} contains exactly two elements of P and each element of P lies in at most one C_{i}. If all of the elements of P belong to some C_{i}, M is called a perfect matching. If, in addition, all of the elements of M are pairwise disjoint, we say that the matching M is strong.

Let $G_{\mathcal{C}}(P)$ be the graph whose vertices are the elements of P and whose edges join a pair of points if there is an element of \mathcal{C} containing the two points and no other points from P. Then, a perfect matching in $G_{\mathcal{C}}(P)$ in the usual graph theory sense corresponds to our definition of perfect \mathcal{C}-matching.

If \mathcal{C} is the set of line segments or the set of all isothetic rectangles, then we get a segmentmatching or a rectangle-matching, respectively. If \mathcal{C} is the set of circles or of isothetic squares in the plane, then M will be called a circle-matching or a square-matching, respectively. An example is shown in Figure 1. Notice that these four classes of objects have in common the shrinkability property: if there is an object C^{\prime} in the class that contains exactly two points p and q in P, then there is an object $C^{\prime \prime}$ in the class such that $C^{\prime \prime} \subset C^{\prime}, p$ and q lie on the boundary of $C^{\prime \prime}$, and the relative interior of $C^{\prime \prime}$ is empty of points from P. In the case of rectangle-matchings, we can assume the points p and q are at opposite corners of $C^{\prime \prime}$.

It is easy to see that P always admits a strong segment-matching, i.e., a non-crossing matching in the complete geometric graph ([10]) induced by P. If no vertical or horizontal line contains

[^0]two points from P, then P necessarily admits a strong rectangle-matching, which corresponds to a non-crossing matching in the rectangle-of-influence graph of P, in which two points are adjacent if the rectangle having them as opposite corners covers no third point from $P[8,9]$.

For the cases of circles and isothetic squares, however, the existence of matchings is not immediate, and several interesting problems arise. In this paper we study the existence of perfect and non-perfect, strong and non-strong square-matchings for planar point sets. In the concluding remarks we compare our results for squares with those we obtained for circle-matchings [1] ${ }^{1}$.

It is worth mentioning that our results on square-matchings prove, as a side effect, the fact that Delaunay triangulations for the L_{1} and L_{∞} metrics contain a Hamiltonian path, a question that to the best of our knowledge remained unsolved since it was posed in the conference version of [4].

Since some of our results have quite long proofs and require several technical lemmas, for the sake of clarity of exposition we present all of the results in Section 2 and present the corresponding proofs in Section 3.

Figure 1: A point set P (center), a circle-matching of P (left) and a strong square-matching of P (right).

2 Results

In this section, we consider geometric matchings of planar point sets using axis-aligned squares. Throughout this section, we assume that no two points of P lie on a common vertical or horizontal line; at the end of Section 3, we give detailed comments on how to handle degenerate cases.

Consider the geometric graph $G(P)$ in which the points P are the vertices of $G(P)$, two of which are adjacent if there is an isothetic square containing them that does not contain another element of P. In other words, $G(P)$ is the Delaunay graph of P in the L_{∞} metric (or the L_{1} metric, if the reference is rotated 45 degrees). Under certain non-degeneracy assumptions (no four points lie on the boundary of an axis-aligned square whose interior contains no point of $P), G(P)$ is a triangulation. We show that $G(P)$ always contains a perfect matching; this answers in the affirmative a question posed in the conference version of [4] (to our knowledge, this question has not previously been answered). In fact, we prove that $G(P)$ contains a Hamiltonian path; this is perhaps somewhat surprising, since it is not the case for the Euclidean (L_{2}) Delaunay graph. Studying Hamiltonicity in Delaunay graphs/triangulations was the original motivation that lead Dillencourt first to find a counterexample $[6,5]$ and then subsequently to prove that Euclidean

[^1]Delaunay triangulations are always 1-tough and contain perfect matchings [4]. He also proved later that deciding whether or not a Euclidean Delaunay triangulation contains a Hamiltonian cycle is NP-complete [7]. In Section 3 we prove:

Lemma $1 G(P)$ contains a Hamiltonian path. In particular, a Delaunay triangulation of a point set in the L_{∞} metric or the L_{1} metric admits a Hamiltonian path.

By considering every other edge in a Hamiltonian path, we immediately obtain:
Theorem 1 Every planar point set P of even cardinality admits a perfect square-matching.
However, a perfect strong square-matching is not always possible. An example with 10 points is shown in Figure 3. This example can be used to construct arbitrarily large sets that do not admit perfect strong square-matchings:

Theorem 2 There are n-element point sets in the plane, for n arbitrarily large, such that at most $\frac{10}{11} n$ of the n points can be strongly square-matched.

We also provide a lower bound on the fraction of points that can always be strongly squarematched:

Theorem 3 Every planar point set P of n points in general position has a strong square-matching using at least $2\left\lceil\frac{n}{5}\right\rceil$ points of P.

When the points to be matched are in convex position, one may have the intuition that a perfect strong matching always exists. This is false for circle-matchings, as we show in [1], but correct for squares, as established in the following result:

Theorem 4 Every planar point set P in convex position with an even number of elements admits a perfect strong square-matching.

3 Proofs

3.1 Proof of Lemma 1

We now prove that any planar point set P of even cardinality admits a perfect square-matching. In fact, we prove the stronger fact, Lemma 1, that the geometric graph $G(P)$ contains a Hamiltonian path. We start with a result that is part of folklore, that the L_{∞} Delaunay graph in \mathbb{R}^{2} is planar; we include a proof for completeness:

Lemma 2 For any planar point set $P, G(P)$ is planar.
Proof. Consider two edges, $p_{i} p_{j}$ and $p_{k} p_{l}$, of $G(P)$, and let $S_{i j}$ and $S_{k l}$ be corresponding isothetic "witness" squares, not containing other points of P. We claim that two edges $p_{i} p_{j}$ and $p_{k} p_{l}$ cannot cross. If $S_{i j}$ and $S_{k l}$ are disjoint, then clearly the two edges do not cross. If $S_{i j}$ and $S_{k l}$ do intersect, then their boundaries cross at two distinct points, a and b, except in degenerate situations. The line through $a b$ separates $p_{i} p_{j}$ from $p_{k} p_{l}$, since the points p_{i}, p_{j} must be on that portion of the boundary of $S_{i j}$ that does not lie inside $S_{k l}$, and similarly for p_{k}, p_{l}.

Now, let C be a square that contains all of the elements of P in its interior, and P^{\prime} be the point set obtained by adding to P the vertices of C. Let G be the graph obtained from $G\left(P^{\prime}\right)$ by adding an extra point p_{∞} adjacent to the vertices of C. We will show that G is 4 -connected; before that, we prove a technical lemma.

Lemma 3 Let Q be a finite point set containing the origin O and a point p from the first quadrant, such that all of the other points in Q lie in the interior of the rectangle R with corners at O and p. Then, there is path in $G(Q)$ from O to p such that every two consecutive vertices can be covered by an isothetic square, empty of any other point from Q.

Proof. The proof is by induction on $|Q|$. If $|Q|=2$, the result is obvious. If $|Q|>2$, we grow homothetically from O a square with bottom left corner at O, until a point $q \in Q$, different from O, is found for the first time. This square gives an edge in $G(Q)$ between O and q. Now we can apply induction to the points from Q covered by the rectangle with q and p as opposite corners.

Clearly, the above lemma applies to any of the four quadrants with respect to any point of P that is taken to be the origin.

Lemma $4 G$ is 4 -vertex-connected.
Proof. We argue that the graph G^{\prime} resulting from the removal of any three vertices of G is connected.
Suppose first that none of the removed vertices is p_{∞}, and we will see that p_{∞} can be reached from any vertex $v \in G^{\prime}$. If v is a corner of C, then it is adjacent to p_{∞}. If v is not such a corner, consider the four quadrants it defines. In at least one of them no vertex from G has been removed, so we can apply Lemma 3 to this quadrant and obtain a path in G^{\prime} from v to a surviving corner of C; from there we arrive at p_{∞}.

If we remove from G the vertex p_{∞} together with two more points in P, then G^{\prime} contains the 4 -cycle given by the corners of C. From any vertex $v \in P$ in G^{\prime}, we can reach one of these corners (and therefore any of them), since in at least two of the quadrants relative to v no vertex has been removed.

The cases in which p_{∞} and one or two corners of C are removed are handled similarly.

Figure 2: The final step in the proof of existence of square-matchings.

Since G is planar (Lemma 2), it follows from a classic result of Tutte [13] that G is Hamiltonian. This almost proves our result, since the removal of p_{∞} from G results in a graph that has a Hamiltonian path. Using this path, we can now obtain a perfect matching in $G\left(P^{\prime}\right)$. A small problem remains to find a matching in $G(P)$, since the perfect matching in $G\left(P^{\prime}\right)$ may match some elements of P to the corners of C.

To address this issue, we proceed in a way similar to that used in [3]. Consider the three shaded squares and six points p_{1}, \ldots, p_{6} (represented by small circles) shown in Figure 2. Within each of the shaded squares place a copy of P, and let $P^{\prime \prime}$ be the point set containing the points of the three copies of P plus p_{1}, \ldots, p_{6}. Consider the graph $G\left(P^{\prime \prime}\right)$ and add to it a vertex p_{∞} adjacent to $p_{1}, p_{2}, p_{3}, p_{4}$. The resulting graph is planar and 4 -connected, and by Tutte's Theorem, also Hamiltonian. The removal of p_{∞} gives a Hamiltonian path w in the resulting graph, with extremes in the set $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Since this path has exactly ten edges incident to points in p_{1}, \ldots, p_{6}, then one of the three copies of P gets exactly two of these edges. Finally, all points in this copy of P have to be traversed consecutively by the Hamiltonian path. This is because no point in a copy of P can be adjacent to a point in another copy of P.

3.2 Proof of Theorem 2

We show first a family of 10 points that admits no perfect strong square-matching. Consider the set P_{10} of 10 points, illustrated in Figure 3: $p_{1}=(60,-2), p_{2}=(2,60), q_{1}=(9,-21), q_{2}=(11,19)$, $s_{1}=(-1,-18)$, and their symmetric points about the origin $p_{3}, p_{4}, q_{3}, q_{4}$, and s_{2}, respectively. Let R denote the isothetic (dotted) rectangle with corners at the points $(11,18)$ and $(-11,-18)$.

Figure 3: Ten points that do not admit a perfect strong square-matching.
Now, in any square matching of P_{10}, the point p_{1} can be matched to q_{1} or to q_{2}, but to no other point (since the corresponding bounding square would contain some other point of P_{10}). A similar observation holds for p_{2}, p_{3}, and p_{4}. Thus, in any perfect strong matching of P_{10}, each p-point must be matched to a q-point, forcing s_{1} and s_{2} to be matched. Let S be the square matching s_{1} to s_{2}. Since the vertical distance between s_{1} and s_{2} is 36 , then S has side at least 36 . Since R has width 22 , then S must contain the right side of R or the left side of R. But the square matching p_{1} (to q_{1} or q_{2}) intersects the right side of R, and the square matching p_{3} (to q_{3} or q_{4}) intersects the left side of R, causing S to intersect one of these two squares.

We now use the preceding construction to obtain arbitrarily large sets that do not admit perfect strong square-matchings, as claimed in Theorem 2.

Let $n=11 m$, with m even. Consider the points with coordinates $(i, i), i=1, \ldots, 2 m$. For odd i proceed as follows: Take a very small neighborhood of the point (i, i) and replace (i, i) with a copy of the ten-point configuration P_{10}, scaled down to fit within this ϵ-neighborhood. The remaining points (i, i) with even i remaind singletons. Let P be the point set containing all of these $10 m+m$ points, and let M be a strong square-matching of P. See Figure 4.

Observe that the ten points close to the point $(1,1)$ cannot be matched among themselves. Thus, M matches at most 10 of these points. This leaves two points pending. One of these points can be matched to point $(2,2)$. The remaining point cannot be matched to any point in P. In a similar way, one of the points in the small neighborhood of (i, i) with odd i cannot be matched to any element of P. This leaves at least m elements of P unmatched in M. Our result follows.

Figure 4: Extending the ten-point counterexample for strong square-matchings. The small squares represent copies of the ten-point example; the other points are $(2,2),(4,4), \ldots,(2 m, 2 m)$.

3.3 Proof of Theorem 3

We prove a result slightly stronger than Theorem 3, from which that theorem follows immediately:
Lemma 5 Let S be a square that contains a point set P with $n \geq 2$ elements. Then it is always possible to find a strong square-matching of P with $\left\lceil\frac{n}{5}\right\rceil$ matched pairs of points.

Proof. The claim is obviously true for $n=2$. Suppose, by induction, that it is true for $n-1$, and we now prove it for n, with $n \geq 3$. Observe first that, if $n=5 k+i, i=2,3,4,5$, then $\left\lceil\frac{n}{5}\right\rceil=\left\lceil\frac{n-1}{5}\right\rceil$, and, by induction, we are done. Suppose then that $n=5 k+1$ for some k.

Partition S into four squares $S_{1}, S_{2}, S_{3}, S_{4}$ of equal size containing $r_{1}, r_{2}, r_{3}, r_{4}$ points, respectively. If all of the r_{i} 's are greater than 2 , or equal to zero, we are done, since for any integers such that $r_{1}+r_{2}+r_{3}+r_{4}=n$ we have

$$
\left\lceil\frac{r_{1}}{5}\right\rceil+\ldots+\left\lceil\frac{r_{4}}{5}\right\rceil \geq\left\lceil\frac{n}{5}\right\rceil .
$$

Suppose, then, that some of the r_{i} 's are one. A case analysis follows.
Case 1: Three elements of the set $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ are equal to one (say, $r_{2}=r_{3}=r_{4}=1$); $r_{1}=5(k-1)+3$.

Let S_{1}^{\prime} be the smallest square that contains all of the elements of P in S_{1} except one, say p_{1}. Let p be the northwest corner of S_{1}^{\prime}. Suppose, without loss of generality, that p_{1} lies below the

Figure 5: Proof of Case 1 in Lemma 5.
horizontal line through the bottom edge of S_{1}^{\prime}. Then S_{1}^{\prime} contains $5(k-1)+2$ points, and, thus, by induction, we can find k disjoint squares in that square containing exactly two elements of P.

It is easy to see that there is a square contained in $S-S_{1}^{\prime}$ that contains p_{1} and the element of P in S_{3}. This square contains a square that contains exactly two elements of P. See Figure 5 .

Case 2: Two elements of $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ are equal to one.
Suppose that r_{i} and r_{j} are not one. Observe that $r_{i}+r_{j}=5 k-1$ and that $\left\lceil\frac{r_{i}}{5}\right\rceil+\left\lceil\frac{r_{j}}{5}\right\rceil \geq$ $\left\lceil\frac{n-1}{5}\right\rceil=k$. If $\left\lceil\frac{r_{i}}{5}\right\rceil+\left\lceil\frac{r_{j}}{5}\right\rceil>\left\lceil\frac{n-1}{5}\right\rceil=k$, we are done. Suppose then that $\left\lceil\frac{r_{i}}{5}\right\rceil+\left\lceil\frac{r_{j}}{5}\right\rceil=\left\lceil\frac{n-1}{5}\right\rceil=k$; this happens only if one of them, say r_{i}, is equal to $5 r$, and the other element, r_{j}, is equal to $5 s-1$ for some $r, s \geq 0$.

Up to symmetry, two subcases arise: (i). $r_{1}=5 r$ and $r_{3}=5 s-1$, and (ii). $r_{1}=5 r$ and $r_{4}=5 s-1$.

In case (i), let S_{1}^{\prime} be the smallest square contained in S_{1} that contains all but three of the elements, say p_{1}, p_{2} and p_{3} of P in S_{1}, such that p is a vertex of S_{1}^{\prime}.

If two of these elements, say p_{1} and p_{2}, are below the horizontal line through the lower horizontal edge of S_{1}^{\prime}, then there is a square S_{3}^{\prime} contained in $S-S_{1}^{\prime}$ that contains all of the elements of P in S_{3} and also contains p_{1} and p_{2}; see Figure 6(a). Then, by induction, we can find in S_{1}^{\prime} and S_{3}^{\prime} $\left\lceil\frac{5 r-3}{5}\right\rceil=r$ and $\left\lceil\frac{5 s+1}{5}\right\rceil=s+1$ disjoint squares. Thus, we have $r+s+1=k+1$ disjoint squares contained in S each of which contains exactly two elements of P.

Figure 6: Proof of Case 2 in Lemma 5.
If no two elements of p_{1}, p_{2} and p_{3} lie below the horizontal line through the lower horizontal edge of S_{1}^{\prime}, then there is a square contained in $S_{1} \cup S_{2}-S_{1}^{\prime}$ that contains two of these elements. See Figure 6(b). Applying induction to the elements of P in S_{1}^{\prime}, the elements of P in S_{3} and the
square we just obtained proves our result. Refer to Figure 6(b).
If $r=0$, and thus $s>0$, choose S_{3}^{\prime} such that it contains all but two points of P in S_{3}. If two points in S_{3} lie above the line containing the top edge of S_{3}^{\prime} or to the right of the line L containing the rightmost vertical edge of S_{3}^{\prime}, an analysis similar to the one above follows. Suppose then that there is exactly one point in S_{3} to the right of L. Then S_{3}^{\prime} contains $5 s-3 \geq 2$ points, and there is a square contained in S containing the point of P in S_{4}. See Figure 6(c). By induction on the number of elements in S_{3}^{\prime}, and using the last square we obtained, our result follows.

Case (ii) can be handled similarly.
Case 3: Only one of $\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ is equal to one.
This case can be solved in a similar way to the previous cases and we omit the details. For example, the subcase in which $r_{4}=1$ (so that r_{1}, r_{2} and r_{3} are multiples of 5), $r_{1} \neq 0$, and $r_{2}=0$ is solved similarly to case (i) above.

3.4 Proof of Theorem 4

Construction of the matching. Consider a set P of n points in the plane in convex position (n even) and such that no two points lie on the same vertical or horizontal line. Label the points of P from 1 to n according to their counterclockwise order on the convex hull of P, starting with the lowest point. For ease of notation, we sometimes refer to $i, 1 \leq i \leq n$, as an integer (when it represents the label of a point in P) and sometimes as a point in the plane (an element of P); the meaning will be clear from the context. For all $i \in P$ we denote by $(i)_{x}$ and $(i)_{y}$ the x - and y coordinates of the point i. Let S, E, N, and W be the south-, east-, north-, and west-most point in P, respectively (Figure 7); we use the preceding convention for their coordinates and we even omit the brackets. It is possible that some of these points coincide. For convenience, in what follows 1 and $n+$ 1 denote the same point, namely the point S. Assume, without loss of generality, that $S_{x}<N_{x}$. We define the regions $R_{S E}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq S_{x}, y \leq E_{y}\right\}, R_{N E}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq N_{x}, y \geq E_{y}\right\}$, $R_{N W}=\left\{(x, y) \in \mathbb{R}^{2}: x \leq N_{x}, y \geq W_{y}\right\}, R_{S W}=\left\{(x, y) \in \mathbb{R}^{2}: x \leq S_{x}, y \leq W_{y}\right\}$.

For i and j consecutive points in the convex hull of P, let $H(i, j)$ be the closed half-plane determined by the line joining i and j that contains P. Let $S(i, j)$ be a square containing i and j having the least area, and the least area of intersection with $H(i, j)$ (i.e., $S(i, j)$ is a smallest-area square containing i and j and furthest away from P). See Figure 7 .

Figure 7: The cardinal regions and the squares $S(i, i+1)$.

The length of the side of any square with least possible area containing i and j is equal to $l(i, j)=\max \left\{\left|(i)_{x}-(j)_{x}\right|,\left|(i)_{y}-(j)_{y}\right|\right\}$. Let

$$
C_{1}=\{S(i, i+1): 1 \leq i<n, i \text { odd }\}
$$

Note that, if $i, j \in R$ for some $R \in\left\{R_{S E}, R_{N E}, R_{N W}, R_{S W}\right\}$, then $S(i, j) \subseteq R$. Also, any two squares in C_{1} corresponding to points in the same region do not intersect. Since $S_{x}<N_{x}$, the only two regions that may intersect are $R_{S E}$ and $R_{N W}$. Moreover, this can only happen if $W_{y}<E_{y}$. In other words, given that $S_{x}<N_{x}, C_{1}$ is a strong square-matching of P if $E_{y}<W_{y}$.

Assume then that $S_{x}<N_{x}$ and $W_{y}<E_{y}$ and at least two squares in C_{1} intersect. Let $S\left(p_{1}, p_{1}+1\right)$ and $S\left(q_{1}-1, q_{1}\right)$ be two squares in C_{1} that intersect and assume that such intersection is the first from left to right among elements of C_{1}. Formally,

$$
\begin{aligned}
p_{1} & =\min \left\{1 \leq i<n: S(i, i+1), S(j, j+1) \in C_{1} \text { intersect, for some } i<j<n\right\}, \\
q_{1} & =\max \left\{p_{1}+1<j \leq n: S(j-1, j) \in C_{1} \text { intersects } S\left(p_{1}, p_{1}+1\right)\right\}
\end{aligned}
$$

Now we look again at consecutive squares along the boundary of the convex hull, until we find another intersection. Let

$$
C_{2}=\left\{S(i, i+1): p_{1}<i<q_{1}, i \equiv p_{1}+1(\bmod 2)\right\} .
$$

In general, for $t \geq 2$, if at least two squares in C_{t} intersect, define

$$
\begin{aligned}
p_{t} & =\min \left\{p_{t-1}<i<q_{t-1}-1: S(i, i+1), S(j, j+1) \in C_{t} \text { intersect, for some } i<j<q_{t-1}-1\right\} \\
q_{t} & =\max \left\{p_{t}+1<j<q_{t-1}: S(j-1, j) \in C_{t} \text { intersects } S\left(p_{t}, p_{t}+1\right)\right\}
\end{aligned}
$$

and

$$
C_{t+1}=\left\{S(i, i+1): p_{t}<i<q_{t}, i \equiv p_{t}+1(\bmod 2)\right\}
$$

Let r be the first t such that no two squares in C_{t} intersect. Note that $p_{t} \in R_{S E}$ and $q_{t} \in R_{N W}$ for all $1 \leq t \leq r$.

Now we define a second kind of square. For $i, j \in P$, and from all smallest-area squares containing i and j, let $S^{\prime}(i, j)$ be the right-most and upper-most square. Formally, the lower left vertex of $S^{\prime}(i, j)$ is $\left(\min \left\{(i)_{x},(j)_{x}\right\}, \min \left\{(i)_{y},(j)_{y}\right\}\right)$ and the length of the side is $l(i, j)$.

We can now define the perfect strong matching. Consider the sets of squares

$$
M_{0}=\left\{\begin{array}{l}
\left\{S^{\prime}\left(p_{1}, q_{1}\right)\right\} \cup\left\{S(i, i+1): i \text { odd, } 1 \leq i<p_{1} \text { or } q_{1}<i<n\right\} \\
\text { if } S^{\prime}\left(p_{1}, q_{1}\right) \cap S(i, i+1)=\varnothing \text { for } i \text { odd with } 1 \leq i<p_{1} \text { or } q_{1}<i<n, \\
\left\{S(i, i+1): i \text { even, } 1<i<p_{1} \text { or } q_{1} \leq i \leq n\right\} \\
\text { otherwise, }
\end{array}\right.
$$

for $1 \leq t \leq r-1$,

$$
M_{t}=\left\{S^{\prime}\left(p_{t+1}, q_{t+1}\right)\right\} \cup\left\{S(i, i+1): i \equiv p_{t}+1(\bmod 2), p_{t}<i<p_{t+1} \text { or } q_{t+1}<i<q_{t}\right\}
$$

and

$$
M_{r}=C_{r}=\left\{S(i, i+1): i \equiv p_{r}+1(\bmod 2) \text { and } p_{r}<i<q_{r}\right\}
$$

Define $M=\bigcup_{t=0}^{r} M_{t}$. Observe that every point in P belongs to some square in M. The following lemmas will be used later to prove that M is a strong perfect matching.

Figure 8: The matchings M_{t}.

Technical lemmas. Note that any line joining two points both in $R_{S E}$ or both in $R_{N W}$ has positive slope. Then

$$
\begin{equation*}
(i)_{x}<(j)_{x} \text { and }(i)_{y}<(j)_{y} \text { if } i<j \text { and } i, j \in R_{S E} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(i)_{x}>(j)_{x} \text { and }(i)_{y}>(j)_{y} \text { if } i<j \text { and } i, j \in R_{N W} . \tag{2}
\end{equation*}
$$

In particular, for all $1 \leq t \leq r$, since $p_{t}, p_{t}+1 \in R_{S E}$ and $q_{t}, q_{t}+1 \in R_{N W}$, then

$$
\begin{equation*}
\left(p_{t}\right)_{x}<\left(p_{t}+1\right)_{x} \text { and }\left(p_{t}\right)_{y}<\left(p_{t}+1\right)_{y}, \tag{3}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\left(q_{t}\right)_{x}<\left(q_{t}-1\right)_{x} \text { and }\left(q_{t}\right)_{y}<\left(q_{t}-1\right)_{y} . \tag{4}
\end{equation*}
$$

It turns out that we can guarantee other similar order relationships among $p_{t}-1, p_{t}, p_{t}+1$ and $q_{t}-1, q_{t}, q_{t}+1$.

Lemma 6 For any $1 \leq t \leq r$ we have that

$$
\begin{align*}
& \left(p_{t}\right)_{x}<\left(q_{t}-1\right)_{x} \text { and }\left(p_{t}\right)_{y}<\left(q_{t}-1\right)_{y}, \tag{5}\\
& \left(q_{t}\right)_{x}<\left(p_{t}+1\right)_{x} \text { and }\left(q_{t}\right)_{y}<\left(p_{t}+1\right)_{y} . \tag{6}
\end{align*}
$$

and if $t \geq 2$

$$
\begin{equation*}
\left(q_{t}+1\right)_{x}<\left(p_{t}\right)_{x} \text { and }\left(p_{t}-1\right)_{y}<\left(q_{t}\right)_{y} . \tag{7}
\end{equation*}
$$

Proof. Since $q_{t}-1, q_{t} \in R_{N W}$, the square $S\left(q_{t}-1, q_{t}\right)$ is completely to the left of the vertical line $x=\max \left\{\left(q_{t}-1\right)_{x},\left(q_{t}\right)_{x}\right\}=\left(q_{t}-1\right)_{x}$ and $S\left(p_{t}, p_{t}+1\right)$ is completely to the right of the vertical line $x=\min \left\{\left(p_{t}\right)_{x},\left(p_{t}+1\right)_{x}\right\}=\left(p_{t}\right)_{x}$. Since $S\left(p_{t}, p_{t}+1\right) \cap S\left(q_{t}-1, q_{t}\right) \neq \varnothing$, we must have that

$$
\left(p_{t}\right)_{x}<\left(q_{t}-1\right)_{x}
$$

Figure 9: Proof of Lemma 6.

We also know that $q_{t}-1$ belongs to

$$
H\left(p_{t}, p_{t}+1\right)=\left\{(x, y): y \geq m\left(x-\left(p_{t}\right)_{x}\right)+\left(p_{t}\right)_{y}\right\},
$$

where $m=\left(\left(p_{t}+1\right)_{y}-\left(p_{t}\right)_{y}\right) /\left(\left(p_{t}+1\right)_{x}-\left(p_{t}\right)_{x}\right)>0$. Thus,

$$
\left(q_{t}-1\right)_{y} \geq m\left(\left(q_{t}-1\right)_{x}-\left(p_{t}\right)_{x}\right)+\left(p_{t}\right)_{y}>m\left(\left(p_{t}\right)_{x}-\left(p_{t}\right)_{x}\right)+\left(p_{t}\right)_{y}=\left(p_{t}\right)_{y} .
$$

This proves (5). The proof of (6) is similar. To prove the second inequality in (7), assume by contradiction that $\left(q_{t}\right)_{y} \leq\left(p_{t}-1\right)_{y}$ for some $t \geq 2$. Then p_{t-1} is defined and $S \leq p_{t-1} \leq p_{t}-1$, so both $p_{t}-1$ and p_{t} are in $R_{S E}$. Our assumption, together with (1) and (5), gives

$$
\left(q_{t}\right)_{y} \leq\left(p_{t}-1\right)_{y}<\left(p_{t}\right)_{y}<\left(q_{t}-1\right)_{y} \text { and }\left(p_{t}-1\right)_{x}<\left(p_{t}\right)_{x}<\left(q_{t}-1\right)_{x} .
$$

Also, $p_{t}-1$ belongs to $H\left(q_{t}-1, q_{t}\right)$ (see Figure 9). Hence, $p_{t}-1$ belongs to the right triangle in $H\left(q_{t}-1, q_{t}\right)$ bounded by the segment $q_{t}\left(q_{t}-1\right)$ and the lines $x=\left(q_{t}-1\right)_{x}$ and $y=\left(q_{t}\right)_{y}$. That is, the point $p_{t}-1$ is in the interior of $S\left(q_{t}-1, q_{t}\right)$. If $p_{t-1}<p_{t}-1$ then since p_{t-1} and p_{t} have different parity, $p_{t-1}<p_{t}-2<p_{t}<q_{t}-1$. Moreover, $S\left(p_{t}-2, p_{t}-1\right) \in C_{t}$ intersects $S\left(q_{t}-1, q_{t}\right)$, which contradicts the definition of p_{t}. If, on the other hand, $p_{t-1}=p_{t}-1$, then by (4), (2), our previous observation, and (3) we have

$$
\left(q_{t-1}\right)_{x} \leq\left(q_{t-1}-1\right)_{x} \leq\left(q_{t}\right)_{x}<\left(p_{t}-1\right)_{x}=\left(p_{t-1}\right)_{x}<\left(p_{t-1}+1\right)_{x},
$$

which means that $S\left(q_{t-1}-1, q_{t-1}\right)$ and $S\left(p_{t-1}, p_{t-1}+1\right)$ are separated by the vertical line $x=$ $\left(q_{t}\right)_{x}$, i.e., $S\left(q_{t-1}-1, q_{t-1}\right) \cap S\left(p_{t-1}, p_{t-1}+1\right)=\varnothing$, a contradiction. The proof of the first inequality in (7) is similar.

Lemma 7 For $1 \leq t \leq r$ define

$$
R^{+}(t)=\left\{(x, y): x>\max \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\} \text { and } y>\max \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}\right\} .
$$

Then for all i such that $p_{t}+1 \leq i \leq q_{t}-1$ we have that $i \in R^{+}(t)$.

Figure 10: The region $R^{+}(t)$

Proof. We know that $S \leq p_{t}<p_{t}+1 \leq E$ and $N \leq q_{t}-1<q_{t} \leq W$. So for all i such that $p_{t}+1 \leq i \leq q_{t}-1$ we have that

$$
i \in\left\{(x, y): x \geq \min \left\{\left(p_{t}+1\right)_{x},\left(q_{t}-1\right)_{x}\right\} \text { and } y \geq \min \left\{\left(p_{t}+1\right)_{y},\left(q_{t}-1\right)_{y}\right\}\right\}
$$

Indeed, if $p_{t}+1 \leq i \leq E$, then $(i)_{x} \geq\left(p_{t}+1\right)_{x}$ and $(i)_{y} \geq\left(p_{t}+1\right)_{y}$ by (1), if $E \leq i \leq N$, then $(i)_{x} \geq N_{x} \geq\left(q_{t}-1\right)_{x}$ and $(i)_{y} \geq E_{y} \geq\left(p_{t}+1\right)_{y}$, and if $N \leq i \leq q_{t}-1$, then $(i)_{x} \geq\left(q_{t}-1\right)_{x}$ and $(i)_{y} \geq\left(q_{t}-1\right)_{y}$ by (2). Therefore it is enough to show that both $p_{t}+1$ and $q_{t}-1$ belong to $R^{+}(t)$. But (3) and (6) imply that $\left(p_{t}+1\right)_{x}>\max \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}$ and $\left(p_{t}+1\right)_{y}>\max \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}$; and (4) and (5) imply that $\left(q_{t}-1\right)_{x}>\max \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}$ and $\left(q_{t}-1\right)_{y}>\max \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}$. So $\left\{p_{t}+1, q_{t}-1\right\} \subseteq R^{+}(t)$.

Figure 11: Proof of Lemma 8.

Lemma 8 If $p_{t}+1 \leq i<E$, then $S(i, i+1) \subseteq R^{+}(t)$ or $S(i, i+1)$ is completely to the right of $S^{\prime}\left(p_{t}, q_{t}\right)$, that is,

$$
\begin{equation*}
S(i, i+1) \subseteq\left\{(x, y): x \geq \min \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}+l\left(p_{t}, q_{t}\right)\right\} \tag{8}
\end{equation*}
$$

If $N \leq i<q_{t}-1$, then $S(i, i+1) \subseteq R^{+}(t)$ or $S(i, i+1)$ is completely above $S^{\prime}\left(p_{t}, q_{t}\right)$, that is,

$$
\begin{equation*}
S(i, i+1) \subseteq\left\{(x, y): y \geq \min \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}+l\left(p_{t}, q_{t}\right)\right\} . \tag{9}
\end{equation*}
$$

Proof. We denote by $\operatorname{slope}(i, j)$ the slope of the line passing through the points i and j. Assume first that $p_{t}+1 \leq i<E$. Then, by Lemma 7 we have that i and $i+1$ are in $R^{+}(t)$. By definition of $S(i, i+1)$, when i and $i+1$ are in $R_{S E}$ we have that $S(i, i+1) \subseteq\left\{(x, y): x \geq(i)_{x}\right\}$. Hence, if \mid slope $\left(p_{t}, q_{t}\right) \mid \leq 1$ (see Figures 10(c) and 10(d)), then (8) holds. Also, if slope $(i, i+1) \geq 1$, then $S(i, i+1) \subseteq R^{+}(t)$.

Assume then that slope $(i, i+1)<1$ and \mid slope $\left(p_{t}, q_{t}\right) \mid>1$ (Figures 10(a) and 10(b)). Since $S \leq p_{t}<p_{t}+1 \leq i<i+1 \leq E$, then by convexity slope $\left(p_{t}, p_{t}+1\right)<$ slope $(i, i+1)<1$. Consider the points u and v given by the intersection of the lines with slope -1 or 1 passing through p_{t} and the horizontal line passing through $p_{t}+1$ (Figure 11). Since $q_{t} \in H\left(p_{t}, p_{t}+1\right)$, \mid slope $\left(p_{t}, q_{t}\right) \mid>1$, and (6) holds, then q_{t} belongs to the interior of the triangle $u p_{t} v$. Hence, $\min \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}+l\left(p_{t}, q_{t}\right) \leq$ $(v)_{x} \leq\left(p_{t}+1\right)_{x} \leq(i)_{x}$ and (8) holds. The proof of (9) is similar.

Lemma 9 For $1 \leq t \leq r$ we have the following:

1. If $1 \leq i \leq p_{t}-1$ then $i \in R_{\text {down }}^{-}(t)=\left\{(x, y): y<\min \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}\right\}$.
2. If $q_{t}+1 \leq i \leq W$ then $i \in R_{\text {left }}^{-}(t)=\left\{(x, y): x<\min \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}\right\}$.
3. If $t \geq 2$ and $W \leq i \leq n+1$ then $i \in R_{\text {down }}^{-}(t) \cap R_{\text {left }}^{-}(t)$.
(Here, $n+1$ and 1 represent the same point.)
Proof. Consider $1 \leq i \leq p_{t}-1$. If such i exists, then $S \leq p_{t}-1<p_{t}<E$ and so $\left(p_{t}-1\right)_{y}<\left(p_{t}\right)_{y}$. This and (7) imply that $\left(p_{t}-1\right)_{y}<\min \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}$. So, if $1 \leq i \leq p_{t}-1$, then $(i)_{y} \leq\left(p_{t}-1\right)_{y}<$ $\min \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}$. Similarly, if $N \leq q_{t}<q_{t}+1 \leq q_{t-1} \leq W$, then $\left(q_{t}+1\right)_{x}<\left(q_{t}\right)_{x}$. Also by (7) $\left(q_{t}+1\right)_{x}<\left(p_{t}\right)_{x}$. So, if $q_{t}+1 \leq i \leq W$, then $(i)_{x} \leq\left(q_{t}+1\right)_{x}<\min \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}$. Finally, if $t \geq 2$, then p_{t-1} and q_{t-1} are defined. Note that since $N \leq q_{t}<q_{t-1} \leq W, W_{y} \leq\left(q_{t}\right)_{y}$ by (2), and $W_{y} \leq\left(q_{t-1}\right)_{y}<\left(p_{t-1}+1\right)_{y}<\left(p_{t}\right)_{y}$ by (6). So, if $W \leq i \leq n$, then $(i)_{y} \leq W_{y}<\min \left\{\left(p_{t}\right)_{y},\left(q_{t}\right)_{y}\right\}$. Also, $S_{x}<\left(p_{t}\right)_{x}$ and by (5), $S_{x} \leq\left(p_{t-1}\right)_{x}<\left(q_{t-1}-1\right)_{x}<\left(q_{t}\right)_{x}$. So, if $W \leq i \leq n$, then $(i)_{x} \leq S_{x}<\min \left\{\left(p_{t}\right)_{x},\left(q_{t}\right)_{x}\right\}$.

Proof that M is a strong square-matching of P. The proof follows from the following three claims:

Claim 1 If $1 \leq t<u \leq r$, then $S^{\prime}\left(p_{t}, q_{t}\right) \cap S^{\prime}\left(p_{u}, q_{u}\right)=\varnothing$.
Proof. Assume $1 \leq t<u \leq r$. Then $p_{t}+1 \leq p_{u}<q_{u} \leq q_{t}-1$, and, by Lemma $7, p_{u} q_{u} \in R^{+}(t)$. Thus, by definition of $S^{\prime}\left(p_{u}, q_{u}\right)$ we have $S^{\prime}\left(p_{u}, q_{u}\right) \subseteq R^{+}(t)$. On the other hand, by definition of $R^{+}(t)$ we have $S^{\prime}\left(p_{t}, q_{t}\right) \cap R^{+}(t)=\varnothing$. Therefore $S^{\prime}\left(p_{t}, q_{t}\right) \cap S^{\prime}\left(p_{u}, q_{u}\right)=\varnothing$. (see Figure 10)

Claim 2 If $S(i, i+1), S^{\prime}\left(p_{t}, q_{t}\right) \in M$ then $S(i, i+1) \cap S^{\prime}\left(p_{t}, q_{t}\right)=\varnothing$.
Proof. Assume that $S(i, i+1) \in M$. If $p_{t}+1 \leq i<i+1 \leq E$ or $N \leq i<i+1 \leq q_{t}-1$, then the result follows from Lemma 8. If $E \leq i<i+1 \leq N$, then $S(i, i+1) \subseteq R_{N E}$. Also, by Lemma 7 , both N and E are in $R^{+}(t)$. Thus, $R_{N E} \subseteq R^{+}(t)$. Since $R^{+}(t) \cap S^{\prime}\left(p_{t}, q_{t}\right)=\varnothing$, the result holds.

If $S^{\prime}\left(p_{1}, q_{1}\right) \in M$, then, by definition of $M_{0}, S^{\prime}\left(p_{1}, q_{1}\right)$ does not intersect $S(i, i+1)$ for all $1 \leq i<p_{1}$ or $q_{1}<i<n$. Assume, then, that $t \geq 2$. Hence, by Lemma 9 , if $1 \leq i<p_{t}-1$, then $i, i+1 \in R_{\text {down }}^{-}(t)$, and, since $i, i+1 \in R_{S E}, S(i, i+1) \subseteq R_{\text {down }}^{-}(t)$. If $q_{t}-1 \leq i<W$, then $i, i+1 \in R_{\text {left }}^{-}(t)$, and, since $i, i+1 \in R_{N W}, S(i, i+1) \subseteq R_{\text {left }}^{-}(t)$. Also, by Lemma 9 , since $t \geq 2, S$ and W are in $R_{\text {down }}^{-}(t) \cap R_{\text {left }}^{-}(t)$. Hence, if $W \leq i \leq n+1$, then $S(i, i+1) \subseteq R_{S W} \subseteq$ $R_{\text {down }}^{-}(t) \cap R_{\text {left }}^{-}(t)$. Finally, note that $S^{\prime}\left(p_{t}, q_{t}\right) \cap\left(R_{\text {down }}^{-}(t) \cup R_{\text {left }}^{-}(t)\right)=\varnothing$, and, thus, in all cases the result holds.

Claim 3 If $S(i, i+1) \neq S(j, j+1)$ are in M, then $S(i, i+1) \cap S(j, j+1)=\varnothing$.
Proof. The result is true if $i, i+1, j, j+1$ all belong to the same region $R \in\left\{R_{S E}, R_{N E}, R_{N W}, R_{S W}\right\}$, or if $i, i+1 \in R_{S W}$ or $j, j+1 \in R_{N E}$. Assume that $S(i, i+1) \in M_{t}$ and $S(j, j+1) \in M_{u}$ for some $0 \leq t \leq u \leq r$ and one of the pairs $\{i, i+1\}$ or $\{j, j+1\}$ is contained in $R_{S E}$ and the other in $R_{N W}$.

If $t<u$ we show that $S^{\prime}\left(p_{u}, q_{u}\right)$ "separates" $S(i, i+1)$ and $S(j, j+1)$. In this case we have that either

$$
\begin{equation*}
p_{u}<j<j+1 \leq E \text { and } q_{u}<i<i+1 \leq W, \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
N \leq j<j+1<q_{u} \text { and } 1 \leq i<i+1<p_{u} . \tag{11}
\end{equation*}
$$

Then, by Lemma $7, j$ and $j+1$ are in $R^{+}(u)$. Moreover, if (10) holds, then Lemma 8 implies that

$$
S(j, j+1) \subseteq R^{+}(u) \cup\left\{(x, y): x>\min \left\{\left(p_{u}\right)_{x},\left(q_{u}\right)_{x}\right\}\right\}
$$

Also, by Lemma $9, S(i, i+1) \subseteq R_{\text {left }}^{-}(u)$. Since $R^{+}(u) \cup\left\{(x, y): x>\min \left\{\left(p_{u}\right)_{x},\left(q_{u}\right)_{x}\right\}\right\}$ and $R_{\text {left }}^{-}(u)$ are disjoint, $S(i, i+1) \cap S(j, j+1)=\varnothing$. Similarly, if (11) holds, then, by Lemma 8,

$$
S(j, j+1) \subseteq R^{+}(u) \cup\left\{(x, y): y>\min \left\{\left(p_{u}\right)_{y},\left(q_{u}\right)_{y}\right\}\right\} .
$$

Additionally, by Lemma $9, S(i, i+1) \subseteq R_{\text {down }}^{-}(u)$. Since $R^{+}(u) \cup\left\{(x, y): y>\min \left\{\left(p_{u}\right)_{y},\left(q_{u}\right)_{y}\right\}\right\}$ and $R_{\text {down }}^{-}(u)$ are disjoint, $S(i, i+1) \cap S(j, j+1)=\varnothing$.

Now if $t=u \neq 0$, then the result is true by definition of p_{t+1} and q_{t+1}, if $t<r$, or by definition of r, if $t=r$. Finally, if $t=u=0$, then we have two cases. First, if $S^{\prime}\left(p_{1}, q_{1}\right) \in M$, then
$S(i, i+1), S(j, j+1) \in C_{1}$ and therefore, by definition of p_{1} and $q_{1}, S(i, i+1) \cap S(j, j+1)=\varnothing$. Second, if $S^{\prime}\left(p_{1}, q_{1}\right) \notin M$, then i and j are even and there is an odd k such that $1 \leq k<p_{1}$ or $q_{1}+1 \leq k<n$ and $S(k, k+1) \cap S^{\prime}\left(p_{1}, q_{1}\right) \neq \varnothing$. By Lemma 9 (parts 1 and 2), if $1 \leq k<p_{1}$ or $q_{1}+1 \leq k<W$, then $S(k, k+1) \subseteq R_{\text {down }}^{-}(1) \cup R_{\text {left }}^{-}(1)$ but $R_{\text {down }}^{-}(1) \cup R_{\text {left }}^{-}(1)$ and $S^{\prime}\left(p_{1}, q_{1}\right)$ are disjoint, so $S(k, k+1)$ and $S^{\prime}\left(p_{1}, q_{1}\right)$ would also be disjoint. Hence, $W \leq k<n$ and so $S(k, k+1) \subseteq R_{S W}$. Since $S(k, k+1) \cap S^{\prime}\left(p_{1}, q_{1}\right) \neq \varnothing, R_{S W} \cap S^{\prime}\left(p_{1}, q_{1}\right) \neq \varnothing$. Thus,

$$
\begin{equation*}
S_{x} \geq \min \left\{\left(p_{1}\right)_{x},\left(q_{1}\right)_{x}\right\} \text { and } W_{y} \geq \min \left\{\left(p_{1}\right)_{y},\left(q_{1}\right)_{y}\right\} . \tag{12}
\end{equation*}
$$

If slope $\left(p_{1}, q_{1}\right)>0$, then either $\left(q_{1}\right)_{x}>\left(p_{1}\right)_{x} \geq S_{x}$ or $\left(p_{1}\right)_{y}>\left(q_{1}\right)_{y} \geq W_{y}$. There are no two points of P in the same horizontal or vertical line; thus, $p_{1}=S$ or $q_{1}=W$ by (12). In either case $S^{\prime}\left(p_{1}, q_{1}\right)$ does not intersect the interior of the region $R_{S W}$ contradicting $S(k, k+1) \cap S^{\prime}\left(p_{1}, q_{1}\right) \neq$ \varnothing. Therefore, slope $\left(p_{1}, q_{1}\right)<0$.

Consider the set $P^{\prime}=\left\{i: 1 \leq i \leq p_{1}\right.$ or $\left.q_{1} \leq i \leq n\right\} \subseteq P$. Note that the south-, east-, north-, and west-most points of P^{\prime} are S, p_{1}, q_{1}, and W respectively, and by (12) we have $(S)_{x}>\left(q_{1}\right)_{x}$ and $(W)_{y}>\left(p_{1}\right)_{y}$. This implies that the northeast region of P^{\prime} only contains the points p_{1} and q_{1}. Moreover, only the northeast and the southwest regions of P^{\prime} intersect. This means that $M_{0}=\left\{S(l, l+1): l \in P^{\prime}\right.$ and l even $\}$ is a perfect strong matching of P^{\prime} and, therefore, $S(i, i+1) \cap$ $S(j, j+1)=\varnothing$.

Figure 12: A point set P with repeated coordinates (left), the perturbed set P^{\prime} and the matchings for P^{\prime} and P.

3.5 A Remark on Degeneracies

We have assumed, for the preceding results, that the points P do not have a repeated x - or y coordinate. Without this assumption, it may be that a perfect matching, even a weak one, does not exist, as shown in the example of Figure 12(left), where both a and b can only be matched with c.

A natural approach would be to declare that two points can be matched with an object that covers them when no third point is in the interior of the object. However, for a set of points on a horizontal line, the matching graph for squares would then be the complete graph, violating the proximity relationship that the Delaunay graph is expected to have for the L_{∞} metric.

Another natural and more restrictive extension is as follows. Consider all vertical and horizontal lines defined by the points of P, and let δ be the smallest distance between any two of these lines that are distinct and parallel. Let ε be an infinitesimal amount with respect to δ, e.g., $\varepsilon=\delta \cdot n^{-10}$. From P, we define a perturbed associated set P^{\prime} as follows. Points $\left(x_{1}, y\right),\left(x_{2}, y\right), \ldots,\left(x_{k}, y\right)$ on a
horizontal line, with $x_{1}<x_{2}<\cdots<x_{k}$, are transformed into points $\left(x_{1}, y\right),\left(x_{2}, y+\varepsilon\right), \ldots,\left(x_{k}, y+\right.$ $(k-1) \varepsilon)$, and points $\left(x, y_{1}\right),\left(x, y_{2}\right), \ldots,\left(x, y_{k}\right)$ on a vertical line, with $y_{1}>y_{2}>\cdots>y_{k}$ are transformed into $\left.\left(x, y_{1}\right),\left(x, y_{2}+\varepsilon\right), \ldots,\left(x, y_{k}\right)+(k-1) \varepsilon\right)$. (This is essentially the same perturbation produced by an infinitesimal clockwise rotation of the coordinate axis.) Now the extended matching definition for P is simply what results from applying the original definition to P^{\prime}, where no x - or y-coordinates are repeated, and, thus, all of our preceding results apply.

With this definition, the matching graph for a set of points on a horizontal line is a path, as is natural. Notice that points that would be matched in P with the original definition are still matched with the extended definition via P^{\prime}, and that strong square-matchings in P^{\prime} give squares for P that have disjoint interiors, which is an acceptable definition for strong matching in the extended scenario. An example of matching for the extended definition is shown in Figure 12. This can be easily reformulated for the L_{1} metric, where repeated points of lines with slope ± 1 must be avoided.

4 Conclusion

4.1 Square-Matchings versus Circle Matchings

Let us briefly compare the results on matching points using squares with the analogous results using circles; the interested reader is referred to [1] for details.

When \mathcal{C} is the set of all circles in the plane, the graph $G_{\mathcal{C}}(P)$ is the Euclidean $\left(L_{2}\right)$ Delaunay triangulation $D T(P)$; hence, a point set admits a perfect circle-matching if and only if the graph $D T(P)$ contains a perfect matching, which is always the case, as proved by Dillencourt in 1990 [4]. Therefore, while we have had to prove the existence of square-matchings from scratch, the fact that any point set of even cardinality admits a perfect circle-matching is a direct consequence of Dillencourt's result. On the other hand, he also proved that for the L_{2} metric, $D T(P)$ does not contain in general a Hamiltonian path [5], contrary to the situation for the L_{∞} and the L_{1} metrics, as we have established here.

There are point sets that do not admit strong-circle matchings, as is also the case for strong square-matchings. However, the example described in this paper requires only 10 points, while the smallest example we found for circles requires 74 points (Figure 13). Similarly, we have shown that, given a point set P with $n \geq 2$ elements, it is always possible to find a strong square-matching of P with $2\left\lceil\frac{n}{5}\right\rceil$ matched points, while for circles the best fraction we know is that there is a strong circle-matching using at least $2\lceil(n-1) / 8\rceil$ points of P.

A final difference that is worth mentioning happens when P is a point set in convex position with an even number of elements. While we have proved that in this situation P always admits a perfect strong square-matching (Theorem 4), an example disallowing strong circle-matching is shown in [1].

4.2 Open Problems

Since (weak) perfect matchings with circles and isothetic squares are always possible, it is natural to ask which other classes of convex objects have the same property, and try to characterize them. On the other hand, we have also shown that perfect strong matchings are not always possible using either circles or squares; hence, it would be interesting to find some nontrivial class of objects that allows them.

On the computational side, there are also decision and construction problems that are very interesting; in particular, in the time since the conference presentation of our results, Bereg et.
al. [2] were able to prove that deciding whether a point set P admits a perfect strong square matching is $N P$-hard, while, given P and a specific combinatorial matching, deciding whether the matching is realizable as a strong square-matching can be done in $O\left(n \log ^{2} n\right)$ time. However, similar problems for circles remain open.

Figure 13: The elements of a set S are $n-1$ points evenly distributed on C and the center of C. For $n \geq 74$ this point set does not admit any strong perfect circle-matching.

Acknowledgments

The research in this paper was initiated at the International Workshop on Combinatorial Geometry at the Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jun. 30Jul. 4, 2003. The authors would like to thank the other workshop participants, namely, Gabriela Araujo, Elsa Omaña-Pulido, Eduardo Rivera-Campo and Pilar Valencia for helpful discussions.
E. Arkin and J. Mitchell acknowledge support from the National Science Foundation (CCR0098172, CCF-0431030, CCF-0729019). In addition, J. Mitchell acknowledges support from the U.S.-Israel Binational Science Foundation (grant No. 2000160), NASA Ames Research (NAG21620), NSF grants ACI-0328930 and CCF-0528209, and Metron Aviation. Ferran Hurtado is partially supported by grants MEC-MCYT-FEDER BFM2003-00368, MEC MTM2006-01267, DURSI 2001SGR00224 and DURSI 2005SGR00692. Jorge Urrutia is partially supported by MEC MTM200603909 and by CONACYT of Mexico grant 37540-A.

References

[1] B. M. Ábrego, E. Arkin, S. Fernández-Merchant, F. Hurtado, M. Kano, J.S.B. Mitchell and J. Urrutia, Matching points with circles and squares, Proc. Japan Conference on Discrete and Computational Geometry 2004, Vol. 3742 of Lecture Notes in Computer Science, pages 1-15. Springer-Verlag, 2005.
[2] S. Bereg, N. Mutsanas and A. Wolff, Matching points with rectangles and squares, Proc. 32nd Int. Conf. on Current Trends in Theory and Practice of Computer Science (SOFSEM'06), volume 3831 of Lecture Notes in Computer Science, pages 177-186. Springer-Verlag, 2006.
[3] J. Czyzowicz, E. Rivera-Campo, J. Urrutia and J. Zaks, Guarding rectangular art galleries, Discrete Mathematics, 50, 1994, 149-157.
[4] M. B. Dillencourt, Toughness and Delaunay Triangulations, Discrete and Computational Geometry, 5(6), 1990, 575-601. Preliminary version in Proc. of the 3rd Ann. Symposium on Computational Geometry, Waterloo, 1987, 186-194.
[5] M. B. Dillencourt, A non-Hamiltonian, nondegenerate Delaunay Triangulation, Information Processing Letters, 25(3), 1987, 149-151.
[6] M. B. Dillencourt, Traveling Salesman Cycles Are Not Always Subgraphs of Delaunay Triangulations or of Minimum Weight Triangulations, Information Processing Letters, 24(5), 1987, 339-342.
[7] M. B. Dillencourt, Finding Hamiltonian Cycles in Delaunay Triangulations is NP-Complete, Discrete Applied Mathematics, 64(3), February 1996, 207-217.
[8] G. Liotta, Proximity Drawings. Chapter in Handbook of Graph Drawing and Visualization, R. Tamassia, Editor, in preparation. Chapman \& Hall/CRC Press.
[9] G. Liotta, A. Lubiw, H. Meijer and S.H. Whitesides, The Rectangle of Influence Drawability Problem, Discrete and Computational Geometry, 5(6), 1990, 575-601.
[10] J. Pach, Editor, Towards a Theory of Geometric Graphs, Amer. Math. Soc., Contemp. Math. Series/342, 2004.
[11] F. P. Preparata and M. I. Shamos, Computational Geometry. An Introduction, Springer-Verlag, 1995.
[12] M. Sharir, On k-Sets in Arrangements of Curves and Surfaces, Discrete and Computational Geometry, 6, 1991, 593-613.
[13] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc., 82, 1956, 99-116.

[^0]: ${ }^{1}$ Department of Mathematics, California State University, Northridge, CA.
 ${ }^{2}$ Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY.
 ${ }^{3}$ Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain.
 ${ }^{4}$ Department of Computer and Information Sciences, Ibaraki University, Japan.
 ${ }^{5}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México

[^1]: ${ }^{1}$ A preliminary version of our results on circle-matchings and square-matchings appeared as an extended abstract in the conference paper [1]

