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Abstract

We give a new lower bound for the rectilinear crossing number cr(n) of the complete geo-
metric graph Kn. We prove that cr(n) ≥ 1
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and we extend the proof of

the result to pseudolinear drawings of Kn.

1 Introduction
The crossing number cr (G) of a simple graph G is the minimum number of edge crossings in any
drawing of G in the plane, where each edge is a simple curve. The rectilinear crossing number cr (G)
is the minimum number of edge crossings when G is drawn in the plane using straight segments as
edges. The crossing numbers have many applications to Discrete Geometry and Computer Science,
see for example [7] and [9].
In this paper we study the problem of determining cr (Kn), where Kn denotes the complete

graph on n vertices. For simplicity we write cr (n) = cr (Kn). An equivalent formulation of the
problem is to find the minimum number of convex quadrilaterals determined by n points in general
position (no three points on a line).
We mention here that cr (Kn) = 1
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was conjectured by Zarankiewicz

[12] and Guy [3], and there are (non-rectilinear) drawings of Kn achieving this number. Of course
cr (Kn) ≤ cr (Kn) but from the exact values of cr (n) for n ≤ 12 [1], it is known that cr (K8) <
cr (K8).
Jensen [6] and Singer [10] were the first to settle cr (n) = Θ

¡
n4
¢
. In fact, since cr (5) = 1 then

by an averaging argument it is easy to deduce that cr (n) ≥ 1
5

¡
n
4

¢
. This same idea was used by

Brodsky et al [2] when they obtained cr (10) = 62, to deduce cr (n) ≥ 0.3001¡n4¢. Later Aicholzer
et al [1] calculated cr (12) = 153 and used this to get cr (n) ≥ 0.3115¡n4¢. Very recently Wagner
[11], following different methods proved cr (n) ≥ 0.3288¡n4¢. On the other hand Brodsky et al [2]
constructed rectilinear drawings of Kn showing cr (n) ≤ 6467

16848

¡
n
4

¢ ≤ 0.3838¡n4¢. In this paper we
prove the following theorem which gives as a lower bound for cr (n) the exact value conjectured by
Zarankiewicz and Guy for cr (Kn).

Theorem 1 cr(n) ≥ 1
4
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It is known that c∗ = limn→∞ cr (n) /
¡
n
4

¢
> 0 exists. Our theorem gives c∗ ≥ 3/8 = 0.375 and

it can in fact be generalized to a larger class of drawings of Kn. Namely, those obtained from the
concept of simple allowable sequences of permutations introduced by Goodman and Pollack [4]. We
denote by P2 the real projective plane, a pseudoline ` is a simple closed curve whose removal does
not disconnect P2. A finite set P in the plane is a generalized configuration if it consists of a set of
points, together with a set of pseudolines joining each pair of points subject to the condition that
each pseudoline intersects every other exactly once. If there is a single pseudoline for every pair then
the generalized configuration is called simple.
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Consider a drawing of Kn in the (projective) plane where each edge is represented by a simple
curve. If each of these edges can be extended to a pseudoline in such a way that the resulting
structure is a simple generalized configuration then we call such a drawing a pseudolinear drawing of
Kn. We call pseudosegments the edges of a pseudolinear drawing. Clearly, every rectilinear drawing
ofKn is also pseudolinear. Thus the number ecr(n), defined as the minimum number of edge crossings
over all pseudolinear drawings of Kn, generalizes the quantity cr(n) and satisfies ecr(n) ≤ cr(n). In
this context we prove the following stronger result.

Theorem 2 ecr(n) ≥ 1
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If a pseudolinear drawing is combinatorially equivalent to a rectilinear drawing then it is called
stretchable. It is known that almost all pseudolinear drawings are non-stretchable. So it is conceivable
that ecr(n) < cr(n) for n sufficiently large, but at the moment we have no other evidence to support
this. We also mention that the problem of determining whether a pseudolinear drawing is stretchable
is NP-hard [8].

2 Allowable Sequences
Given a set P of n points in the plane, no three of them collinear, we construct the

¡¡
n
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¢
+ 1
¢ × n

matrix S (P ) as follows.
Consider any circle C containing P in its interior. Let ` be the vertical right-hand side tangent

line to C. We can assume without loss of generality that no segment in P is perpendicular to `, we
can also assume that no two segments in P are parallel, otherwise we can perturb the set P without
changing the structure of its crossings. Label the points of P from 1 to n according to the order of
their projections to `, 1 being the lowest and n the highest. For each segment ij in P , let cij = cji
be the point in the upper half of C such that the tangent line to C at cij is perpendicular to ij.
This gives a linear order on the segments of P , inherited from the counter-clockwise order of the
points cij in C. Denote by tr the rth pair of points (segment) in P under this order. Indistinctly we
use tr to denote an unordered pair {i, j} or the point cij = cji. Using this, we recursively construct
the matrix S (P ). The first row is (1, 2, ..., n), and the (k + 1)th row is obtained from the kth row
by switching the pair tk. S(P ) is half a period of what is commonly referred as a circular sequence
of permutations of P [4].
S (P ) satisfies the following properties.

1. The first row of S (P ) is the n-tuple (1, 2, 3, ..., n), the last row of S (P ) is the n-tuple
(n, n− 1, ..., 2, 1), and any row of S (P ) is a permutation of its first row.

2. Any row r ≥ 2 is obtained from the previous row by switching two consecutive entries of the
row r − 1.

3. If the rth row is obtained by switching the entries Sr−1,c and Sr−1,c+1 in the (r − 1)th row
then Sr−1,c < Sr−1,c+1.

4. For every 1 ≤ i < j ≤ n there exists a unique row 1 ≤ r ≤ ¡
n
2

¢
such that the entries i

and j are switched from row r to row r + 1, i.e., tr = {i, j}, Sr,c = i < j < Sr,c+1, and
Sr+1,c = j > i = Sr+1,c+1 for some 1 ≤ c ≤ n− 1.

A simple allowable sequence of permutations is a combinatorial abstraction of a circular sequence
of permutations associated with a configuration of points. It is defined as a doubly infinite periodic
sequence of permutations of 1, 2, . . . , n satisfying that every permutation is obtained from the previ-
ous one by switching two adjacent numbers, and after i and j have been switched they do not switch
again until all other pairs have switched. For the purposes of this paper we only use half a period
of an allowable sequence. This translates to any
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+ 1
¢ × n matrix S (P ) satisfying properties
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1-4. From now on S(P ) will be such a matrix, not necessarily obtained as the circular sequence of
permutations of a point set P .
It was proved by Goodman and Pollack [5] that every simple allowable sequence of permutations

can be realized by a generalized configuration of points where the matrix S(P ) is determined by the
cyclic order in which the connecting pseudolines meet a distinguished pseudoline (for example the
pseudoline at infinity).
Next we establish when two pseudosegments do not intersect by means of the matrix S(P ).

Given a simple generalized configuration of points P , we say that two pseudosegments eab and ecd
are separated if there exists a pseudoline in P that leaves eab and ecd in different sides. Note that
any two non-incident pseudosegments (i.e., they do not share endpoints), either intersect in their
interior (generate a crossing) or are separated. Thus ecr(GP ) = ecr(P ) is the number of non-incident
pairs of pseudosegments minus the number of separated pseudosegments, where GP is a pseudolinear
drawing of Kn associated to S(P ).
Let <r be the linear order on {1, 2, 3, . . . , n} induced by the rth row of S(P ). Observe that eab

and ecd are separated if and only if there is a row r such that a, b <r c, d or c, d <r a, b. In this case
we say eab and ecd are separated in row r.
Lemma 3 allows us to count the number of separated pseudosegments in P . We say eab and ecd

are neighbors in row r if they are separated in row r but not in row r − 1.
Lemma 3 eab and ecd are separated if and only if there is a unique row r where eab and ecd are
neighbors.

Proof. First note that if eab and ecd are neighbors, then they are separated by definition. Now
assume eab and ecd are separated, and let R be the last row where they are separated. If eab and ecd
are separated in all rows above R then they are separated in the first and consequently in the last
rows, that is R =

¡
n
2

¢
+ 1. This is impossible since having eab and ecd separated in every row implies

that they never reversed their order.
Consider the largest row r ≤ R such that eab and ecd are not separated in row r − 1. Then eab

and ecd are neighbors in row r. Finally, to prove that such a row is unique, let r0 < r1 be two rows
where eab and ecd are neighbors. Assume without loss of generality that a <r0 b <r0 c <r0 d. Then
a <r0−1 c <r0−1 b <r0−1 d and, since b and c switch exactly once, b <r1 c. Also, by definition, one
of the pairs eac,fad, or ebd switches from row r1−1 to row r1. Since such a pair switches exactly once,
then it has opposite orders in rows r0 and r1. Therefore one of the following should be satisfied

b <r1 c <r1 a <r1 d, or b <r1 d <r1 a <r1 c, or a <r1 d <r1 b <r1 c,

but then eab and ecd are not separated in row r1.
For all i 6= j in P , write fP

³eij´ = (r, c), if i and j switch in row r and column c, that is

Sr,c = i = Sr+1,c+1 and Sr,c+1 = j = Sr+1,c. Note that this is well defined since the relative order
of each pair of points {i, j} in P is changed exactly once.
For 1 ≤ c ≤ n− 1 define

CP (c) =
n
r : there exist i, j such that fP

³eij´ = (r, c)o ,
and let chP (c) = ch (c) = |CP (c)|. In other words denotes the number of changes (switches) in
column c.

Lemma 4 For any simple generalized configuration P of n points in the plane

ecr (P ) = 3µn
4

¶
−
n−1X
j=1

(j − 1) (n− 1− j) ch (j) .
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Proof. Since each four points in P determine three pairs of non-incident pseudosegments, there

are 3
¡
n
4

¢
pairs of non-incident pseudosegments in P . It remains to prove that

n−1X
j=1

(j − 1) (n− 1− j) ch (j)

of these pairs are separated (non-crossing). Note that eab and ecd are neighbors in row r if and only
if there are x ∈ {a, b}, y ∈ {c, d} such that x and y switch from row r− 1 to row r. By Lemma 3, if
tr = {i, j} and i < j then all pairs fhj and eik are neighbors (in row r) whenever h <r j and i <r k.
If fP

³eij´ = (r, c) then row r accounts for (c− 1) (n− 1− c) neighboring pairs of pseudosegments.
Moreover, Lemma 3 guarantees that, when adding these quantities over all rows, we are counting
all separated pairs of pseudosegments exactly once.

3 Proof of Theorem 2
Note that for fixed 1 ≤ i ≤ ¡n2¢, i switches exactly once with each number j 6= i, that is¯̄̄n

fP

³eij´ : 1 ≤ j ≤ n, j 6= io¯̄̄ = n− 1.
Moreover, since n is the last entry in row 1 and the first entry in row

¡
n
2

¢
+1, then when i = n these

n− 1 switches occur in different columns, that is½
1 ≤ c ≤ n− 1 : fP

³fnj´ = (r, c) for some 1 ≤ r ≤ µn
2

¶
, and 1 ≤ j < n

¾
= {1, 2, ..., n− 1} .

Therefore we can define RP (c) = r to be the unique row r where the change of n in column c occurs,

i.e., there exists 1 ≤ j < n such that fP
³fnj´ = (r, c). Also for 1 ≤ c ≤ n− 1 define the number of

changes in column c above and below row RP (c) as

AP (c) =
n
r < RP (c) : there exist i, j such that fP

³eij´ = (r, c)o
BP (c) =

n
r > RP (c) : there exist i, j such that fP

³eij´ = (r, c)o .
The proof of the Theorem is based on the identity from Lemma 4, together with the next two

lemmas. Let m = bn/2c
Lemma 5 For any simple generalized configuration P of n points in the plane and 1 ≤ k ≤ m− 1
we have

|AP (k)|+ |BP (n− k)| ≥ k.
Proof. For 1 ≤ j ≤ k let

g (j) = min
n
r : there exists i such that fP

³eij´ = (r, k)o
h (j) = min

n
r : there exists i such that fP

³eij´ = (r, n− k)o .
Since all g (1) , g (2) , ..., g (k) , h (1) , h (2) , ..., h (k) are different, and AP (k) and BP (n− k) are dis-
joint, then it is enough to prove that for all 1 ≤ j ≤ k, either h (j) ∈ BP (n− k) or g (j) ∈ AP (k).
Assume that h (j) /∈ BP (n− k). Then, since h (j) 6= RP (n− k), h (j) < RP (n− k). Observe

that g (j) < h (j) and RP (n− k) < RP (k) then
g (j) < h (j) < RP (n− k) < RP (k) .

Therefore g (j) ∈ AP (k).
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Lemma 6 For any simple generalized configuration P of n points in the plane and 1 ≤ k ≤ m− 1
we have

kX
c=1

(chP (c) + chP (n− c)) ≥ 3 (1 + 2 + 3 + ...+ k) = 3
µ
k + 1

2

¶
.

Proof. By induction on |P | = n. The statement is true for |P | = 3 by vacuity.
Consider the matrix S (P ) and let P 0 = P − {n}. Note that S (P 0) is the matrix obtained from

erasing the unique entry equal to n in each row of S (P ) and shifting one column left the necessary
elements of S (P ). Also the rows where the corresponding change involves n are deleted.
Note that for 1 ≤ c ≤ n− 2

CP 0 (c) = AP (c) ∪BP (c+ 1) .
Thus for 1 ≤ c ≤ n− 2

chP 0 (c) = |AP (c)|+ |BP (c+ 1)| . (1)

Also notice that
BP (1) = AP (n− 1) = ∅. (2)

and for 1 ≤ c ≤ n− 1
chP (c) = |AP (c)|+ |BP (c)|+ 1. (3)

Then by definition and (3)

kX
c=1

(chP (c) + chP (n− c)) =
kX
c=1

(|AP (c)|+ |BP (c)|+ |AP (n− c)|+ |BP (n− c)|+ 2)

= 2k +
kX
c=1

(|AP (c)|+ |BP (c)|+ |AP (n− c)|+ |BP (n− c)|) ,

separating one term from each sum we get

kX
c=1

(chP (c) + chP (n− c)) = 2k + |AP (k)|+ |BP (1)|+
k−1X
c=1

(|AP (c)|+ |BP (c+ 1)|) +

+ |AP (n− 1)|+ |BP (n− k)|+
kX
c=2

(|AP (n− c)|+ |BP (n− c+ 1)|) ,

then by (1) and (2),

kX
c=1

(chP (c) + chP (n− c)) = 2k + |AP (k)|+ |BP (n− k)|+
k−1X
c=1

chP 0 (c) +
kX
c=2

chP 0 (n− c)

= 2k + |AP (k)|+ |BP (n− k)|+
k−1X
c=1

(chP 0 (c) + chP 0 (n− 1− c)) .

Finally, by induction and Lemma 5,

kX
c=1

(chP (c) + chP (n− c)) ≥ 2k + k + 3 (1 + 2 + ...+ (k − 1))

= 3 (1 + 2 + ...+ k) = 3

µ
k + 1

2

¶
.
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Proof of Theorem 2. By Lemma 4, it is enough to find an upper bound for the expression

n−1X
c=1

(c− 1) (n− 1− c) chP (c).

For 1 ≤ j ≤ m − 1 let xj = chP (j) + chP (n − j), and xm = chP (m) + chP (m + 1) if n is odd,
otherwise xm = chP (m). Under these definitions and according to Lemma 5, together with the fact
that

Pm
j=1 xj =

¡
n
2

¢
, it is enough to find the maximum of the function

f(x1, x2, . . . , xm) =
mX
j=1

(j − 1) (n− 1− j)xj

subject to the following linear conditions:

mX
j=1

xj =

µ
n

2

¶
and

kX
j=1

xj ≥ 3
µ
k + 1

2

¶
for every 1 ≤ k ≤ m− 1.

It is easy to see that the maximum occurs if and only if xk = 3k for all 1 ≤ k ≤ m − 1 and
xm =

¡
n
2

¢− 3¡m2 ¢. If this is the case then
f(x1, x2, . . . , xm) =

( 1
64 (n− 3) (n− 1)

¡
7n2 − 12n− 3¢ if n is odd

1
64n (n− 2)

¡
7n2 − 26n+ 16¢ if n is even.

Therefore, by Lemma 5, we conclude that

ecr (P ) ≥


1
64 (n− 3)2 (n− 1)2 if n is odd

1
64n (n− 2)2 (n− 4) if n is even.

i.e., ecr (P ) ≥ 1
4
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