POINT-SETS WITH MANY SIMILAR COPIES OF A PATTERN: WITHOUT A FIXED NUMBER OF COLLINEAR POINTS OR IN PARALLELOGRAM-FREE POSITION

BERNARDO M. ÁBREGO AND SILVIA FERNÁNDEZ-MERCHANT

Department of Mathematics
California State University, Northridge
18111 Nordhoff St, Northridge, CA 91330-8313.
email:\{bernardo.abrego,silvia.fernandez\}@csun.edu

Abstract

Let P be a finite pattern, that is, a finite set of points in the plane. We consider the problem of maximizing the number of similar copies of P over all sets of n points in the plane under two general position restrictions: (1) Over all sets of n points with no m points on a line. We call this maximum $S_{P}(n, m)$. (2) Over all sets of n points with no collinear triples and not containing the 4 vertices of any parallelogram. These sets are called parallelogram-free and the maximum is denoted by $S_{P}^{\sharp}(n)$. We prove that $S_{P}(n, m) \geq n^{2-\varepsilon}$ whenever $m(n) \rightarrow$ ∞ as $n \rightarrow \infty$ and that $\Omega(n \log n) \leq S_{P}^{\nmid}(n) \leq O\left(n^{3 / 2}\right)$.

1. Introduction

All sets considered in this paper are finite subsets of the plane, which we identify with the set of complex numbers \mathbb{C}. We say that the sets A and B are similar, denoted by $A \sim B$, if there exist complex numbers w and $z \neq 0$ such that $B=z A+w$. Here, $z A=\{z a: a \in A\}$ and $A+w=\{a+w: a \in A\}$.

Let P be a fixed set of at least 3 points, P is called a pattern. For any set Q, we denote by $S_{P}(Q)$ the number of similar copies of P contained in Q, that is,

$$
S_{P}(Q)=\left|\left\{P^{\prime} \subseteq Q: P^{\prime} \sim P\right\}\right|
$$

2000 Mathematics Subject Classification. Primary 52C10, Secondary 05C35.
Key words and phrases. Similar copy, pattern, geometric pattern, general position, parallelogram-free, Minkovski Sum.

We are interested in the maximum of $S_{P}(Q)$ over all n-point sets Q satisfying certain restrictions.

Erdős and Purdy [8]-[10] considered $S_{P}(n)=\max S_{P}(Q)$ where the maximum is taken over all n-point sets Q. Elekes and Erdős proved [6] that this function is quadratic or close to quadratic (depending on the pattern P); and later Elekes and the authors [4] showed that the optimal sets, when $S_{P}(n)$ is quadratic, contain many collinear points. In [3] we considered the maximum $S_{P}^{\prime}(n)=$ $\max S_{P}(Q)$ over all n-point sets in general position, that is, with no three collinear points. In the first part of this paper, we relax the general position condition to sets Q without $m \geq 4$ collinear points and consider the corresponding maximum
$S_{P}(n, m)=\max \left\{S_{P}(Q):|Q|=n\right.$ and no m collinear points in $\left.Q\right\}$.
Note that $S_{P}^{\prime}(n)=S_{P}(n, 3)$ and

$$
S_{P}^{\prime}(n) \leq S_{P}\left(n, m_{1}\right) \leq S_{P}\left(n, m_{2}\right) \leq S_{P}(n)
$$

whenever $m_{1} \leq m_{2}$. Moreover, if m is fixed, then by Corollary 1 in [4] the function $S_{P}(n, m)$ is subquadratic, i.e., $\lim _{n \rightarrow \infty} S_{P}(n, m) / n^{2}=0$.

The general lower bound for $S_{P}^{\prime}(n)$ in Theorem 1 of [3] still holds for $S_{P}(n, m)$ as long as no m points in P are collinear. More precisely, if $\mathrm{Iso}^{+}(P)$ denotes the group of orientation-preserving isometries of the pattern P, also known as the proper symmetry group of P; and the index of a point set A with respect to the pattern P, denoted by $i_{P}(A)$, is equal to $i_{P}(A)=\log \left(\left|\operatorname{Iso}^{+}(P)\right| S_{P}(A)+|A|\right) / \log |A|$, then

Theorem 1. For any A and P finite sets in the plane with at most $m-1$ collinear points, there is a constant $c=c(P, A)$ such that, for n large enough,

$$
S_{P}(n, m) \geq c n^{i_{P}(A)}
$$

The proof is the same as that in [3] because Lemma 2 in that paper was actually proved in greater generality for sets with no m points on a line.

We believe that the true asymptotic value of $S_{P}(n, m)$ is close to quadratic for every pattern P with no m collinear points. In Section 2, we briefly explore the behavior of the function $S_{P}(n, m)$ for larger values of m and $P=\triangle$ the equilateral triangle. We then present general asymptotic results, for arbitrary patterns, when $m=m(n)$ is a function of n such that $m(n) \rightarrow \infty$ when $n \rightarrow \infty$. In this case
we prove in Section 3 that $S_{P}(n, m) \geq n^{2-\varepsilon}$ for every n sufficiently large.

All constructions in [3] are obtained by applying Minkovski sums to suitable initial sets. The outcome is a set with multiple quadruples forming the vertex set of a parallelogram. In the second part of this paper, we strengthen the general position condition to parallelogramfree position, i.e., no three collinear points or parallelogram's vertex set. We are able to construct parallelogram-free n-sets Q with $\Omega(n \log n)$ copies of a parallelogram-free pattern P. We also show a non-trivial upper bound for these patterns, namely, we prove that at most $O\left(n^{3 / 2}\right)$ copies of P are possible. These results are presented in Section 4.

We note that Erdős' unit distance problem [7] has also been studied under the parallelogram-free restriction [13] (see also [5, Section 5.5]).

2. $S_{P}(n, m)$ FOR AN EQUILATERAL TRIANGLE P

When $m \geq 4$, the initial sets A_{m} with the largest indices we know are clusters of points of the equilateral triangle lattice in the shape of a circular disk.

Figure 1. Best known constructions of initial sets A_{m} with many equilateral triangles and at most $m-1$ points on a line.

Theorem 2. For $m \geq 4$ and $P=\triangle$ the equilateral triangle,

$$
S_{\triangle}(n, m) \geq \Omega\left(n^{i \Delta\left(A_{m}\right)}\right)
$$

where

$$
\begin{aligned}
& i_{\Delta}\left(A_{4}\right) \geq \frac{\log 31}{\log 7} \geq 1.764, \quad i_{\Delta}\left(A_{5}\right) \geq \frac{\log 148}{\log 16} \geq 1.802 \\
& i_{\Delta}\left(A_{6}\right) \geq \frac{\log 217}{\log 19} \geq 1.827, \quad i_{\Delta}\left(A_{7}\right) \geq \frac{\log 679}{\log 34} \geq 1.849 \\
& i_{\triangle}\left(A_{8}\right) \geq \frac{\log 811}{\log 37} \geq 1.855, \quad i_{\triangle}\left(A_{9}\right) \geq \frac{\log 1978}{\log 58} \geq 1.869
\end{aligned}
$$

and in general, if m is even, then

$$
i_{\triangle}\left(A_{m}\right)=\frac{\log \left(21 m^{4}-84 m^{3}+156 m^{2}-144 m+64\right)-\log 64}{\log \left(3 m^{2}-6 m+4\right)-\log 4}
$$

Proof. For the first part refer to Figure 1 where the sets A_{m} and their corresponding indices are shown. For the second part we consider as our set A_{m} the lattice points inside a regular hexagon of side $m / 2-1$ with sides parallel to the lattice. Clearly A_{m} contains at most $m-1$ collinear points. Also $\left|A_{m}\right|=\left(3 m^{2}-6 m+4\right) / 4$ and $S_{\triangle}\left(A_{m}\right)=\left(7 m^{4}-28 m^{3}+36 m^{2}-16 m\right) / 64$ (see [1]), therefore the result follows from Theorem 1 .

After some elementary estimations, the index on last theorem satisfies that

$$
i_{\Delta}\left(A_{m}\right) \geq 2-\frac{\log (12 / 7)}{2 \log m}+\Theta(\log m)^{-2}>2-\frac{0.269}{\log m}+\Theta(\log m)^{-2}
$$

This suggests that $S_{\triangle}(n, m) \geq \Omega\left(n^{2-0.269 / \log m}\right)$, however the constant term hidden in the Ω may depend on A, and thus on m. We see this with more detail on the next section.

3. When m grows together with n

We investigate the function $S_{P}(n, m)$ when the pattern P is fixed and $m=m(n) \rightarrow \infty$ when $n \rightarrow \infty$. For instance, the maximum number of squares in a n-point set without $\log n$ points on a line, is at least $\Omega\left(n^{2-c(\log \log n)^{-1}}\right)$. For the proof of our result, we use the following two theorems which give the best bounds for the function $S_{P}(n)$ without restrictions.

Theorem A (Elekes and Erdős [6]). For any pattern P there are constants $a, b, c>0$ such that

$$
S_{P}(n) \geq c n^{2-a(\log n)^{-b}}
$$

moreover, if the coordinates of P are algebraic or if $|P|=3$, then $S_{P}(n) \geq c n^{2}$.

If $u, v, w, z \in \mathbb{C}$ then the cross-ratio of the 4 -tuple (u, v, w, z) is defined as

$$
\frac{(w-u)(z-v)}{(z-u)(w-v)}
$$

Theorem B (Laczkovich and Ruzsa [12]). $S_{P}(n)=\Theta\left(n^{2}\right)$ if and only if the cross-ratio of every 4 -tuple in P is algebraic.

For the sake of clarity, let us call a pattern P cross-algebraic if the cross-ratio of every 4 -tuple is algebraic, and cross-transcendental otherwise.

Theorem 3. Let P be an arbitrary pattern and suppose $m=m(n) \rightarrow$ ∞, then for every $\varepsilon>0$ there is a threshold function $N_{0}=N_{0}(\varepsilon, P)$ such that

$$
S_{P}(n, m) \geq n^{2-\varepsilon} \text { for every } n \geq N_{0} .
$$

Proof. Suppose $m=m(n) \rightarrow \infty$. We actually prove the following stronger result.
(i) If $\log m \leq \sqrt{\log n}$ and P is cross-algebraic, then there is a constant $c_{1}>0$ depending only on P such that

$$
S_{P}(n, m) \geq \Omega\left(n^{2-c_{1} / \log m}\right)
$$

(ii) If $\log m \leq \sqrt{\log n}$ and P is cross-transcendental, then there are constants $c_{1}, c_{2}, c_{3}>0$ depending only on P such that

$$
S_{P}(n, m) \geq \Omega\left(n^{2-c_{2} /(\log m)^{c_{3}}-c_{1} / \log m}\right)
$$

(iii) If $\log m>\sqrt{\log n}$, then $S_{P}(n, m) \geq S_{P}\left(n, e^{\sqrt{\log n}}\right)$ and thus either (i) or (ii) holds with $\log m=\sqrt{\log n}$.
Let us recall that, as part of the proof of Theorem 1 (see [3]), we constructed a set A_{j}^{*} with $\left|A_{j}^{*}\right|=|A|^{j}$ such that $I \cdot S_{P}\left(A_{j}^{*}\right)+|A|^{j} \geq$ $\left(I \cdot S_{P}(A)+|A|\right)^{j}$, where $I=\operatorname{Iso}^{+}(P)$. It follows that for $|A|^{j} \leq n<$ $|A|^{j+1}$,

$$
\begin{align*}
S_{P}(n, m) & \geq S_{P}\left(A_{j}^{*}\right) \geq \frac{1}{I}\left(\left(I \cdot S_{P}(A)+|A|\right)^{j}-|A|^{j}\right) \tag{1}\\
& \geq \frac{1}{I}\left(|A|^{j \cdot i_{P}(A)}-n\right) \geq \frac{1}{I}\left(\left(\frac{n}{|A|}\right)^{i_{P}(A)}-n\right) \tag{2}
\end{align*}
$$

Now, we first prove (i). Suppose that P is cross-algebraic. By Theorem B there is a constant c, depending only on P, and a $(\lceil m\rceil-$ 1)-set A such that $|A|+S_{P}(A) \geq \mathrm{cm}^{2}$. Clearly A does not have m points on a line. By Inequality (2), we have that

$$
\begin{aligned}
S_{P}(n, m) & \geq \frac{1}{I}\left(\left(\frac{n}{|A|}\right)^{i_{P}(A)}-n\right) \\
& >\frac{1}{I}\left(\left(\frac{n}{m}\right)^{\frac{\log \left(c m^{2}\right)}{\log m}}-n\right)=\frac{1}{I c}\left(n^{2+\frac{\log c}{\log m}-\frac{2 \log m}{\log n}}-c n\right)
\end{aligned}
$$

By assumption, $2 \log m / \log n \leq 2 / \log m$. Because $c<1$ it follows that $\log c<0$. Let $c_{1}=2-\log c>0$, then

$$
S_{P}(n, m) \geq \frac{1}{I c}\left(n^{2+\frac{\log c}{\log m}-\frac{2}{\log m}}-n\right) \geq \frac{1}{I c}\left(n^{2-c_{1} / \log m}-n\right)
$$

That is, $S_{P}(n, m) \geq \Omega\left(n^{2-c_{1} / \log m}\right)$, where the constant in the Ω term does not depend on n or m. Similarly, to prove (ii), assume P is cross-transcendental, then by Theorem A there are constants $c, c_{2}, c_{3}>0$, depending only on P, such that $S_{P}(n) \geq c n^{2-c_{2} /(\log n)^{c_{3}}}$. Then there is a $(\lceil m\rceil-1)$-set A such that $|A|+S_{P}(A) \geq \mathrm{cm}^{2-c_{2} /(\log m)^{c_{3}}}$. Again A does not have m points on a line and setting $c_{1}=2-\log c$ we get

$$
\begin{aligned}
S_{P}(n, m) & \geq \frac{1}{I}\left(\left(\frac{n}{|A|}\right)^{i_{P}(A)}-n\right) \geq \frac{1}{I}\left(\left(\frac{n}{m}\right)^{2+\frac{\log c}{\log m}-\frac{c_{2}}{(\log m)^{c_{3}}}}-n\right) \\
& \geq \frac{1}{I c}\left(n^{2-c_{2} /(\log m)^{c_{3}}-c_{1} / \log m}-c n\right)
\end{aligned}
$$

for n and m large enough depending only on P. That is, $S_{P}(n, m) \geq$ $\Omega\left(n^{2-c_{2} /(\log m)^{c_{3}}-c_{1} / \log m}\right)$, where the constant in the Ω term does not depend on n or m.

If m grows like a fixed power of n and P is cross-algebraic (equivalently by Theorem B, $S_{P}(n)=\Theta\left(n^{2}\right)$), then we can improve our bound.

Theorem 4. If P is cross-algebraic and $m=m(n) \geq n^{\alpha}$ for some fixed $0<\alpha<1$, then there is $c_{1}=c_{1}(P, \alpha)>0$ such that

$$
S_{P}(n, m) \geq c_{1} n^{2} \text { for every } n \geq|P|
$$

Proof. Choose an integer $j \geq 2$ such that $\alpha>1 / j$. Consider an optimal set A for the function $S_{P}\left(\left\lfloor n^{1 / j}\right\rfloor\right.$. Then $|A|=\left\lfloor n^{1 / j}\right\rfloor$ and by Theorem B, there is a constant $c=c(P)$ such that $S_{P}(A)=$ $S_{P}(|A|) \geq c|A|^{2}$. Since $|A| \leq n^{1 / j}<n^{\alpha} \leq m$, then A has no m collinear points. By Inequality (1),

$$
\begin{aligned}
S_{P}(n, m) & \geq S_{P}\left(|A|^{j}, m\right) \geq \frac{1}{I}\left(\left(I \cdot S_{P}(A)+|A|\right)^{j}-|A|^{j}\right) \\
& \geq I^{j-1} S_{P}(A)^{j} \geq c^{j} I^{j-1}|A|^{2 j} .
\end{aligned}
$$

Now, if $n \geq|P|$ then $|A| \geq n^{1 / j}-1 \geq\left(1-|P|^{-1 / j}\right) n^{1 / j}$. By letting $c_{1}=c^{j} I^{j-1}\left(1-|P|^{-1 / j}\right)^{2 j}$ we get $S_{P}(n, m) \geq c_{1} n^{2}$.

4. Parallelogram-free sets

We consider the restriction of the function $S_{P}(n)$ to sets of points A in general position (no 3 points on a line) and without parallelograms. We say that such a set A is parallelogram-free. This immediately prohibits the use of Minkovski Sums to obtain good constructions. More precisely, for a parallelogram-free pattern P, define

$$
S_{P}^{4}(n)=\max \left\{S_{P}(A):|A|=n \text { and } A \text { is parallelogram-free }\right\} .
$$

We obtain the following upper bound on $S_{P}^{\#}(n)$.
Theorem 5. Let P be a parallelogram-free pattern with $|P| \geq 3$. Then for all n,

$$
S_{P}^{\nVdash}(n) \leq n^{3 / 2}+n
$$

Proof. Suppose A is an n-set in the plane in general position and with no parallelograms. Let p_{1}, p_{2}, p_{3} be three points in P. Consider the following bipartite graph B. The vertex bipartition is (A, A); the edges are the pairs $\left(a_{1}, a_{2}\right) \in A \times A, a_{1} \neq a_{2}$ such that there is a point $a_{3} \in A$ with $\triangle a_{1} a_{2} a_{3} \sim \triangle p_{1} p_{2} p_{3}$. Every similar copy of P in A has at least one edge (a_{1}, a_{2}) associated to it. Thus the number of edges E in our graph satisfies that $E \geq S_{P}(A)$. By a theorem of Kővari et al. [11] (also referred in the literature as Zarankiewicz problem [14]), it is known that a bipartite graph with n vertices on each class and without subgraphs isomorphic to $K_{2,2}$ contains at most $(n-1) n^{1 / 2}+n$ edges. To finish our proof we now show that B has no subgraphs isomorphic to $K_{2,2}$. Suppose by contradiction that $\left(a_{1}, a_{3}\right),\left(a_{1}, a_{4}\right),\left(a_{2}, a_{3}\right),\left(a_{2}, a_{4}\right)$ are edges in B. Let $\lambda=\left(p_{3}-\right.$

Figure 2. A parallelogram-free point set with n points and $c n \log n$ similar copies of P.
$\left.p_{1}\right) /\left(p_{2}-p_{1}\right)$. By definition, there are points $a_{13}, a_{14}, a_{23}, a_{24} \in A$ such that $\triangle p_{1} p_{2} p_{3} \sim \triangle a_{1} a_{3} a_{13} \sim \triangle a_{1} a_{4} a_{14} \sim \triangle a_{2} a_{3} a_{23} \sim \triangle a_{2} a_{4} a_{24}$. Thus $a_{13}=a_{1}+\lambda\left(a_{3}-a_{1}\right), a_{14}=a_{1}+\lambda\left(a_{4}-a_{1}\right), a_{23}=a_{2}+\lambda\left(a_{3}-a_{2}\right)$, and $a_{24}=a_{2}+\lambda\left(a_{4}-a_{2}\right)$. Then $a_{13}-a_{14}=a_{23}-a_{24}=\lambda\left(a_{3}-a_{4}\right)$, which means that $a_{13} a_{14} a_{24} a_{23}$ is a parallelogram. This contradicts the parallelogram-free assumption on A.

We make no attempt to optimize the coefficient of the $n^{3 / 2}$ term, since we do not believe that $n^{3 / 2}$ is the right order of magnitude.

Theorem 6. Let P be a parallelogram-free pattern with $|P| \geq 3$. Then there is a constant $c=c(P)$ such that for $n \geq|P|$,

$$
S_{P}^{H}(n) \geq c n \log n
$$

For every pattern P, we recursively construct a parallelogram-free point set with many occurrences of P. For any $u, v \in \mathbb{C}$, we define

$$
\begin{align*}
Q(P, A, u, v) & =\bigcup_{p \in P}(u p+(v p-p+1) A) \\
& =\bigcup_{p \in P} \bigcup_{a \in A}(u p+(v p-p+1) a) \tag{3}
\end{align*}
$$

Almost all selections of u and v yield a set $Q=Q(P, A, u, v)$ that is parallelogram-free and such that all the terms in the double union are pairwise different. The proof of this technical fact is given by next lemma.

Lemma 1. Let A and P be parallelogram-free sets. If \mathcal{S} is the set of points $(u, v) \in \mathbb{C}^{2}$ for which $Q=Q(P, A, u, v)$ satisfies that $|Q|<$ $|A||P|, Q$ has three collinear points, or Q has a parallelogram; then \mathcal{S} has zero Lebesgue measure.

We defer the proof of this lemma and instead proceed to bound the number of similar copies of P in Q.
Lemma 2. If A and P are finite parallelogram-free sets, and $Q=$ $Q(P, A, u, v)$ defined in (3) satisfies that $|Q|=|A||P|$, then

$$
S_{P}(Q) \geq|P| S_{P}(A)+|A| .
$$

Proof. Because $|Q|=|A||P|$ it follows that each term in the first union contributes exactly $S_{P}(A)$ similar copies of P, all of them pairwise different. In addition note that

$$
Q=\bigcup_{a \in A}(a+(u+v a-a) P) .
$$

So each term in the new union is a similar copy of P, all of them different and also different from the ones we had counted before. Therefore $S_{P}(Q) \geq|P| S_{P}(A)+|A|$.
We now prove the theorem.
Proof of Theorem 6. Let $A_{1}=P$ and for $m \geq 1$ let A_{m+1} be the parallelogram-free set Q obtained from Lemma 1 with $A=A_{m}$. Because $\left|A_{m+1}\right|=\left|A_{1}\right|\left|A_{m}\right|$, it follows that $\left|A_{m}\right|=|P|^{m}$ for all m. Further, by Lemma 2, for every $0 \leq k \leq m-2, S_{P}\left(A_{m-k}\right) \geq$ $|P| S_{P}\left(A_{m-k-1}\right)+\left|A_{m-k-1}\right|=|P| S_{P}\left(A_{m-k-1}\right)+|P|^{m-k-1}$. Thus

$$
\begin{aligned}
S_{P}\left(A_{m}\right) & \geq|P| S_{P}\left(A_{m-1}\right)+|P|^{m-1} \geq|P|^{2} S_{P}\left(A_{m-2}\right)+2|P|^{m-1} \\
& \geq \cdots \geq|P|^{m-1} S_{P}\left(A_{1}\right)+(m-1)|P|^{m-1}=m|P|^{m-1} .
\end{aligned}
$$

Suppose $|P|^{m} \leq n<|P|^{m+1}$ with $m \geq 2$. Let $c=1 /\left(2|P|^{2} \log |P|\right)$, then

$$
S_{P}^{\nVdash}(n) \geq S_{P}\left(A_{m}\right) \geq m|P|^{m-1}>\left(\frac{\log n}{\log |P|}-1\right) \frac{n}{|P|^{2}} \geq c n \log n .
$$

If $|P| \leq n<|P|^{2}$, then $S_{P}^{H}(n) \geq S_{P}(P)=1>c n \log n$.

Finally, we present the proof of Lemma 1.
Proof of Lemma 1. We show that \mathcal{S} is made of a finite number of algebraic sets, all of them of real dimension at most three. This immediately implies that the Lebesgue measure of such a set is zero. For every $p \in P$ and $a \in A$, let $q(a, p)=(u p+(v p-p+1) a)$. Suppose that $q\left(a_{1}, p_{1}\right)=q\left(a_{2}, p_{2}\right)$ with $\left(a_{1}, p_{1}\right) \neq\left(a_{2}, p_{2}\right)$. Then

$$
\left(p_{1}-p_{2}\right) u+\left(p_{1} a_{1}-p_{2} a_{2}\right) v+a_{1}\left(1-p_{1}\right)-a_{2}\left(1-p_{2}\right)=0 .
$$

This is the equation of a complex-line in \mathbb{C}^{2} (with real-dimension two) unless the coefficients of u and v, as well as the independent term are equal to zero. That is, $p_{1}-p_{2}=0,\left(p_{1} a_{1}-p_{2} a_{2}\right)=$ 0 , and $a_{1}\left(1-p_{1}\right)-a_{2}\left(1-p_{2}\right)=0$. These equations imply that $\left(a_{1}, p_{1}\right)=\left(a_{2}, p_{2}\right)$ which contradicts our assumption. Thus the set of pairs (u, v) for which $|Q|<|A||P|$ is the union of $\binom{|A||P|}{2}$ sets of real-dimension two. Assume that $q\left(a_{1}, p_{1}\right), q\left(a_{2}, p_{2}\right)$, and $q\left(a_{3}, p_{3}\right)$ are three collinear points. Thus there is a real $\lambda \neq 0,1$ such that $q\left(a_{2}, p_{2}\right)-q\left(a_{1}, p_{1}\right)=\lambda\left(q\left(a_{3}, p_{3}\right)-q\left(a_{1}, p_{1}\right)\right)$. Then

$$
\begin{aligned}
& \left(p_{2}-p_{1}-\lambda\left(p_{3}-p_{1}\right)\right) u+\left(p_{2} a_{2}-p_{1} a_{1}-\lambda\left(p_{3} a_{3}-p_{1} a_{1}\right)\right) v+ \\
& \quad a_{2}\left(1-p_{2}\right)-a_{1}\left(1-p_{1}\right)-\lambda\left(a_{3}\left(1-p_{3}\right)-a_{1}\left(1-p_{1}\right)\right)=0 .
\end{aligned}
$$

For every λ, the last equation represents a complex-line in \mathbb{C}^{2}. Considering λ as a real variable, this equation represents an algebraic set of real-dimension three. This happens unless the coefficients of u and v, as well as the independent term are equal to zero. That is, $p_{2}-p_{1}-\lambda\left(p_{3}-p_{1}\right)=0, p_{2} a_{2}-p_{1} a_{1}-\lambda\left(p_{3} a_{3}-p_{1} a_{1}\right)=0$, and $a_{2}-a_{1}-\lambda\left(a_{3}-a_{1}\right)=0$. If p_{1}, p_{2}, p_{3} are three different points then, since no three points in P are collinear, $p_{2}-p_{1}-\lambda\left(p_{3}-p_{1}\right) \neq 0$. If any two of p_{1}, p_{2}, p_{3} are equal and the remaining is different, then we still have $p_{2}-p_{1}-\lambda\left(p_{3}-p_{1}\right) \neq 0$. Thus $p_{1}=p_{2}=p_{3}$, and by symmetry $a_{1}=a_{2}=a_{3}$; which contradicts the fact that we started with three distinct points $q\left(a_{j}, p_{j}\right)$. Thus the set of pairs (u, v) for which $|Q|$ has collinear points is the union of $\binom{|A||P|}{3}$ sets of real-dimension three. Finally, assume that $q\left(a_{1}, p_{1}\right) q\left(a_{2}, p_{2}\right) q\left(a_{4}, p_{4}\right) q\left(a_{3}, p_{3}\right)$ is a parallelogram. That is $q\left(a_{2}, p_{2}\right)-q\left(a_{1}, p_{1}\right)=q\left(a_{4}, p_{4}\right)-q\left(a_{3}, p_{3}\right)$, and thus

$$
\begin{aligned}
& \left(p_{2}-p_{1}-\left(p_{4}-p_{3}\right)\right) u+\left(p_{2} a_{2}-p_{1} a_{1}-\left(p_{4} a_{4}-p_{3} a_{3}\right)\right) v+ \\
& \quad a_{2}\left(1-p_{2}\right)-a_{1}\left(1-p_{1}\right)-\left(a_{4}\left(1-p_{4}\right)-a_{3}\left(1-p_{3}\right)\right)=0 .
\end{aligned}
$$

Again this equation represents a complex-line in \mathbb{C}^{2}, unless the coefficients of u and v, as well as the independent term are equal to zero. That is, $p_{2}-p_{1}-\left(p_{4}-p_{3}\right)=0, p_{2} a_{2}-p_{1} a_{1}-\left(p_{4} a_{4}-p_{3} a_{3}\right)=0$, and $a_{2}-a_{1}-\left(a_{4}-a_{3}\right)=0$. If $p_{1}, p_{2}, p_{3}, p_{4}$ are four different points then, since P has no parallelograms, $p_{2}-p_{1}-\left(p_{4}-p_{3}\right) \neq 0$. Since no three points of P are collinear there are two extra possibilities: $\left(p_{1}, p_{2}\right)=\left(p_{3}, p_{4}\right)$ or $\left(p_{1}, p_{3}\right)=\left(p_{2}, p_{4}\right)$. By symmetry we also have $\left(a_{1}, a_{2}\right)=\left(a_{3}, a_{4}\right)$ or $\left(a_{1}, a_{3}\right)=\left(a_{2}, a_{4}\right)$. If $\left(p_{1}, p_{2}\right)=\left(p_{3}, p_{4}\right)$ and $\left(a_{1}, a_{2}\right)=\left(a_{3}, a_{4}\right)$, then $q\left(a_{1}, p_{1}\right)=q\left(a_{3}, p_{3}\right)$; which contradicts our assumption. Similarly, if $\left(p_{1}, p_{3}\right)=\left(p_{2}, p_{4}\right)$ and $\left(a_{1}, a_{3}\right)=\left(a_{2}, a_{4}\right)$, then $q\left(a_{1}, p_{1}\right)=q\left(a_{2}, p_{2}\right)$. Assume $\left(p_{1}, p_{2}\right)=\left(p_{3}, p_{4}\right)$ and $\left(a_{1}, a_{3}\right)=$ $\left(a_{2}, a_{4}\right)$. Then the equation $p_{2} a_{2}-p_{1} a_{1}-\left(p_{4} a_{4}-p_{3} a_{3}\right)=0$ becomes $\left(p_{2}-p_{1}\right)\left(a_{1}-a_{3}\right)=0$. But if $p_{1}=p_{2}$ then $q\left(p_{1}, a_{1}\right)=q\left(p_{2}, a_{2}\right)$, and if $a_{1}=a_{3}$ then $q\left(p_{1}, a_{1}\right)=q\left(p_{3}, a_{3}\right)$; a contradiction in both cases. The remaining case when $\left(p_{1}, p_{3}\right)=\left(p_{2}, p_{4}\right)$ and $\left(a_{1}, a_{2}\right)=\left(a_{3}, a_{4}\right)$ follows by symmetry. Thus the set of pairs (u, v) for which $|Q|$ has parallelograms is the union of $\binom{|A| P \mid}{ 4}$ sets of real-dimension two.

Remark 1. If the sets A and P have no two parallel segments then it can be proved, along the lines of last lemma, that almost all the sets $Q(A, P, u, v)$ are free of pairs of parallel segments as well.

5. Concluding Remarks and Conjectures

The construction of Theorem 2 in [3] can be carried out the same way for a pattern P with no m points on a line. The result would be a set A with $|A|=k^{2}-k+1$ and $S_{P}(A)=2 k-1$. Then Theorem 1 would give

$$
S_{P}(n, m) \geq \Omega\left(n^{\log \left(k^{2}+k\right) / \log \left(k^{2}-k+1\right)}\right) .
$$

There should be a better general construction, particularly when m is larger than the maximum number of collinear points in P.

Problem 1. Let P be an arbitrary pattern with $|P|=k$. For every $m \geq 4$ construct a set A without m collinear points such that $i_{P}(A)>$ $\log \left(k^{2}+k\right) / \log \left(k^{2}-k+1\right)$.

According to Theorem 3, if we let the number of allowed collinear points to increase with n, then we can achieve $n^{2-\varepsilon}$ similar copies of a pattern P. We actually believe this is true even when m is constant.

Conjecture 1. Let $m \geq 3$ be a positive integer and P a finite pattern with no m collinear points. For every real $\varepsilon>0$, there is $N(\varepsilon)>0$ such that for all $n \geq N(\varepsilon)$,

$$
S_{P}(n, m) \geq n^{2-\varepsilon}
$$

A proof of this conjecture cannot follow from Theorem 1, so a proof would require a different way of constructing sets with no m collinear points and with many similar copies of the pattern P. In contrast, we believe that the construction in Theorem 6 for the function $S_{P}^{\nVdash}(n)$ is close to optimal. Here we believe that a stronger upper bound is needed.

Conjecture 2. Let P be a parallelogram-free pattern. For every real $\varepsilon>0$, there is $N(\varepsilon)>0$ such that for all $n \geq N(\varepsilon)$,

$$
S_{P}^{\sharp}(n) \leq n^{1+\varepsilon} .
$$

References

[1] B. M. Ábrego, Problemas combinatorios sobre conjuntos finitos de puntos, Aportaciones Matemáticas: Comunicaciones 19 (1997), SMM, México.
[2] B. M. Ábrego and S. Fernández-Merchant, On the maximum number of equilateral triangles I, Discrete and Computational Geometry 23 (2000), 129-135.
[3] B. M. Ábrego and S. Fernández-Merchant, Point-sets in general position with many similar copies of a pattern, to appear in Geombinatorics.
[4] B. M. Ábrego, S. Fernández-Merchant, and Gy. Elekes. Structural results for planar sets with many similar subsets, Combinatorica 24(4) (2004), 541-554.
[5] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005.
[6] G. Elekes and P. Erdős, Similar configurations and pseudogrids, in Intuitive Geometry, Colloquia Mathematica Societatis János Bolyai. North Holland, Amsterdam, (1994), 85-104.
[7] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946) 248-250.
[8] P. Erdős and G. Purdy. Some extremal problems in geometry. Journal of Combinatorial Theory 10 (1971), 246-252.
[9] P. Erdős and G. Purdy. Some extremal problems in geometry III. Proc. 6th Southeastern Conference in Combinatorics, Graph Theory and Comp. (1975), 291-308.
[10] P. Erdős and G. Purdy. Some extremal problems in geometry IV. Proc. 7th Southeastern Conference in Combinatorics, Graph Theory and Comp. (1976), 307-322.
[11] T. Kővari, V. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Mathematicum 3 (1954), 50-57.
[12] M. Laczkovich and I.Z.Ruzsa, The Number of Homothetic Subsets, The mathematics of Paul Erdős II, Springer Verlag (1997), 294-302.
[13] K. J. Swanepoel and P. Valtr, The unit distance problem on spheres, in Towards a Theory of Geometric Graphs, J. Pach, ed., Contemporary Mathematics 342, AMS (2004), 273-279.
[14] K. Zarankiewicz, Problem 101, Colloquium Mathematicum 2 (1951), 301.

