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Abstract. Let P be a finite pattern, that is, a finite set of
points in the plane. We consider the problem of maximizing
the number of similar copies of P over all sets of n points in the
plane under two general position restrictions: (1) Over all sets
of n points with no m points on a line. We call this maximum
SP (n,m). (2) Over all sets of n points with no collinear triples
and not containing the 4 vertices of any parallelogram. These
sets are called parallelogram-free and the maximum is denoted
by S

∦
P (n). We prove that SP (n,m) ≥ n2−ε whenever m(n) →

∞ as n →∞ and that Ω(n log n) ≤ S
∦
P (n) ≤ O(n3/2).

1. Introduction

All sets considered in this paper are finite subsets of the plane,
which we identify with the set of complex numbers C. We say that
the sets A and B are similar, denoted by A ∼ B, if there exist
complex numbers w and z 6= 0 such that B = zA + w. Here,
zA = {za : a ∈ A} and A + w = {a + w : a ∈ A}.

Let P be a fixed set of at least 3 points, P is called a pattern. For
any set Q, we denote by SP (Q) the number of similar copies of P
contained in Q, that is,

SP (Q) = |{P ′ ⊆ Q : P ′ ∼ P}| .
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We are interested in the maximum of SP (Q) over all n-point sets Q
satisfying certain restrictions.

Erdős and Purdy [8]-[10] considered SP (n) = max SP (Q) where
the maximum is taken over all n-point sets Q. Elekes and Erdős
proved [6] that this function is quadratic or close to quadratic (de-
pending on the pattern P ); and later Elekes and the authors [4]
showed that the optimal sets, when SP (n) is quadratic, contain
many collinear points. In [3] we considered the maximum S ′P (n) =
max SP (Q) over all n-point sets in general position, that is, with no
three collinear points. In the first part of this paper, we relax the
general position condition to sets Q without m ≥ 4 collinear points
and consider the corresponding maximum

SP (n, m) = max {SP (Q) : |Q| = n and no m collinear points in Q} .

Note that S ′P (n) = SP (n, 3) and

S ′P (n) ≤ SP (n,m1) ≤ SP (n,m2) ≤ SP (n)

whenever m1 ≤ m2. Moreover, if m is fixed, then by Corollary 1 in [4]
the function SP (n,m) is subquadratic, i.e., limn→∞ SP (n,m)/n2 = 0.

The general lower bound for S ′P (n) in Theorem 1 of [3] still holds
for SP (n,m) as long as no m points in P are collinear. More precisely,
if Iso+(P ) denotes the group of orientation-preserving isometries of
the pattern P , also known as the proper symmetry group of P ; and
the index of a point set A with respect to the pattern P , denoted by
iP (A), is equal to iP (A) = log(|Iso+(P )|SP (A) + |A|)/ log |A|, then

Theorem 1. For any A and P finite sets in the plane with at most
m− 1 collinear points, there is a constant c = c(P, A) such that, for
n large enough,

SP (n,m) ≥ cniP (A).

The proof is the same as that in [3] because Lemma 2 in that
paper was actually proved in greater generality for sets with no m
points on a line.

We believe that the true asymptotic value of SP (n,m) is close to
quadratic for every pattern P with no m collinear points. In Section
2, we briefly explore the behavior of the function SP (n,m) for larger
values of m and P = 4 the equilateral triangle. We then present
general asymptotic results, for arbitrary patterns, when m = m(n)
is a function of n such that m(n) → ∞ when n → ∞. In this case
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we prove in Section 3 that SP (n,m) ≥ n2−ε for every n sufficiently
large.

All constructions in [3] are obtained by applying Minkovski sums
to suitable initial sets. The outcome is a set with multiple quadruples
forming the vertex set of a parallelogram. In the second part of this
paper, we strengthen the general position condition to parallelogram-
free position, i.e., no three collinear points or parallelogram’s ver-
tex set. We are able to construct parallelogram-free n-sets Q with
Ω(n log n) copies of a parallelogram-free pattern P . We also show a
non-trivial upper bound for these patterns, namely, we prove that at
most O(n3/2) copies of P are possible. These results are presented
in Section 4.

We note that Erdős’ unit distance problem [7] has also been stud-
ied under the parallelogram-free restriction [13] (see also [5, Section
5.5]).

2. SP (n,m) for an equilateral triangle P

When m ≥ 4, the initial sets Am with the largest indices we know
are clusters of points of the equilateral triangle lattice in the shape
of a circular disk.

Figure 1. Best known constructions of initial sets
Am with many equilateral triangles and at most m−1
points on a line.
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Theorem 2. For m ≥ 4 and P = 4 the equilateral triangle,

S4 (n,m) ≥ Ω
(
ni4(Am)

)

where

i4(A4) ≥ log 31
log 7

≥ 1.764, i4(A5) ≥ log 148
log 16

≥ 1.802,

i4(A6) ≥ log 217
log 19

≥ 1.827, i4(A7) ≥ log 679
log 34

≥ 1.849,

i4(A8) ≥ log 811
log 37

≥ 1.855, i4(A9) ≥ log 1978
log 58

≥ 1.869,

and in general, if m is even, then

i4(Am) =
log(21m4 − 84m3 + 156m2 − 144m + 64)− log 64

log(3m2 − 6m + 4)− log 4

Proof. For the first part refer to Figure 1 where the sets Am and their
corresponding indices are shown. For the second part we consider
as our set Am the lattice points inside a regular hexagon of side
m/2 − 1 with sides parallel to the lattice. Clearly Am contains at
most m − 1 collinear points. Also |Am| = (3m2 − 6m + 4) /4 and
S4(Am) = (7m4 − 28m3 + 36m2 − 16m) /64 (see [1]), therefore the
result follows from Theorem 1. ¤

After some elementary estimations, the index on last theorem sat-
isfies that

i4(Am) ≥ 2− log(12/7)

2 log m
+ Θ (log m)−2 > 2− 0.269

log m
+ Θ (log m)−2 .

This suggests that S4(n,m) ≥ Ω
(
n2−0.269/ log m

)
, however the con-

stant term hidden in the Ω may depend on A, and thus on m. We
see this with more detail on the next section.

3. When m grows together with n

We investigate the function SP (n, m) when the pattern P is fixed
and m = m(n) → ∞ when n → ∞. For instance, the maximum
number of squares in a n-point set without log n points on a line,

is at least Ω(n2−c(log log n)−1

). For the proof of our result, we use the
following two theorems which give the best bounds for the function
SP (n) without restrictions.

Theorem A (Elekes and Erdős [6]). For any pattern P there are
constants a, b, c > 0 such that

SP (n) ≥ cn2−a(log n)−b

,
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moreover, if the coordinates of P are algebraic or if |P | = 3, then
SP (n) ≥ cn2.

If u, v, w, z ∈ C then the cross-ratio of the 4-tuple (u, v, w, z) is
defined as

(w − u)(z − v)

(z − u) (w − v)
.

Theorem B (Laczkovich and Ruzsa [12]). SP (n) = Θ(n2) if and
only if the cross-ratio of every 4-tuple in P is algebraic.

For the sake of clarity, let us call a pattern P cross-algebraic if
the cross-ratio of every 4-tuple is algebraic, and cross-transcendental
otherwise.

Theorem 3. Let P be an arbitrary pattern and suppose m = m(n) →
∞, then for every ε > 0 there is a threshold function N0 = N0(ε, P )
such that

SP (n,m) ≥ n2−ε for every n ≥ N0.

Proof. Suppose m = m(n) → ∞. We actually prove the following
stronger result.

(i) If log m ≤ √
log n and P is cross-algebraic, then there is a

constant c1 > 0 depending only on P such that

SP (n,m) ≥ Ω(n2−c1/ log m).

(ii) If log m ≤ √
log n and P is cross-transcendental, then there

are constants c1, c2, c3 > 0 depending only on P such that

SP (n,m) ≥ Ω(n2−c2/(log m)c3−c1/ log m).

(iii) If log m >
√

log n, then SP (n,m) ≥ SP (n, e
√

log n) and thus
either (i) or (ii) holds with log m =

√
log n.

Let us recall that, as part of the proof of Theorem 1 (see [3]), we
constructed a set A∗

j with |A∗
j | = |A|j such that I · SP (A∗

j) + |A|j ≥
(I ·SP (A)+ |A|)j, where I = Iso+(P ). It follows that for |A|j ≤ n <
|A|j+1,

SP (n,m) ≥ SP (A∗
j) ≥

1

I
((I · SP (A) + |A|)j − |A|j) (1)

≥ 1

I

(
|A|j·iP (A) − n

)
≥ 1

I

((
n

|A|
)iP (A)

− n

)
(2)
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Now, we first prove (i). Suppose that P is cross-algebraic. By
Theorem B there is a constant c, depending only on P , and a (dme−
1)-set A such that |A| + SP (A) ≥ cm2. Clearly A does not have m
points on a line. By Inequality (2), we have that

SP (n,m) ≥ 1

I

((
n

|A|
)iP (A)

− n

)

>
1

I

(( n

m

) log(cm2)
log m − n

)
=

1

Ic

(
n2+ log c

log m
− 2 log m

log n − cn
)

.

By assumption, 2 log m/ log n ≤ 2/ log m. Because c < 1 it follows
that log c < 0. Let c1 = 2− log c > 0, then

SP (n,m) ≥ 1

Ic

(
n2+ log c

log m
− 2

log m − n
)
≥ 1

Ic

(
n2−c1/ log m − n

)
.

That is, SP (n,m) ≥ Ω(n2−c1/ log m), where the constant in the Ω
term does not depend on n or m. Similarly, to prove (ii), assume
P is cross-transcendental, then by Theorem A there are constants
c, c2, c3 > 0, depending only on P , such that SP (n) ≥ cn2−c2/(log n)c3 .
Then there is a (dme−1)-set A such that |A|+SP (A) ≥ cm2−c2/(log m)c3 .
Again A does not have m points on a line and setting c1 = 2− log c
we get

SP (n,m) ≥ 1

I

((
n

|A|
)iP (A)

− n

)
≥ 1

I

(( n

m

)2+ log c
log m

− c2
(log m)c3 − n

)

≥ 1

Ic

(
n2−c2/(log m)c3−c1/ log m − cn

)

for n and m large enough depending only on P . That is, SP (n,m) ≥
Ω(n2−c2/(log m)c3−c1/ log m), where the constant in the Ω term does not
depend on n or m. ¤

If m grows like a fixed power of n and P is cross-algebraic (equiv-
alently by Theorem B, SP (n) = Θ(n2)), then we can improve our
bound.

Theorem 4. If P is cross-algebraic and m = m(n) ≥ nα for some
fixed 0 < α < 1, then there is c1 = c1(P, α) > 0 such that

SP (n, m) ≥ c1n
2 for every n ≥ |P | .
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Proof. Choose an integer j ≥ 2 such that α > 1/j. Consider an
optimal set A for the function SP (bn1/jc. Then |A| = bn1/jc and
by Theorem B, there is a constant c = c(P ) such that SP (A) =
SP (|A|) ≥ c|A|2. Since |A| ≤ n1/j < nα ≤ m, then A has no m
collinear points. By Inequality (1),

SP (n,m) ≥ SP (|A|j ,m) ≥ 1

I

(
(I · SP (A) + |A|)j − |A|j

)

≥ Ij−1SP (A)j ≥ cjIj−1 |A|2j .

Now, if n ≥ |P | then |A| ≥ n1/j − 1 ≥ (1− |P |−1/j)n1/j. By letting
c1 = cjIj−1(1− |P |−1/j)2j we get SP (n,m) ≥ c1n

2. ¤

4. Parallelogram-free sets

We consider the restriction of the function SP (n) to sets of points
A in general position (no 3 points on a line) and without paral-
lelograms. We say that such a set A is parallelogram-free. This
immediately prohibits the use of Minkovski Sums to obtain good
constructions. More precisely, for a parallelogram-free pattern P ,
define

S
∦
P (n) = max {SP (A) : |A| = n and A is parallelogram-free} .

We obtain the following upper bound on S
∦
P (n).

Theorem 5. Let P be a parallelogram-free pattern with |P | ≥ 3.
Then for all n,

S
∦
P (n) ≤ n3/2 + n.

Proof. Suppose A is an n-set in the plane in general position and
with no parallelograms. Let p1, p2, p3 be three points in P . Consider
the following bipartite graph B. The vertex bipartition is (A,A);
the edges are the pairs (a1, a2) ∈ A× A , a1 6= a2 such that there is
a point a3 ∈ A with 4a1a2a3 ∼ 4p1p2p3. Every similar copy of P
in A has at least one edge (a1, a2) associated to it. Thus the number
of edges E in our graph satisfies that E ≥ SP (A). By a theorem
of Kővari et al. [11] (also referred in the literature as Zarankiewicz
problem [14]), it is known that a bipartite graph with n vertices
on each class and without subgraphs isomorphic to K2,2 contains at
most (n − 1)n1/2 + n edges. To finish our proof we now show that
B has no subgraphs isomorphic to K2,2. Suppose by contradiction
that (a1, a3), (a1, a4), (a2, a3), (a2, a4) are edges in B. Let λ = (p3 −
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Figure 2. A parallelogram-free point set with n
points and cn log n similar copies of P .

p1)/(p2−p1). By definition, there are points a13, a14, a23, a24 ∈ A such
that 4p1p2p3 ∼ 4a1a3a13 ∼ 4a1a4a14 ∼ 4a2a3a23 ∼ 4a2a4a24.
Thus a13 = a1+λ(a3−a1), a14 = a1+λ(a4−a1), a23 = a2+λ(a3−a2),
and a24 = a2 + λ(a4 − a2). Then a13 − a14 = a23 − a24 = λ(a3 − a4),
which means that a13a14a24a23 is a parallelogram. This contradicts
the parallelogram-free assumption on A. ¤

We make no attempt to optimize the coefficient of the n3/2 term,
since we do not believe that n3/2 is the right order of magnitude.

Theorem 6. Let P be a parallelogram-free pattern with |P | ≥ 3.
Then there is a constant c = c(P ) such that for n ≥ |P |,

S
∦
P (n) ≥ cn log n.

For every pattern P , we recursively construct a parallelogram-free
point set with many occurrences of P . For any u, v ∈ C, we define

Q(P, A, u, v) =
⋃
p∈P

(up + (vp− p + 1) A)

=
⋃
p∈P

⋃
a∈A

(up + (vp− p + 1) a) . (3)
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Almost all selections of u and v yield a set Q = Q(P, A, u, v) that is
parallelogram-free and such that all the terms in the double union
are pairwise different. The proof of this technical fact is given by
next lemma.

Lemma 1. Let A and P be parallelogram-free sets. If S is the set
of points (u, v) ∈ C2 for which Q = Q(P, A, u, v) satisfies that |Q| <
|A| |P |, Q has three collinear points, or Q has a parallelogram; then
S has zero Lebesgue measure.

We defer the proof of this lemma and instead proceed to bound
the number of similar copies of P in Q.

Lemma 2. If A and P are finite parallelogram-free sets , and Q =
Q(P, A, u, v) defined in (3) satisfies that |Q| = |A| |P |, then

SP (Q) ≥ |P |SP (A) + |A| .
Proof. Because |Q| = |A| |P | it follows that each term in the first
union contributes exactly SP (A) similar copies of P , all of them
pairwise different. In addition note that

Q =
⋃
a∈A

(a + (u + va− a) P ) .

So each term in the new union is a similar copy of P , all of them
different and also different from the ones we had counted before.
Therefore SP (Q) ≥ |P |SP (A) + |A|. ¤

We now prove the theorem.

Proof of Theorem 6. Let A1 = P and for m ≥ 1 let Am+1 be the
parallelogram-free set Q obtained from Lemma 1 with A = Am.
Because |Am+1| = |A1| |Am|, it follows that |Am| = |P |m for all
m. Further, by Lemma 2, for every 0 ≤ k ≤ m − 2, SP (Am−k) ≥
|P |SP (Am−k−1) + |Am−k−1| = |P |SP (Am−k−1) + |P |m−k−1. Thus

SP (Am) ≥ |P |SP (Am−1) + |P |m−1 ≥ |P |2 SP (Am−2) + 2 |P |m−1

≥ · · · ≥ |P |m−1 SP (A1) + (m− 1) |P |m−1 = m |P |m−1 .

Suppose |P |m ≤ n < |P |m+1 with m ≥ 2. Let c = 1/(2|P |2 log |P |),
then

S
∦
P (n) ≥ SP (Am) ≥ m |P |m−1 >

(
log n

log |P | − 1

)
n

|P |2 ≥ cn log n.

If |P | ≤ n < |P |2, then S
∦
P (n) ≥ SP (P ) = 1 > cn log n. ¤
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Finally, we present the proof of Lemma 1.

Proof of Lemma 1. We show that S is made of a finite number of
algebraic sets, all of them of real dimension at most three. This
immediately implies that the Lebesgue measure of such a set is zero.
For every p ∈ P and a ∈ A, let q(a, p) = (up + (vp− p + 1) a).
Suppose that q(a1, p1) = q(a2, p2) with (a1, p1) 6= (a2, p2). Then

(p1 − p2) u + (p1a1 − p2a2) v + a1(1− p1)− a2 (1− p2) = 0.

This is the equation of a complex-line in C2 (with real-dimension
two) unless the coefficients of u and v, as well as the independent
term are equal to zero. That is, p1 − p2 = 0, (p1a1 − p2a2) =
0, and a1(1 − p1) − a2 (1− p2) = 0. These equations imply that
(a1, p1) = (a2, p2) which contradicts our assumption. Thus the set

of pairs (u, v) for which |Q| < |A| |P | is the union of
(|A||P |

2

)
sets

of real-dimension two. Assume that q(a1, p1), q(a2, p2), and q(a3, p3)
are three collinear points. Thus there is a real λ 6= 0, 1 such that
q(a2, p2)− q(a1, p1) = λ (q(a3, p3)− q(a1, p1)). Then

(p2 − p1 − λ(p3 − p1)) u + (p2a2 − p1a1 − λ(p3a3 − p1a1)) v+

a2 (1− p2)− a1(1− p1)− λ (a3 (1− p3)− a1(1− p1)) = 0.

For every λ, the last equation represents a complex-line in C2. Con-
sidering λ as a real variable, this equation represents an algebraic
set of real-dimension three. This happens unless the coefficients of
u and v, as well as the independent term are equal to zero. That
is, p2 − p1 − λ(p3 − p1) = 0, p2a2 − p1a1 − λ(p3a3 − p1a1) = 0, and
a2− a1−λ (a3 − a1) = 0. If p1, p2, p3 are three different points then,
since no three points in P are collinear, p2−p1−λ(p3−p1) 6= 0. If any
two of p1, p2, p3 are equal and the remaining is different, then we still
have p2− p1− λ(p3− p1) 6= 0. Thus p1 = p2 = p3, and by symmetry
a1 = a2 = a3; which contradicts the fact that we started with three
distinct points q(aj, pj). Thus the set of pairs (u, v) for which |Q| has

collinear points is the union of
(|A||P |

3

)
sets of real-dimension three.

Finally, assume that q(a1, p1)q(a2, p2)q(a4, p4)q(a3, p3) is a parallelo-
gram. That is q(a2, p2)− q(a1, p1) = q(a4, p4)− q(a3, p3), and thus

(p2 − p1 − (p4 − p3)) u + (p2a2 − p1a1 − (p4a4 − p3a3)) v+

a2 (1− p2)− a1(1− p1)− (a4 (1− p4)− a3(1− p3)) = 0.
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Again this equation represents a complex-line in C2, unless the co-
efficients of u and v, as well as the independent term are equal to
zero. That is, p2−p1−(p4 − p3) = 0, p2a2−p1a1−(p4a4−p3a3) = 0,
and a2 − a1 − (a4 − a3) = 0. If p1, p2, p3, p4 are four different points
then, since P has no parallelograms, p2 − p1 − (p4 − p3) 6= 0. Since
no three points of P are collinear there are two extra possibilities:
(p1, p2) = (p3, p4) or (p1, p3) = (p2, p4). By symmetry we also have
(a1, a2) = (a3, a4) or (a1, a3) = (a2, a4). If (p1, p2) = (p3, p4) and
(a1, a2) = (a3, a4), then q(a1, p1) = q(a3, p3); which contradicts our
assumption. Similarly, if (p1, p3) = (p2, p4) and (a1, a3) = (a2, a4),
then q(a1, p1) = q(a2, p2). Assume (p1, p2) = (p3, p4) and (a1, a3) =
(a2, a4). Then the equation p2a2− p1a1− (p4a4− p3a3) = 0 becomes
(p2 − p1)(a1 − a3) = 0. But if p1 = p2 then q(p1, a1) = q(p2, a2), and
if a1 = a3 then q(p1, a1) = q(p3, a3); a contradiction in both cases.
The remaining case when (p1, p3) = (p2, p4) and (a1, a2) = (a3, a4)
follows by symmetry. Thus the set of pairs (u, v) for which |Q| has

parallelograms is the union of
(|A||P |

4

)
sets of real-dimension two. ¤

Remark 1. If the sets A and P have no two parallel segments then
it can be proved, along the lines of last lemma, that almost all the
sets Q(A,P, u, v) are free of pairs of parallel segments as well.

5. Concluding Remarks and Conjectures

The construction of Theorem 2 in [3] can be carried out the same
way for a pattern P with no m points on a line. The result would be
a set A with |A| = k2 − k + 1 and SP (A) = 2k − 1. Then Theorem
1 would give

SP (n, m) ≥ Ω(nlog(k2+k)/ log(k2−k+1)).

There should be a better general construction, particularly when m
is larger than the maximum number of collinear points in P .

Problem 1. Let P be an arbitrary pattern with |P | = k. For every
m ≥ 4 construct a set A without m collinear points such that iP (A) >
log(k2 + k)/ log(k2 − k + 1).

According to Theorem 3, if we let the number of allowed collinear
points to increase with n, then we can achieve n2−ε similar copies
of a pattern P . We actually believe this is true even when m is
constant.
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Conjecture 1. Let m ≥ 3 be a positive integer and P a finite pattern
with no m collinear points. For every real ε > 0, there is N(ε) > 0
such that for all n ≥ N(ε),

SP (n,m) ≥ n2−ε.

A proof of this conjecture cannot follow from Theorem 1, so a proof
would require a different way of constructing sets with no m collinear
points and with many similar copies of the pattern P . In contrast,

we believe that the construction in Theorem 6 for the function S
∦
P (n)

is close to optimal. Here we believe that a stronger upper bound is
needed.

Conjecture 2. Let P be a parallelogram-free pattern. For every real
ε > 0, there is N(ε) > 0 such that for all n ≥ N(ε),

S
∦
P (n) ≤ n1+ε.
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