Recent developments on the number of ($\leq k$)-sets, halving lines, and the rectilinear crossing number of K_{n}.

Bernardo M. Ábrego * Silvia Fernández-Merchant * Jesús Leaños ${ }^{\dagger}$
Gelasio Salazar ${ }^{\dagger}$

Resumen

We present the latest developments on the number of $(\leq k)$-sets and halving lines for (generalized) configurations of points; as well as the rectilinear and pseudolinear crossing numbers of K_{n}. In particular, we define perfect generalized configurations on n points as those whose number of $(\leq k)$-sets is exactly $3\binom{k+1}{2}$ for all $k \leq n / 3$. We conjecture that for each n there is a perfect configuration attaining the maximum number of $(\leq k)$-sets and the pseudolinear crossing number of K_{n}. We prove that for any $k \leq n / 2$ the number of $(\leq k)$-sets is at least $3\binom{k+1}{2}+3\binom{k-\lfloor n / 3\rfloor+1}{2}+18\binom{k-\lceil 4 n / 9\rceil+1}{2}-O(n)$. This in turn implies that the pseudolinear (and consequently the rectilinear) crossing number of any perfect generalized configuration on n points is at least $\frac{277}{729}\binom{n}{4}+O\left(n^{3}\right) \geq 0.379972\binom{n}{4}+O\left(n^{3}\right)$.

1 Introduction

Let P be a set of n points in general position in the plane. A subset of P consisting of $k \leq n / 2$ points is called a k-set if it can be separated by the rest of P by a straight line. Any j-set with $j \leq k$ is called a $\leq k$-set. We denote by $\chi_{k}(P)$ and $\chi_{\leq k}(P)$ the number of k-sets and $\leq k$-sets of P, respectively. The number of edge crossings in the drawing of the complete graph K_{n} whose set of vertices is P and whose edges are straight line segments is denoted by $\overline{c r}(P)$. This is called the rectilinear crossing number of P. An edge in such a graph is called a k-edge if it leaves exactly k points of P on one side. When n is even the $(n / 2-1)$-edges are known as halving lines, since they divide the remaining $n-2$ points of P in half. When n is odd the $(n-3) / 2$-edges are also called halving lines since they divide P almost in half. As before, any j-edge with $j \leq k$ is called a $\leq k$-edge. Let $\eta_{k}(P)$ and $\eta_{\leq k}(P)$ be the number of k-edges and $\leq k$-edges of P, respectively, and $h(P)=\eta_{\lfloor n / 2\rfloor-1}$ the number of halving lines of P.

The problems of finding the minimum number of $\leq k$-sets or $\leq k$-edges, the maximum number of halving lines, and the minimum crossing number of P over all configurations P of n points in the plane have been widely studied [8]. In other words, we want to estimate the values of

$$
\chi_{\leq k}(n)=\min _{|P|=n} \chi_{\leq k}(P), \eta_{\leq k}(n)=\min _{|P|=n} \eta_{\leq k}(P), h(n)=\max _{|P|=n} h(P), \overline{c r}(n)=\min _{|P|=n} c r(P)
$$

where the minima and maximum are taken over all sets P of n points in the plane. The last function $\overline{c r}(n)$ is known as the rectilinear crossing number of K_{n}.

All these problems are closely related. Note that there is a one-to-one correspondence between the set of k-sets and the set of $(k-1)$-edges of P, i.e., $\chi_{k}(P)=\eta_{k-1}(P)$, and thus $\chi_{\leq k}(n)=\eta_{\leq k-1}(n)$. Since all $\binom{n}{2}$ edges associated with P are either $(\leq\lfloor n / 2\rfloor-2)$-edges or halving lines then

$$
h(n)=\binom{n}{2}-\eta_{\leq\lfloor n / 2\rfloor-2}(n)=\binom{n}{2}-\chi_{\leq\lfloor n / 2\rfloor-1}(n) .
$$

[^0]Ábrego and Fernández-Merchant [5] and independently Lovász et al. [11], proved the following relationship between the crossing number and the number of k-edges:

$$
\begin{align*}
& c r(P)=3\binom{n}{4}-\sum_{k=1}^{\lfloor n / 2\rfloor}(k-1)(n-k-1) \chi_{k}(P), \text { or equivalently } \\
& c r(P)=\sum_{k=1}^{\lfloor n / 2\rfloor-1}(n-2 k-1) \chi_{\leq k}(P)-\frac{3}{4}\binom{n}{3}+\left(1+(-1)^{n+1}\right) \frac{1}{8}\binom{n}{2} . \tag{1}
\end{align*}
$$

All these concepts and results can be extended to generalized configurations of points. A set P of n points in the plane can be encoded by a circular sequence Π (see below) as follows: Label the points of P from 1 to n. Draw a circle containing P together with a directed tangent line l. Project P onto l to obtain an ordering of P, this corresponds to a permutation of the elements of $\{1,2,3, \ldots, n\}$. Rotate l around the circle (in both directions) and record all permutations. As a result we obtain a doubly-infinite sequence of permutations of the elements of $\{1,2, \ldots, n\}$ with period $2\binom{n}{2}$.

In general, a circular sequence is a doubly infinite sequence ($\left.\ldots, \pi_{-1}, \pi_{0}, \pi_{1}, \ldots\right)$ of permutations on n elements, such that any two consecutive permutations π_{i} and π_{i+1} differ by a transposition τ_{i} of neighboring elements, and such that for every j, π_{j} is the reversed permutation of $\pi_{j+\binom{n}{2}}$. Circular sequences were introduced by Goodman and Pollack [10], [9] who established a one-to-one correspondence between circular sequences and generalized configurations of points, that is, configurations of $\binom{n}{2}$ pseudolines and n points where each pseudoline passes through exactly two points and two pseudolines intersect exactly once. When all the pseudolines can be straight lines the generalized configuration is called stretchable and it corresponds to a configuration of points in the plane. Thus every configuration of points in the plane corresponds to a circular sequence but only stretchable circular sequences correspond to sets of points in the plane. Any subsequence of Π consisting of $\binom{n}{2}$ consecutive permutations is called a halfperiod. If τ_{j} occurs between elements in positions i and $i+1$ we say that τ_{j} is an i-transposition. If $i \leq n / 2$ then any i-transposition or $(n-i)$-transposition is called i-critical. The k-sets of Π are precisely the subsets of $\{1,2, \ldots, n\}$ of size k that occupy the first or last k positions in a permutation of $\{1,2, \ldots, n\}$. (These k-sets coincide with those defined for configurations of points when Π is stretchable.) The set of k-sets of Π is then determined by the set of k-critical transpositions in a halfperiod of Π. In fact a k-critical transposition is a $(k-1)$-pseudoedge. Thus $\chi_{k}(\Pi)$ and $\chi_{\leq k}(\Pi)$ are the number of k-critical, and respectively $(\leq k)$-critical, transpositions in any halfperiod of $\bar{\Pi}$ and (1) still holds. So now we can define $\chi_{\leq k}(n), \eta_{\leq k}(n), \widetilde{h}(n)$, and $\widetilde{c r}(n)$ by optimizing over all generalized configurations of n points.

2 Summary of recent results

By the end of 2006 the exact values of $h(n), \widetilde{h}(n), \overline{c r}(n)$, and $\widetilde{c r}(n)$ were only known for $n \leq 19$ and $n=21$, except for $\widetilde{h}(14)$ and $\widetilde{h}(16)$. We have managed to obtain the exact values for $n \leq 27$.

n	14	16	18	20	22	23	24	25	26	27
$h(n)=\widetilde{h}(n)$	22^{*}	27	33	38	44	75	51	85	57	96
$\overline{c r}(n)=\widetilde{c r}(n)$	324^{*}	603^{*}	1029^{*}	1657	2528	3077	3699	4430	5250	6180

* Previously known values for the geometric case.

This improvement was an application of the following theorem that concentrates on the central behavior of circular sequences:

Theorem 2.1. Let Π be a circular sequence associated to a generalized configuration of n points. Then

$$
\chi_{\lfloor n / 2\rfloor}(\Pi) \leq\left\{\begin{array}{l}
\left\lfloor\frac{1}{2}\binom{n}{2}-\frac{1}{2} \chi \leq\lfloor n / 2\rfloor-2(\Pi)\right\rfloor \text { if } n \text { is even, } \\
\left\lfloor\frac{2}{3}\binom{n}{2}-\frac{2}{3} \chi \leq\lfloor n / 2\rfloor-2(\Pi)+\frac{1}{3}\right\rfloor \text { if } n \text { is odd. }
\end{array}\right.
$$

In terms of general bounds, Ábrego and Fernández-Merchant [4] proved the following upper bound for $\overline{c r}(n)$, and therefore for $\widetilde{c r}(n)$. Let P be a set of N points in the plane and H its set of halving lines. Consider the bipartite graph $G=(P, H)$ where $p \in P$ is adjacent to $l \in H$ if p is on l. A matching of G saturating P is called a halving-line matching of P.

Theorem 2.2. If P is a N-element point set in general position, with N even, and P has a halving-line matching; then

$$
\widetilde{c r}(n) \leq \overline{c r}(n) \leq\left(\frac{24 \operatorname{cr}(P)+3 N^{3}-7 N^{2}+(30 / 7) N}{N^{4}}\right)\binom{n}{4}+\Theta\left(n^{3}\right)
$$

The best upper bound based on this result was obtained using the best known construction for $N=90[6]$,

$$
\overline{c r}(n) \leq 0.380548\binom{n}{4}+\Theta\left(n^{3}\right)
$$

On the other hand, Ábrego and Fernández-Merchant [5] and independently Lovász et al. [11], improved the previously known lower bound for $\chi_{\leq k}(n)$ to

$$
\begin{equation*}
\chi_{\leq k}(n) \geq 3\binom{k+1}{2} \tag{2}
\end{equation*}
$$

This bound was improved, by Aichholzer et al. [7] in the rectilinear case and generalized to the pseudolinear case by Ábrego et al. [2], to

$$
\begin{equation*}
\chi_{\leq k}(n) \geq 3\binom{k+1}{2}+3\binom{k-\lfloor n / 3\rfloor+1}{2}+O(n) \tag{3}
\end{equation*}
$$

As a consequence, using (1), the best known lower bound for the rectilinear and pseudolinear crossing numbers satisfies

$$
\overline{c r}(n) \geq \widetilde{c r}(n) \geq 0.37968\binom{n}{4}+O\left(n^{3}\right)
$$

It is known that (2) is tight for $k \leq n / 3$ and moreover, Ábrego et al. [3] proved the following
Theorem 2.3. If a generalized configuration of n points Π attains $\widetilde{c r}(n)$ and $\chi \leq\lfloor n / 3\rfloor(\Pi)=3\binom{\lfloor n / 3\rfloor+1}{2}$ then $\chi_{\leq k}(\Pi)=3\binom{k+1}{2}$ for all $k \leq n / 3$.

A configuration Π that satisfies $\chi_{\sim} \leq k(\Pi)=3\binom{k+1}{2}$ for all $k \leq n / 3$ is called perfect. We say that a configuration of n points achieving $\widetilde{c r}(n)$ is crossing optimal. We believe that
Conjecture 2.4. If Π is crossing optimal then it is perfect.
The following weaker version of this conjecture would still lead to general lower bound improvements using Theorem 2.6.

Conjecture 2.5. For any n there is a crossing optimal configuration that is perfect.
Here we improve the lower bound for $\chi_{\leq k}(\Pi)$ and therefore for the pseudolinear crossing number for perfect configurations.

Theorem 2.6. If Π is a perfect generalized configuration of n points then for all $k \leq n / 2$,

$$
\begin{equation*}
\chi_{\leq k}(\Pi) \geq 3\binom{k+1}{2}+3\binom{k-\lfloor n / 3\rfloor+1}{2}+18\binom{k-\lfloor 4 n / 9\rfloor+1}{2}+O(n) \tag{4}
\end{equation*}
$$

In fact we prove a stronger result. A point that belongs to a k-set but not to a $\leq(k-1)$-set is said to be in the $k^{\text {th }}$ layer of Π. Let L_{k} denote the $k^{\text {th }}$-layer of Π. We say that Π is 3 -regular if there are exactly 3 points in L_{k} for all $k \leq n / 3$.

Theorem 2.7. If Π is perfect then Π is 3 -regular.
Theorem 2.8. If Π is a 3-regular generalized configuration of n points and $18 \mid n$ then

$$
\chi_{\leq k}(\Pi) \geq 3\binom{k+1}{2}+3\binom{k-n / 3+1}{2}+18\binom{k-4 n / 9+1}{2}+\left\{\begin{array}{l}
3 \text { if } k \geq 4 n / 9 \tag{5}\\
0 \text { else. }
\end{array}\right.
$$

The previous two theorems imply (4). Also (4)and (1) imply that the pseudolinear, and consequently the rectilinear crossing number of any perfect configuration on n points is $\geq \frac{277}{729}\binom{n}{4}+O\left(n^{3}\right) \geq$ $0.379972\binom{n}{4}+O\left(n^{3}\right)$.

3 Proof of Theorem 2.8

For each $1 \leq p \leq n$ let $L(p)$ be the smallest position of p in a permutation of Π. Then for $k \leq n / 2$, $L_{k}=\{p \in P: L(p)=k\}$. Note that P is the disjoint union of its layers (some may be empty). Let $l_{i}=\left|L_{i}\right|$ and consider the partial sums $s_{k}=l_{1}+l_{2}+\ldots+l_{k}$. Then $n \geq s_{k} \geq 2 k+1$ for all $1 \leq k \leq n / 2$ since the first and last k elements in any term of Π belong to $L_{1} \cup \ldots \cup L_{k}$ and at least one more element must enter this region. In particular $s_{1}=l_{1} \geq 3$ and $s_{\lfloor n / 2\rfloor}=n$.

For each point $p \in P$ we follow the transpositions of p in a fixed halfperiod. The transposition $\{p, q\}$ may have a different role when following p that when following q. Thus we use ordered pairs. We say that (q, p) is a transposition of p.

Let $p \in P$ and fix a halfperiod $\pi(p)$ satisfying that if $p \in L_{i}$ then the first row of $\pi(p)$ shows p in the $i^{t h}$ position. This naturally orders the $n-1$ transpositions of p according to the order in which they occur in $\pi(p)$. Following this order, we say that a transposition of p is a forth-transposition if p moves to a larger position (from left to right) in $\pi(p)$ and a back-transposition otherwise. The first j-forth-transposition of p is called j-primary. A pair formed by a j-back-transposition of p and the next j-transposition of p (which must be a nonprimary forth-transposition) is called a j-secondary pair of p. Then for $j \leq n / 2$ we can say that a j - or $(n-j)$-secondary pair is a j-critical pair.

For $p_{1} \in P$, we write $\left(p_{0}, p_{1}\right) \rightarrow\left(p_{1}, p_{2}\right)$ if $\left\{\left(p_{0}, p_{1}\right),\left(p_{2}, p_{1}\right)\right\}$ is a secondary pair of p_{1} with backtransposition $\left(p_{2}, p_{1}\right)$. If $p_{1} \in L_{i}$ then p_{1} moves from position i to position $n+1-i$ in $\pi\left(p_{1}\right)$. Thus there is exactly one j-primary transposition of p_{1} for all $i \leq j \leq n-i$. Moreover, $\left(p, p_{1}\right)$ is a backtransposition only if the first row of $\pi\left(p_{1}\right)$ shows p in one of the first $i-1$ positions. This means that there are exactly $i-1$ secondary pairs of p_{1} and if $\left(p_{0}, p_{1}\right) \rightarrow\left(p_{1}, p_{2}\right)$ with $p_{2} \in L_{j}$ then $j<i$. Thus $\left(p_{1}, p_{2}\right)$ must be a forth-transposition of p_{2}. If $p_{1} \in L_{i}, p_{r} \in L_{j}$, and

$$
\begin{equation*}
\left(p_{0}, p_{1}\right) \rightarrow\left(p_{1}, p_{2}\right) \rightarrow\left(p_{2}, p_{3}\right) \rightarrow \ldots \rightarrow\left(p_{r-1}, p_{r}\right) \tag{6}
\end{equation*}
$$

then we say that $\left(p_{0}, p_{1}\right)$ goes from L_{i} to L_{j} in r steps. Note that if r is as large as possible then $\left(p_{r-1}, p_{r}\right)$ is a k-primary transposition of p_{r} for some $1 \leq k \leq n / 2$ and all the transpositions in (6) are k critical. In this case we say that the forth-transposition $\left(p_{0}, p_{1}\right)$ has rank r and write $\operatorname{rank}\left(p_{0}, p_{1}\right)=r$. Then all primary transpositions have rank 1 . The rank of a secondary pair is the rank of its forthtransposition. Let

$$
\chi_{\leq k}(\Pi, r)=\#(\leq k) \text {-critical rank } r \text { transpositions of } \Pi .
$$

Then $\chi_{\leq k}(\Pi, 1)=\#(\leq k)$-critical primary transposition and since each forth-transposition of rank ≥ 2 belongs to a secondary pair then $\chi_{\leq k}(\Pi)$ can be expressed in terms of its forth-transpositions.

$$
\begin{equation*}
2 \chi_{\leq k}(\Pi)=\chi_{\leq k}(\Pi, 1)+2 \sum_{r=2}^{\lfloor n / 2\rfloor} \chi_{\leq k}(\Pi, r) \tag{7}
\end{equation*}
$$

Based on the fact that all transpositions in (6) occur in the same position, we keep track of the forth-transpositions using the following notation. For $1 \leq j \leq i \leq n / 2$ and $1 \leq r \leq i-j+1$ let
$F_{r}(i, j)$ be the set of forth-transpositions that go from L_{i} to L_{j} in r steps, and $M_{r}(i, j)$ the set of those elements in $F_{r}(i, j)$ with rank r. If I is a set of indices then

$$
F_{r}(I, j)=\bigcup_{i \in I} F_{r}(i, j) \text { and } M_{r}(I, j)=\bigcup_{i \in I} M_{r}(i, j)
$$

Let $I_{j}=\{j, j+1, j+2, \ldots,\lfloor n / 2\rfloor\}$.
Lemma 3.1. For all $1 \leq r \leq n / 2$

$$
\chi_{k}(\Pi, r) \geq \sum_{j=1}^{\lfloor n / 2\rfloor-1} \max \left(\left|M_{r}\left(I_{j}, j\right)\right|-l_{j}(n-1-2 k), 0\right)
$$

Proof. By definition, if $\left(p_{0}, p_{1}\right) \in M_{r}\left(I_{j}, j\right)$ and $\left(p_{0}, p_{1}\right) \rightarrow\left(p_{1}, p_{2}\right) \rightarrow \ldots \rightarrow\left(p_{r-1}, p_{r}\right)$ then $\left(p_{r-1}, p_{r}\right)$ is a primary transposition of L_{j}. This means that the number of h-critical transpositions in $M_{r}\left(I_{j}, j\right)$ is bounded above by the number of h-critical primary transpositions of L_{j}. Now, for each $p \in L_{j}$ and $j \leq h \leq n / 2$ we have exactly one h-primary and one ($n-h$)-primary transposition of p, both of them are h-critical. Then there are l_{j} transpositions of L_{j} that are h-primary and l_{j} that are $(n-h)$-primary. Thus at most $l_{j}(n-1-2 k)$ elements of $M_{r}\left(I_{j}, j\right)$ are not $(\leq k)$-critical.

Proof. (Theorem 2.8) Since Π is 3 -regular then $l_{j}=3$ and $s_{j}=3 j$ for all $1 \leq j \leq n / 3$. If $j>n / 3$ then $l_{j}=0$ and $s_{j}=n$.

If $k<4 n / 9$ then (5) coincides with (3). For $k \geq 4 n / 9$ we bound $\chi_{\leq k}(\Pi, 1)+\chi_{\leq k}(\Pi, 2)+\chi_{\leq k}(\Pi, 3)$ below. The number of k-critical primary transpositions of Π is $2\left(l_{1}+l_{2}+\ldots+l_{k}\right)=2 s_{k}$ then

$$
\begin{equation*}
\chi_{\leq k}(\Pi, 1) \geq 2 \sum_{j=1}^{k} s_{j}=\sum_{j=1}^{n / 3} 3 j+\sum_{j=n / 3+1}^{k} n=3\binom{n / 3+1}{2}+n(k-n / 3) \tag{8}
\end{equation*}
$$

By Lemma 3.1 applied to $r=2$ and $r=3$ (disregard the maximum and note that $2 k-8 n / 9+1 \leq$ $2 k-7 n / 9+1 \leq n / 2-1)$

$$
\begin{equation*}
\chi_{\leq k}(\Pi, 2)+\chi_{\leq k}(\Pi, 3) \geq \sum_{j=1}^{2 k-7 n / 9+1}\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{j=1}^{2 k-8 n / 9+1}\left|M_{3}\left(I_{j}, j\right)\right|-3(n-1-2 k)(4 k-5 n / 3+2) . \tag{9}
\end{equation*}
$$

Since there are exactly $3(j-1)$ secondary pairs of L_{j}, at most $3(j-1)$ transpositions in $F_{3}\left(I_{j}, j\right)$ continue to another layer after passing through L_{j}. This means

$$
\begin{equation*}
\sum_{j=1}^{2 k-8 n / 9+1}\left|M_{3}\left(I_{j}, j\right)\right| \geq \sum_{j=1}^{2 k-8 n / 9+1}\left(\left|F_{3}\left(I_{j}, j\right)\right|-3(j-1)\right)=\sum_{j=1}^{2 k-8 n / 9+1}\left|F_{3}\left(I_{j}, j\right)\right|-\sum_{j=1}^{2 k-8 n / 9} 3 j \tag{10}
\end{equation*}
$$

The transpositions that go to L_{i} in 3 steps, $F_{3}\left(I_{i}, i\right)$, can be partitioned into the sets $F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)$ with $i+1 \leq j \leq n / 2$ and thus

$$
\begin{aligned}
& \sum_{i=1}^{2 k-8 n / 9+1}\left|F_{3}\left(I_{i}, i\right)\right|=\sum_{i=1}^{2 k-8 n / 9+1} \sum_{j=i+1}^{n / 2}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right| \\
& =\sum_{j=1}^{2 k-7 n / 9+1}\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{j=2}^{2 k-8 n / 9+2} \sum_{i=1}^{j-1}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right| \\
& +\sum_{j=2 k-8 n / 9+3}^{n / 2} \sum_{i=1}^{2 k-8 n / 9+1}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right| .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \sum_{j=1}^{2 k-7 n / 9+1}\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{2 k-8 n / 9+1}\left|F_{3}\left(I_{i}, i\right)\right| \\
\geq & \left|M_{2}\left(I_{2}, 1\right)\right|+\sum_{j=2}^{2 k-8 n / 9+2}\left(\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{j-1}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right|\right) \\
+ & \sum_{j=2 k-8 n / 9+3}^{2 k-7 n / 9+1}\left(\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{2 k-8 n / 9+1}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right|\right) \tag{11}
\end{align*}
$$

For fixed j note that $\bigcup_{i=1}^{j-1} F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)$ consists of those transpositions of rank ≥ 3 that first go to L_{j} and then continue to some L_{i} with $1 \leq i \leq j-1$. Then

$$
\begin{equation*}
\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{j-1}\left|F_{2}\left(I_{j}, j\right) \cup F_{3}\left(I_{j}, i\right)\right|=\left|F_{2}\left(I_{j}, j\right)\right| . \tag{12}
\end{equation*}
$$

If $h \leq j-2$ there are at most $3(j-1-h)$ transpositions that first go to L_{j} and then to one of the $j-1-h$ layers $L_{h+1}, L_{h+2}, \ldots, L_{j-2}, L_{j-1}$ and all these transpositions are in $F_{2}\left(I_{j}, j\right)$. Then

$$
\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{h}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right| \geq\left|F_{2}\left(I_{j}, j\right)\right|-3(j-1-h)
$$

In particular, for $j \geq 2 k-8 n / 9+3$ and $h=2 k-8 n / 9+1$ we have

$$
\begin{equation*}
\left|M_{2}\left(I_{j}, j\right)\right|+\sum_{i=1}^{2 k-8 n / 9+1}\left|F_{2}\left(I_{j}, j\right) \cap F_{3}\left(I_{j}, i\right)\right| \geq\left|F_{2}\left(I_{j}, j\right)\right|+6(k-4 n / 9+1)-3 j \tag{13}
\end{equation*}
$$

Using (12), (13), and $M_{2}\left(I_{2}, 1\right)=F_{2}\left(I_{2}, 1\right)$ we bound (11) below

$$
\begin{align*}
& \sum_{j=1}^{2 k-8 n / 9+2}\left|F_{2}\left(I_{j}, j\right)\right|+\sum_{j=2 k-8 n / 9+3}^{2 k-7 n / 9+1}\left(\left|F_{2}\left(I_{j}, j\right)\right|+6(k-4 n / 9+1)-3 j\right) \tag{14}\\
= & \sum_{j=1}^{2 k-7 n / 9+1}\left|F_{2}\left(I_{j}, j\right)\right|+\sum_{j=2 k-8 n / 9+3}^{2 k-7 n / 9+1}(6(k-4 n / 9+1)-3 j) .
\end{align*}
$$

Each point $p \in L_{h+1} \cup L_{h+2} \cup \ldots \cup L_{\lfloor n / 2\rfloor}$ has at least h back-transpositions (q, p) with $q \in L_{1} \cup$ $L_{2} \cup \ldots \cup L_{h}$ and each point $p \in L_{j}, 1 \leq j \leq h$, has at least $j-1$ back-transpositions (q, p) with $q \in L_{1} \cup L_{2} \cup \ldots \cup L_{h}$. Thus

$$
\begin{equation*}
\sum_{j=1}^{h}\left|F_{2}\left(I_{j}, j\right)\right| \geq h\left(l_{h+1}+\ldots+l_{\lfloor n / 2\rfloor}\right)+\sum_{j=1}^{h}(j-1) l_{j}=\sum_{j=1}^{h}\left(l_{j+1}+\ldots+l_{\lfloor n / 2\rfloor}\right)=\sum_{j=1}^{h}\left(n-s_{j}\right) . \tag{15}
\end{equation*}
$$

Finally, (7), (8), (9), (10), (11), (14), and (15) imply

$$
\begin{aligned}
\chi_{\leq k}(\Pi) & \geq \chi_{\leq k}(\Pi, 1)+\chi_{\leq k}(\Pi, 2)+\chi_{\leq k}(\Pi, 3) \geq 3\binom{n / 3+1}{2}+n(k-n / 3)+\sum_{j=1}^{2 k-7 n / 9+1}(n-3 j) \\
& +\sum_{j=2 k-8 n / 9+3}^{2 k-7 n / 9+1}(6(k-4 n / 9+1)-3 j)-\sum_{j=1}^{2 k-8 n / 9} 3 j-3(n-1-2 k)(4 k-5 n / 3+2) \\
& =3\binom{k+1}{2}+3\binom{k-n / 3+1}{2}+18\binom{k-4 n / 9+1}{2}+3 .
\end{aligned}
$$

References

[1] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. The maximum number of halving lines and the rectilinear crossing number of K_{n} for $n \leq 27$. Preprint (2007).
[2] B. M. Ábrego, J. Balogh, S. Fernández-Merchant, J. Leaños, and G. Salazar. An extended lower bound on the number of $(\leq k)$-edges to generalized configurations of points and the pseudolinear crossing number of K_{n}. Submitted (2006).
[3] B. M. Ábrego, J. Balogh, S. Fernández-Merchant, J. Leaños, and G. Salazar. On $(\leq k)$-pseudoedges in generalized configurations and the pseudolinear crossing number of K_{n}. Submitted (2006).
[4] B. M. Ábrego and S. Fernández-Merchant. Geometric drawings of K_{n} with few crossings. J. Combin. Theory Ser. A 114 (2007), 373-379.
[5] B. M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, Graphs and Comb. 21 (2005), 293-300.
[6] O. Aichholzer. On the rectilinear crossing number. Available online at http://www.ist.tugraz.at/staff/aichholzer/crossings.html.
[7] O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of ($\leq k$)-edges and the rectilinear crossing number of K_{n}. Preprint (2006).
[8] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005, chapter 8.
[9] J. E. Goodman, R. Pollack, Proof of Grünbaum's conjecture on the stretchability of certain arrangements of pseudolines. J. Combin. Theory Ser. A 29 (1980), no. 3, 385-390.
[10] J. E. Goodman, R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A 29 (1980), 220-235.
[11] L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex quadrilaterals and k-sets. In: Pach, J. editor: Towards a theory of geometric graphs, Contemporary Mathematics Series, 342, AMS 2004, 139-148.

[^0]: *California State University, Northridge, \{bernardo.abrego, silvia.fernandez\}@csun.edu
 ${ }^{\dagger}$ Universidad Autónoma de San Luis Potosí, \{jelema, gsalazar\}@ifisica.uaslp.mx

