Recent developments on the number of $(\leq k)$ -sets, halving lines, and the rectilinear crossing number of K_n .

Bernardo M. Ábrego *

Silvia Fernández-Merchant *

Jesús Leaños[†]

Gelasio Salazar[†]

Resumen

We present the latest developments on the number of $(\leq k)$ -sets and halving lines for (generalized) configurations of points; as well as the rectilinear and pseudolinear crossing numbers of K_n . In particular, we define *perfect* generalized configurations on n points as those whose number of $(\leq k)$ -sets is exactly $3\binom{k+1}{2}$ for all $k \leq n/3$. We conjecture that for each n there is a perfect configuration attaining the maximum number of $(\leq k)$ -sets and the pseudolinear crossing number of K_n . We prove that for any $k \leq n/2$ the number of $(\leq k)$ -sets is at least $3\binom{k+1}{2} + 3\binom{k-\lfloor n/3 \rfloor + 1}{2} + 18\binom{k-\lfloor 4n/9 \rfloor + 1}{2} - O(n)$. This in turn implies that the pseudolinear (and consequently the rectilinear) crossing number of any perfect generalized configuration on n points is at least $\frac{277}{729}\binom{n}{4} + O(n^3) \geq 0.379972\binom{n}{4} + O(n^3)$.

1 Introduction

Let P be a set of n points in general position in the plane. A subset of P consisting of $k \leq n/2$ points is called a k-set if it can be separated by the rest of P by a straight line. Any j-set with $j \leq k$ is called a $\leq k$ -set. We denote by $\chi_k(P)$ and $\chi_{\leq k}(P)$ the number of k-sets and $\leq k$ -sets of P, respectively. The number of edge crossings in the drawing of the complete graph K_n whose set of vertices is P and whose edges are straight line segments is denoted by $\overline{cr}(P)$. This is called the *rectilinear crossing number* of P. An edge in such a graph is called a k-edge if it leaves exactly k points of P on one side. When n is even the (n/2 - 1)-edges are known as halving lines, since they divide the remaining n - 2 points of P in half. When n is odd the (n - 3)/2-edges are also called halving lines since they divide P almost in half. As before, any j-edge with $j \leq k$ is called a $\leq k$ -edge. Let $\eta_k(P)$ and $\eta_{\leq k}(P)$ be the number of k-edges and $\leq k$ -edges of P, respectively, and $h(P) = \eta_{\lfloor n/2 \rfloor - 1}$ the number of halving lines of P.

The problems of finding the minimum number of $\leq k$ -sets or $\leq k$ -edges, the maximum number of halving lines, and the minimum crossing number of P over all configurations P of n points in the plane have been widely studied [8]. In other words, we want to estimate the values of

$$\chi_{\leq k}\left(n\right) = \min_{|P|=n} \chi_{\leq k}\left(P\right), \eta_{\leq k}\left(n\right) = \min_{|P|=n} \eta_{\leq k}\left(P\right), h\left(n\right) = \max_{|P|=n} h\left(P\right), \overline{cr}\left(n\right) = \min_{|P|=n} cr\left(P\right)$$

where the minima and maximum are taken over all sets P of n points in the plane. The last function $\overline{cr}(n)$ is known as the *rectilinear crossing number* of K_n .

All these problems are closely related. Note that there is a one-to-one correspondence between the set of k-sets and the set of (k-1)-edges of P, i.e., $\chi_k(P) = \eta_{k-1}(P)$, and thus $\chi_{\leq k}(n) = \eta_{\leq k-1}(n)$. Since all $\binom{n}{2}$ edges associated with P are either $(\leq \lfloor n/2 \rfloor - 2)$ -edges or halving lines then

$$h\left(n\right) = \binom{n}{2} - \eta_{\leq \lfloor n/2 \rfloor - 2}\left(n\right) = \binom{n}{2} - \chi_{\leq \lfloor n/2 \rfloor - 1}\left(n\right)$$

 $[\]label{eq:california} $$ California State University, Northridge, $$ {\tt bernardo.abrego,silvia.fernandez} @csun.edu $$ and $$$

[†]Universidad Autónoma de San Luis Potosí, {jelema,gsalazar}@ifisica.uaslp.mx

Åbrego and Fernández-Merchant [5] and independently Lovász et al. [11], proved the following relationship between the crossing number and the number of k-edges:

$$cr(P) = 3\binom{n}{4} - \sum_{k=1}^{\lfloor n/2 \rfloor} (k-1)(n-k-1)\chi_k(P), \text{ or equivalently}$$
$$cr(P) = \sum_{k=1}^{\lfloor n/2 \rfloor - 1} (n-2k-1)\chi_{\leq k}(P) - \frac{3}{4}\binom{n}{3} + \left(1 + (-1)^{n+1}\right)\frac{1}{8}\binom{n}{2}.$$
(1)

All these concepts and results can be extended to generalized configurations of points. A set P of n points in the plane can be encoded by a circular sequence Π (see below) as follows: Label the points of P from 1 to n. Draw a circle containing P together with a directed tangent line l. Project P onto l to obtain an ordering of P, this corresponds to a permutation of the elements of $\{1, 2, 3, ..., n\}$. Rotate l around the circle (in both directions) and record all permutations. As a result we obtain a doubly-infinite sequence of permutations of the elements of $\{1, 2, ..., n\}$ with period $2\binom{n}{2}$.

In general, a *circular sequence* is a doubly infinite sequence $(..., \pi_{-1}, \pi_0, \pi_1, ...)$ of permutations on n elements, such that any two consecutive permutations π_i and π_{i+1} differ by a transposition τ_i of neighboring elements, and such that for every j, π_j is the reversed permutation of $\pi_{i+\binom{n}{2}}$. Circular sequences were introduced by Goodman and Pollack [10], [9] who established a one-to-one correspondence between circular sequences and generalized configurations of points, that is, configurations of $\binom{n}{2}$ pseudolines and n points where each pseudoline passes through exactly two points and two pseudolines intersect exactly once. When all the pseudolines can be straight lines the generalized configuration is called *stretchable* and it corresponds to a configuration of points in the plane. Thus every configuration of points in the plane corresponds to a circular sequence but only stretchable circular sequences correspond to sets of points in the plane. Any subsequence of Π consisting of $\binom{n}{2}$ consecutive permutations is called a halfperiod. If τ_i occurs between elements in positions i and i+1 we say that τ_i is an *i*-transposition. If $i \leq n/2$ then any *i*-transposition or (n-i)-transposition is called *i*-critical. The k-sets of Π are precisely the subsets of $\{1, 2, ..., n\}$ of size k that occupy the first or last k positions in a permutation of $\{1, 2, ..., n\}$. (These k-sets coincide with those defined for configurations of points when Π is stretchable.) The set of k-sets of Π is then determined by the set of k-critical transpositions in a halfperiod of Π . In fact a k-critical transposition is a (k-1)-pseudoedge. Thus $\chi_k(\Pi)$ and $\chi_{\leq k}(\Pi)$ are the number of k-critical, and respectively $(\leq k)$ -critical, transpositions in any halfperiod of Π and (1) still holds. So now we can define $\chi_{\langle k}(n), \eta_{\langle k}(n), \tilde{h}(n)$, and $\tilde{cr}(n)$ by optimizing over all generalized configurations of n points.

2 Summary of recent results

By the end of 2006 the exact values of h(n), $\tilde{h}(n)$, $\overline{cr}(n)$, and $\tilde{cr}(n)$ were only known for $n \leq 19$ and n = 21, except for $\tilde{h}(14)$ and $\tilde{h}(16)$. We have managed to obtain the exact values for $n \leq 27$.

n	14	16	18	20	22	23	24	25	26	27
$h\left(n\right) = \widetilde{h}\left(n\right)$	22*	27	33	38	44	75	51	85	57	96
$\overline{cr}\left(n\right) = \widetilde{cr}\left(n\right)$	324*	603^{*}	1029^{*}	1657	2528	3077	3699	4430	5250	6180

* Previously known values for the geometric case.

This improvement was an application of the following theorem that concentrates on the central behavior of circular sequences:

Theorem 2.1. Let Π be a circular sequence associated to a generalized configuration of n points. Then

$$\chi_{\lfloor n/2 \rfloor} (\Pi) \leq \begin{cases} \left\lfloor \frac{1}{2} \binom{n}{2} - \frac{1}{2} \chi_{\leq \lfloor n/2 \rfloor - 2} (\Pi) \right\rfloor & \text{if } n \text{ is even,} \\ \\ \left\lfloor \frac{2}{3} \binom{n}{2} - \frac{2}{3} \chi_{\leq \lfloor n/2 \rfloor - 2} (\Pi) + \frac{1}{3} \right\rfloor & \text{if } n \text{ is odd.} \end{cases}$$

In terms of general bounds, Abrego and Fernández-Merchant [4] proved the following upper bound for $\overline{cr}(n)$, and therefore for $\tilde{cr}(n)$. Let P be a set of N points in the plane and H its set of halving lines. Consider the bipartite graph G = (P, H) where $p \in P$ is adjacent to $l \in H$ if p is on l. A matching of G saturating P is called a halving-line matching of P.

Theorem 2.2. If P is a N-element point set in general position, with N even, and P has a halving-line matching; then

$$\widetilde{cr}(n) \le \overline{cr}(n) \le \left(\frac{24\operatorname{cr}(P) + 3N^3 - 7N^2 + (30/7)N}{N^4}\right) \binom{n}{4} + \Theta(n^3).$$

The best upper bound based on this result was obtained using the best known construction for N = 90 [6],

$$\overline{cr}(n) \le 0.380548 \binom{n}{4} + \Theta(n^3).$$

On the other hand, Åbrego and Fernández-Merchant [5] and independently Lovász et al. [11], improved the previously known lower bound for $\chi_{\leq k}(n)$ to

$$\chi_{\leq k}\left(n\right) \geq 3\binom{k+1}{2}.$$
(2)

This bound was improved, by Aichholzer et al. [7] in the rectilinear case and generalized to the pseudolinear case by Ábrego et al. [2], to

$$\chi_{\leq k}\left(n\right) \geq 3\binom{k+1}{2} + 3\binom{k-\lfloor n/3 \rfloor+1}{2} + O\left(n\right).$$

$$\tag{3}$$

As a consequence, using (1), the best known lower bound for the rectilinear and pseudolinear crossing numbers satisfies

$$\overline{cr}(n) \ge \widetilde{cr}(n) \ge 0.37968 \binom{n}{4} + O(n^3).$$

It is known that (2) is tight for $k \leq n/3$ and moreover, Abrego et al. [3] proved the following

Theorem 2.3. If a generalized configuration of n points Π attains $\widetilde{cr}(n)$ and $\chi_{\leq \lfloor n/3 \rfloor}(\Pi) = 3 {\binom{\lfloor n/3 \rfloor + 1}{2}}$ then $\chi_{\leq k}(\Pi) = 3 {\binom{k+1}{2}}$ for all $k \leq n/3$.

A configuration Π that satisfies $\chi_{\leq k}(\Pi) = 3\binom{k+1}{2}$ for all $k \leq n/3$ is called *perfect*. We say that a configuration of *n* points achieving $\tilde{cr}(n)$ is crossing optimal. We believe that

Conjecture 2.4. If Π is crossing optimal then it is perfect.

The following weaker version of this conjecture would still lead to general lower bound improvements using Theorem 2.6.

Conjecture 2.5. For any n there is a crossing optimal configuration that is perfect.

Here we improve the lower bound for $\chi_{\leq k}(\Pi)$ and therefore for the pseudolinear crossing number for perfect configurations.

Theorem 2.6. If Π is a perfect generalized configuration of n points then for all $k \leq n/2$,

$$\chi_{\leq k}\left(\Pi\right) \geq 3\binom{k+1}{2} + 3\binom{k-\lfloor n/3\rfloor+1}{2} + 18\binom{k-\lfloor 4n/9\rfloor+1}{2} + O\left(n\right) \tag{4}$$

In fact we prove a stronger result. A point that belongs to a k-set but not to a $\leq (k-1)$ -set is said to be in the k^{th} layer of Π . Let L_k denote the k^{th} -layer of Π . We say that Π is 3-regular if there are exactly 3 points in L_k for all $k \leq n/3$.

Theorem 2.7. If Π is perfect then Π is 3-regular.

Theorem 2.8. If Π is a 3-regular generalized configuration of n points and $18 \mid n$ then

$$\chi_{\leq k} \left(\Pi \right) \geq 3 \binom{k+1}{2} + 3 \binom{k-n/3+1}{2} + 18 \binom{k-4n/9+1}{2} + \begin{cases} 3 & \text{if } k \geq 4n/9 \\ 0 & \text{else.} \end{cases}$$
(5)

The previous two theorems imply (4). Also (4) and (1) imply that the pseudolinear, and consequently the rectilinear crossing number of any *perfect* configuration on n points is $\geq \frac{277}{729} \binom{n}{4} + O(n^3) \geq 0.379972\binom{n}{4} + O(n^3)$.

3 Proof of Theorem 2.8

For each $1 \le p \le n$ let L(p) be the smallest *position* of p in a permutation of Π . Then for $k \le n/2$, $L_k = \{p \in P : L(p) = k\}$. Note that P is the disjoint union of its *layers* (some may be empty). Let $l_i = |L_i|$ and consider the partial sums $s_k = l_1 + l_2 + ... + l_k$. Then $n \ge s_k \ge 2k + 1$ for all $1 \le k \le n/2$ since the first and last k elements in any term of Π belong to $L_1 \cup ... \cup L_k$ and at least one more element must enter this region. In particular $s_1 = l_1 \ge 3$ and $s_{\lfloor n/2 \rfloor} = n$.

For each point $p \in P$ we follow the transpositions of p in a fixed halfperiod. The transposition $\{p,q\}$ may have a different role when following p that when following q. Thus we use ordered pairs. We say that (q,p) is a *transposition of* p.

Let $p \in P$ and fix a halfperiod $\pi(p)$ satisfying that if $p \in L_i$ then the first row of $\pi(p)$ shows p in the i^{th} position. This naturally orders the n-1 transpositions of p according to the order in which they occur in $\pi(p)$. Following this order, we say that a transposition of p is a *forth-transposition* if pmoves to a larger position (from left to right) in $\pi(p)$ and a *back-transposition* otherwise. The first j-forth-transposition of p is called j-primary. A pair formed by a j-back-transposition of p and the next j-transposition of p (which must be a nonprimary forth-transposition) is called a j-secondary pair of p. Then for $j \leq n/2$ we can say that a j- or (n-j)-secondary pair is a j-critical pair.

For $p_1 \in P$, we write $(p_0, p_1) \to (p_1, p_2)$ if $\{(p_0, p_1), (p_2, p_1)\}$ is a secondary pair of p_1 with backtransposition (p_2, p_1) . If $p_1 \in L_i$ then p_1 moves from position i to position n + 1 - i in $\pi(p_1)$. Thus there is exactly one j-primary transposition of p_1 for all $i \leq j \leq n - i$. Moreover, (p, p_1) is a backtransposition only if the first row of $\pi(p_1)$ shows p in one of the first i - 1 positions. This means that there are exactly i - 1 secondary pairs of p_1 and if $(p_0, p_1) \to (p_1, p_2)$ with $p_2 \in L_j$ then j < i. Thus (p_1, p_2) must be a forth-transposition of p_2 . If $p_1 \in L_i, p_r \in L_j$, and

$$(p_0, p_1) \to (p_1, p_2) \to (p_2, p_3) \to \dots \to (p_{r-1}, p_r) \tag{6}$$

then we say that (p_0, p_1) goes from L_i to L_j in r steps. Note that if r is as large as possible then (p_{r-1}, p_r) is a k-primary transposition of p_r for some $1 \le k \le n/2$ and all the transpositions in (6) are k-critical. In this case we say that the forth-transposition (p_0, p_1) has rank r and write rank $(p_0, p_1) = r$. Then all primary transpositions have rank 1. The rank of a secondary pair is the rank of its forth-transposition. Let

 $\chi_{\leq k}(\Pi, r) = \# (\leq k)$ -critical rank r transpositions of Π .

Then $\chi_{\leq k}(\Pi, 1) = \# (\leq k)$ -critical primary transposition and since each forth-transposition of rank ≥ 2 belongs to a secondary pair then $\chi_{\leq k}(\Pi)$ can be expressed in terms of its forth-transpositions.

$$2\chi_{\leq k}(\Pi) = \chi_{\leq k}(\Pi, 1) + 2\sum_{r=2}^{\lfloor n/2 \rfloor} \chi_{\leq k}(\Pi, r).$$
(7)

Based on the fact that all transpositions in (6) occur in the same position, we keep track of the forth-transpositions using the following notation. For $1 \le j \le i \le n/2$ and $1 \le r \le i - j + 1$ let

 $F_r(i, j)$ be the set of forth-transpositions that go from L_i to L_j in r steps, and $M_r(i, j)$ the set of those elements in $F_r(i, j)$ with rank r. If I is a set of indices then

$$F_r(I,j) = \bigcup_{i \in I} F_r(i,j)$$
 and $M_r(I,j) = \bigcup_{i \in I} M_r(i,j)$.

Let $I_j = \{j, j+1, j+2, ..., \lfloor n/2 \rfloor \}$.

Lemma 3.1. *For all* $1 \le r \le n/2$

$$\chi_k(\Pi, r) \ge \sum_{j=1}^{\lfloor n/2 \rfloor - 1} \max(|M_r(I_j, j)| - l_j(n - 1 - 2k), 0).$$

Proof. By definition, if $(p_0, p_1) \in M_r(I_j, j)$ and $(p_0, p_1) \to (p_1, p_2) \to ... \to (p_{r-1}, p_r)$ then (p_{r-1}, p_r) is a primary transposition of L_j . This means that the number of *h*-critical transpositions in $M_r(I_j, j)$ is bounded above by the number of *h*-critical primary transpositions of L_j . Now, for each $p \in L_j$ and $j \leq h \leq n/2$ we have exactly one *h*-primary and one (n - h)-primary transposition of p, both of them are *h*-critical. Then there are l_j transpositions of L_j that are *h*-primary and l_j that are (n - h)-primary. Thus at most $l_j (n - 1 - 2k)$ elements of $M_r(I_j, j)$ are not $(\leq k)$ -critical.

Proof. (Theorem 2.8) Since Π is 3-regular then $l_j = 3$ and $s_j = 3j$ for all $1 \le j \le n/3$. If j > n/3 then $l_j = 0$ and $s_j = n$.

If k < 4n/9 then (5) coincides with (3). For $k \ge 4n/9$ we bound $\chi_{\le k}(\Pi, 1) + \chi_{\le k}(\Pi, 2) + \chi_{\le k}(\Pi, 3)$ below. The number of k-critical primary transpositions of Π is $2(l_1 + l_2 + ... + l_k) = 2s_k$ then

$$\chi_{\leq k}(\Pi, 1) \geq 2\sum_{j=1}^{k} s_j = \sum_{j=1}^{n/3} 3j + \sum_{j=n/3+1}^{k} n = 3\binom{n/3+1}{2} + n(k-n/3).$$
(8)

By Lemma 3.1 applied to r = 2 and r = 3 (disregard the maximum and note that $2k - 8n/9 + 1 \le 2k - 7n/9 + 1 \le n/2 - 1$)

$$\chi_{\leq k}(\Pi, 2) + \chi_{\leq k}(\Pi, 3) \geq \sum_{j=1}^{2k-7n/9+1} |M_2(I_j, j)| + \sum_{j=1}^{2k-8n/9+1} |M_3(I_j, j)| - 3(n-1-2k)(4k-5n/3+2).$$

Since there are exactly 3(j-1) secondary pairs of L_j , at most 3(j-1) transpositions in $F_3(I_j, j)$ continue to another layer after passing through L_j . This means

$$\sum_{j=1}^{2k-8n/9+1} |M_3(I_j,j)| \ge \sum_{j=1}^{2k-8n/9+1} (|F_3(I_j,j)| - 3(j-1)) = \sum_{j=1}^{2k-8n/9+1} |F_3(I_j,j)| - \sum_{j=1}^{2k-8n/9} 3j \quad (10)$$

The transpositions that go to L_i in 3 steps, $F_3(I_i, i)$, can be partitioned into the sets $F_2(I_j, j) \cap F_3(I_j, i)$ with $i + 1 \le j \le n/2$ and thus

$$\begin{split} &\sum_{i=1}^{2k-8n/9+1} |F_3\left(I_i,i\right)| = \sum_{i=1}^{2k-8n/9+1} \sum_{j=i+1}^{n/2} |F_2\left(I_j,j\right) \cap F_3\left(I_j,i\right)| \\ &= \sum_{j=1}^{2k-7n/9+1} |M_2\left(I_j,j\right)| + \sum_{j=2}^{2k-8n/9+2} \sum_{i=1}^{j-1} |F_2\left(I_j,j\right) \cap F_3\left(I_j,i\right)| \\ &+ \sum_{j=2k-8n/9+3}^{n/2} \sum_{i=1}^{2k-8n/9+1} |F_2\left(I_j,j\right) \cap F_3\left(I_j,i\right)| \,. \end{split}$$

Hence

$$\sum_{j=1}^{2k-7n/9+1} |M_{2}(I_{j},j)| + \sum_{i=1}^{2k-8n/9+1} |F_{3}(I_{i},i)|$$

$$\geq |M_{2}(I_{2},1)| + \sum_{j=2}^{2k-8n/9+2} \left(|M_{2}(I_{j},j)| + \sum_{i=1}^{j-1} |F_{2}(I_{j},j) \cap F_{3}(I_{j},i)| \right)$$

$$+ \sum_{j=2k-8n/9+3}^{2k-7n/9+1} \left(|M_{2}(I_{j},j)| + \sum_{i=1}^{2k-8n/9+1} |F_{2}(I_{j},j) \cap F_{3}(I_{j},i)| \right)$$
(11)

For fixed j note that $\bigcup_{i=1}^{j-1} F_2(I_j, j) \cap F_3(I_j, i)$ consists of those transpositions of rank ≥ 3 that first go to L_j and then continue to some L_i with $1 \leq i \leq j-1$. Then

$$|M_2(I_j, j)| + \sum_{i=1}^{j-1} |F_2(I_j, j) \cup F_3(I_j, i)| = |F_2(I_j, j)|.$$
(12)

If $h \leq j-2$ there are at most 3(j-1-h) transpositions that first go to L_j and then to one of the j-1-h layers $L_{h+1}, L_{h+2}, \dots, L_{j-2}, L_{j-1}$ and all these transpositions are in $F_2(I_j, j)$. Then

$$|M_2(I_j, j)| + \sum_{i=1}^{h} |F_2(I_j, j) \cap F_3(I_j, i)| \ge |F_2(I_j, j)| - 3(j - 1 - h)$$

In particular, for $j \ge 2k - 8n/9 + 3$ and h = 2k - 8n/9 + 1 we have

$$|M_2(I_j,j)| + \sum_{i=1}^{2k-8n/9+1} |F_2(I_j,j) \cap F_3(I_j,i)| \ge |F_2(I_j,j)| + 6(k-4n/9+1) - 3j.$$
(13)

Using (12), (13), and $M_2(I_2, 1) = F_2(I_2, 1)$ we bound (11) below

$$\sum_{j=1}^{2k-8n/9+2} |F_2(I_j,j)| + \sum_{j=2k-8n/9+3}^{2k-7n/9+1} (|F_2(I_j,j)| + 6(k-4n/9+1) - 3j)$$
(14)
=
$$\sum_{j=1}^{2k-7n/9+1} |F_2(I_j,j)| + \sum_{j=2k-8n/9+3}^{2k-7n/9+1} (6(k-4n/9+1) - 3j).$$

Each point $p \in L_{h+1} \cup L_{h+2} \cup ... \cup L_{\lfloor n/2 \rfloor}$ has at least h back-transpositions (q, p) with $q \in L_1 \cup L_2 \cup ... \cup L_h$ and each point $p \in L_j, 1 \leq j \leq h$, has at least j - 1 back-transpositions (q, p) with $q \in L_1 \cup L_2 \cup ... \cup L_h$. Thus

$$\sum_{j=1}^{h} |F_2(I_j, j)| \ge h \left(l_{h+1} + \dots + l_{\lfloor n/2 \rfloor} \right) + \sum_{j=1}^{h} (j-1) l_j = \sum_{j=1}^{h} \left(l_{j+1} + \dots + l_{\lfloor n/2 \rfloor} \right) = \sum_{j=1}^{h} (n-s_j) .$$
(15)

Finally, (7), (8), (9), (10), (11), (14), and (15) imply

$$\chi_{\leq k} (\Pi) \geq \chi_{\leq k} (\Pi, 1) + \chi_{\leq k} (\Pi, 2) + \chi_{\leq k} (\Pi, 3) \geq 3 \binom{n/3 + 1}{2} + n (k - n/3) + \sum_{j=1}^{2k - 7n/9 + 1} (n - 3j) + \sum_{j=1}^{2k - 7n/9 + 1} (6 (k - 4n/9 + 1) - 3j) - \sum_{j=1}^{2k - 8n/9} 3j - 3 (n - 1 - 2k) (4k - 5n/3 + 2) = 3 \binom{k+1}{2} + 3 \binom{k - n/3 + 1}{2} + 18 \binom{k - 4n/9 + 1}{2} + 3.$$

References

- [1] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. The maximum number of halving lines and the rectilinear crossing number of K_n for $n \leq 27$. Preprint (2007).
- [2] B. M. Ábrego, J. Balogh, S. Fernández-Merchant, J. Leaños, and G. Salazar. An extended lower bound on the number of $(\leq k)$ -edges to generalized configurations of points and the pseudolinear crossing number of K_n . Submitted (2006).
- [3] B. M. Ábrego, J. Balogh, S. Fernández-Merchant, J. Leaños, and G. Salazar. On ($\leq k$)-pseudoedges in generalized configurations and the pseudolinear crossing number of K_n . Submitted (2006).
- [4] B. M. Abrego and S. Fernández-Merchant. Geometric drawings of K_n with few crossings. J. Combin. Theory Ser. A 114 (2007), 373-379.
- [5] B. M. Abrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, Graphs and Comb. 21 (2005), 293–300.
- [6] O. Aichholzer. On the rectilinear crossing number. Available online at http://www.ist.tugraz.at/staff/aichholzer/crossings.html.
- [7] O. Aichholzer, J. García, D. Orden, and P. Ramos, New lower bounds for the number of $(\leq k)$ -edges and the rectilinear crossing number of K_n . Preprint (2006).
- [8] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, 2005, chapter 8.
- [9] J. E. Goodman, R. Pollack, Proof of Grünbaum's conjecture on the stretchability of certain arrangements of pseudolines. J. Combin. Theory Ser. A 29 (1980), no. 3, 385-390.
- [10] J. E. Goodman, R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A 29 (1980), 220-235.
- [11] L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex quadrilaterals and k-sets. In: Pach, J. editor: Towards a theory of geometric graphs, Contemporary Mathematics Series, 342, AMS 2004, 139-148.