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Abstract

Let Mm,n(0, 1) denote the set of all m× n (0,1)-matrices and let
G(m,n) = max{detXTX : X ∈Mm,n(0, 1)}.

In this paper we exhibit some new formulas for G(m,n) where n ≡ −1 (mod 4). Specifically, for m =
nt+r where 0 ≤ r < n, we show that for all sufficiently large t, G(nt+r, n) is a polynomial in t of degree
n that depends on the characteristic polynomial of the adjacency matrix of a certain regular graph. Thus
the problem of finding G(nt+ r, n) for large t is equivalent to finding a regular graph, whose degree of
regularity and number of vertices depend only on n and r, with a certain “trace-minimal” property. In
particular we determine the appropriate trace-minimal graph and hence the formulas for G(nt+ r, n) for
n = 11, 15, all r, and all sufficiently large t.
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1 Introduction

Let Mm,n(0, 1) denote the set of all m× n (0,1)-matrices and let

G(m,n) = max{detXTX : X ∈Mm,n(0, 1)}.

A matrix X = (xij) ∈Mm,n(0, 1) is D-optimal (in Mm,n(0, 1)) if detX
TX = G(m,n).

The central problem is to find G(m,n) for each pair of positive integers m ≥ n and to characterize the
matrices for which the maximum is attained. In its full generality, the problem is unsolved.

This problem comes from the theory of statistical weighing designs. Suppose we have a one-pan or spring
scale with which to determine the weights of n objects in m weighings. The scale does not give the exact
weight, but we assume that the error distribution has mean zero and is independent from weighing to
weighing. One possible design is to weigh the objects one at a time. But by choosing a more complicated
weighing design in which several objects are placed on the scale together, the variance of the resulting errors
can be reduced. This technique appeared in a paper by Yates [Ya] in 1935 and was improved and advanced
by Hotelling [Ho] and Mood [Mo] in 1944 and 1946.

A weighing design for n objects and m weighings consists of m subsets of the n objects. Each subset of
objects is then placed on the scale together. Letting the objects correspond to the columns and the weighings
correspond to the rows, we can encode the weighing design into a matrix X ∈Mm,n(0, 1): xij = 1, if object
j is included in the ith weighing; xij = 0, if it is omitted. Thus a matrix X ∈ Mm,n(0, 1) is called a
design matrix. Under certain assumptions about the error distribution of the scale, the smallest confidence
region for the least-squares estimator of the n-tuple of weights of the n objects is attained when one uses
a weighing design (matrix) for which detXTX is maximal; thus the interest in D-optimal design matrices.
See e.g. [Pu, BJL] for details.

Formulas for G(m,n) are known for n = 2, 3, 4, 5, 6 and all m ≥ n. For n = 7, G(m, 7) is known for all
sufficiently large m. See [HKL] for n = 2, 3, [NWZ2, NWZ3] for n = 4, 5, 6, and [NW] for n = 7. For some
other values of n, partial results are known–partial in the sense that G(m,n) is known for some, but not
all, m. Complete results for n = 3 and 7 are given in the next two theorems. The first theorem was stated
in [Mo, p. 443] and proved in [HKL, p. 562].

Theorem 1 For 0 ≤ r < 3
G(3t+ r, 3) = 4(t+ 1)rt3−r.

The next theorem was conjectured in [HKL] and proved in [NW].

Theorem 2 For 0 ≤ r < 7 and all sufficiently large t

G(7t+ r, 7) = 4 · 28(t+ 1)rt7−r.

It is tempting to conjecture that the pattern exhibited in the cases for n = 3, 7 might hold for n = 11, 15, . . .
as well, especially since families of (nt+ r)×n design matrices X are given in [HKL, Theorem 7.1] for which

det(XTX) = 4

µ
n+ 1

4

¶n+1
(t+ 1)rtn−r, (1)
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for all n ≡ −1 (mod 4) and all 0 ≤ r < n. In addition, it is known that G(nt+ r, n) equals the right-hand
side of Equation (1) when r = 0, 1, 2 and n− 1. (See for example [NWZ1, Thm 5.2].) But for other values of
r, the examples in [HKL] prove only that the right-hand side of Equation(1) is a lower bound on G(nt+r, n).

On the other hand, upper bounds on G(m,n) for all m and n are given in [Ch, JN] using the idea of an
approximate design. In particular, for n ≡ −1 (mod 4) the upper bounds on G(nt+ r, n) combined with the
examples given in [HKL] give the following range of possible values for G(nt+ r, n):

4

µ
n+ 1

4

¶n+1
(t+ 1)rtn−r ≤ G(nt+ r, n) ≤ 4

µ
n+ 1

4

¶n+1 ³
t+

r

n

´n
. (2)

However the upper bound is attainable only when r = 0; that is, when m = nt + r is a multiple of n.
For n ≥ 11, G(nt + r, n) is not equal to the lower bound given in Equation (1) in general. In fact for
r 6= 0, 1, 2, n− 1, the actual value of G(nt+ r, n) for all sufficiently large t, is strictly between the upper and
lower bounds given in Inequality (2).

Formulas for n = 11, 15, all 0 ≤ r < n, and large t are given in the next two theorems.

Theorem 3 For all sufficiently large t

G(11t+ 0, 11) = 12(3t)11

G(11t+ 1, 11) = 12(3t)10(3t+ 3)

G(11t+ 2, 11) = 12(3t)9(3t+ 3)2

G(11t+ 3, 11) = 12(3t− 1)(3t)5(3t+ 2)5
G(11t+ 4, 11) = 12(3t)5(3t+ 2)6

G(11t+ 5, 11) = 12(3t)4(3t+ 2)6(3t+ 3)

G(11t+ 6, 11) = 12(3t)(3t+ 1)6(3t+ 3)4

G(11t+ 7, 11) = 12(3t+ 1)6(3t+ 3)5

G(11t+ 8, 11) = 12(3t+ 1)5(3t+ 3)5(3t+ 4)

G(11t+ 9, 11) = 12(3t+ 1)4(3t+ 3)5(3t+ 4)2

G(11t+ 10, 11) = 12(3t)(3t+ 3)10.
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Theorem 4 For all sufficiently large t

G(15t+ 0, 15) = 16(4t)15

G(15t+ 1, 15) = 16(4t)14(4t+ 4)

G(15t+ 2, 15) = 16(4t)13(4t+ 4)2

G(15t+ 3, 15) = 16(4t− 2)(4t)7(4t+ 2)7
G(15t+ 4, 15) = 16(4t)7(4t+ 2)8

G(15t+ 5, 15) = 16(4t)6(4t+ 2)8(4t+ 4)

G(15t+ 6, 15) = 16(4t)(4t+ 1)4(4t+ 4)2[(4t)2 + 3(4t) + 1]4

G(15t+ 7, 15) = 16(4t)(4t+ 1)8(4t+ 2)2(4t+ 4)4

G(15t+ 8, 15) = 16(4t+ 2)2(4t+ 4)[(4t)2 + 4(4t) + 2]2[(4t)4 + 8(4t)3 + 20(4t)2 + 16(4t) + 2]2

G(15t+ 9, 15) = 16(4t+ 2)4(4t+ 4)3[(4t)2 + 4(4t) + 2]4

G(15t+ 10, 15) = 16(4t)(4t+ 2)8(4t+ 4)6

G(15t+ 11, 15) = 16(4t+ 2)8(4t+ 4)7

G(15t+ 12, 15) = 16(4t+ 2)7(4t+ 4)7(4t+ 6)

G(15t+ 13, 15) = 16(4t+ 2)4(4t+ 4)3[(4t)2 + 8(4t) + 14]4

G(15t+ 14, 15) = 16(4t)(4t+ 4)14.

There is more. Our main result is that for each pair of positive integers, n, r with n ≡ −1 (mod 4) and
0 ≤ r < n, there is a polynomial pn,r(t) of degree n in t such that G(nt+ r, n) = pn,r(t) for all sufficiently
large t. And we describe a relationship between this polynomial and a certain regular graph whose degree
of regularity and number of vertices depend only on n and r. Once the graph G is known, the polynomial
can be obtained easily from the characteristic polynomial of the adjacency matrix of G. Theorems 1, 2, 3,
and 4 then follow as simple consequences.

2 Main results

The main results of this paper describe a correspondence between the formula G(m,n) for D-optimal design
matrices and certain regular graphs.

2.1 Trace-minimal regular graphs

We begin with a description of the relevant graphs. Let G(v, δ) be the set of all δ-regular graphs on v vertices
and let A(G) be the adjacency matrix of G. The characteristic polynomial of A(G) is denoted by chG(x). We
also refer to chG(x) as the characteristic polynomial of the graph G. Since A(G) is a symmetric (0, 1)-matrix
with zeros on the diagonal, tr(A(G)) = 0 and tr(A(G)2) = δv. These traces do not depend on the structure
of the graph G. However, for i ≥ 3, tr(A(G)i) does depend on the structure of the graph. Indeed the (j, j)
entry of A(G)i equals the number of closed walks of length i that start and end at vertex j.

We now define an order relation on the graphs in G(v, δ): Let G,H ∈ G(v, δ), We say G is trace-dominated
by H if A(G) and A(H) have the same spectrum (in which case tr(A(G)i) = tr(A(H)i) for all 3 ≤ i ≤
n) or if there exists a positive integer 3 ≤ k ≤ n such that tr(A(G)i) = tr(A(H)i), for i < k and
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tr(A(G)k) < tr(A(H)k). If G is trace-dominated by all graphs in G(v, δ), then we say that G is trace-
minimal in G(v, δ). Since G(v, δ) is finite, there always exist trace-minimal graphs in G(δ, v) and clearly
they all have the same characteristic polynomial. The equivalent graphical definition of trace-dominance is
this: G is trace-dominated by H if either G and H have the same number of closed walks of length i for all
3 ≤ i ≤ n or if the number of closed walks of length i in G equals the number of closed walks of length i in
H for all i < k and the number of closed walks of length k in G is smaller than the number of closed walks
of length k in H.

The trace-dominance relation actually compares the spectra of the (adjacency matrices of the) graphs in
G(v, δ) rather than the graphs themselves. In fact trace-dominance is a linear order on the spectra of graphs;
G and H have the same spectrum if and only if each is trace-dominated by the other. But in general, the
spectrum of a graph does not determine the graph. That is, there exist non-isomorphic graphs with the
same spectrum. (See [CSD, p. 24].) So although trace-dominance is a linear order on the spectra of graphs,
there may exist non-isomorphic, trace-minimal graphs in G(v, δ). We have not investigated this. We denote
the spectrum of a square matrix X by spec(X) so that the spectrum of a graph G is denoted by spec(A(G)).

Now we turn to the design matrices in Mm,n(0, 1). Throughout, we assume that n = 4p − 1 and that
m = nt+ r where the remainder r satisfies 0 ≤ r < n. The main result is split into four cases depending on
the congruence class of r (mod 4).

2.2 Main results for r ≡ 1, 2 (mod 4)

Theorem 5 Let r = 4d + 1. Let G be a trace-minimal graph in G(2p, d). Then for all sufficiently large
values of t

G(nt+ r, n) =
4(t+ 1)[chG(pt+ d)]

2

t2
. (3)

Theorem 6 Let r = 4d+ 2. Let G be a trace-minimal graph in G(2p, p+ d). Then for all sufficiently large
values of t

G(nt+ r, n) =
4t[chG(pt+ d)]

2

(t− 1)2 .

2.3 Bipartite-trace-minimal regular graphs

To state the results for r ≡ −1, 0 (mod 4), we need to define a notion analogous to trace-minimality for
bipartite graphs. Let B(2v, δ) be the set of all δ-regular bipartite graphs on 2v vertices and let B ∈ B(2v, δ).
It follows from the regularity of B that each of the sets of vertices in the bipartition has cardinality v.
(We assume this even if δ = 0.) Without loss of generality, we may assume that the sets of vertices in the
bipartition are {1, 2, . . . , v} and {v + 1, v + 2, . . . , 2v}. Thus the adjacency matrix of B is of the form

A(B) =

·
0 N(B)

N(B)T 0

¸
,

where N(B) is a v × v (0, 1)-matrix having exactly δ ones in each row and each column.

It is clear that tr(A(B)i) = 0 if i is odd and that tr((A(B)2j) = 2tr((N(B)TN(B))j) otherwise. For j = 1,
tr((N(B)TN(B)) = δv, for all B ∈ B(2v, δ).
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A graph B ∈ B(2v, δ) is bipartite-trace-minimal in B(2v, δ) if for every H ∈ B(2v, δ) either spec(A(B)) =
spec(A(H)) (in which case tr(A(B)i) = tr(A(H)i) for all i = 4, . . . , 2v) or there exists a positive integer
k with 4 ≤ k ≤ 4p such that tr(A(B)i) = tr(A(H)i) for all i < k and tr(A(B)k) < tr(A(H)k). In view
of the remarks above, B ∈ B(2v, δ) is bipartite-trace-minimal if and only if for every H ∈ B(2v, δ), either
spec(N(H)TN(H)) = spec(N(B)TN(B)) or there exists an integer 2 ≤ j ≤ v such that tr((N(H)TN(H))i) =
tr((N(B)TN(B))i) for i < j and tr(N(B)TN(B))j) < tr((N(H)TN(H))j).

There is a subtle difference between trace-minimality and bipartite-trace-minimality for bipartite graphs.
If B ∈ B(4p, δ) ⊆ G(4p, δ), B may be bipartite-trace-minimal in B(4p, δ) without being trace-minimal
in G(4p, δ). Bipartite-trace-minimality requires a comparison of the traces of A(B)i with A(G)i for all
G ∈ B(4p, δ), whereas trace-minimality requires the same comparison but for all G in the larger set G(4p, δ).
Thus for bipartite graphs, trace-minimality is a stronger condition than bipartite-trace-minimality.

2.4 Main results for r ≡ −1, 0 (mod 4)

The following two theorems, which contain the main results for r ≡ −1, 0 (mod 4), require the notion of
bipartite-trace-minimality. Each theorem is divided into two parts depending on the relative sizes of p and
d.

Theorem 7 Let r = 4d − 1. Suppose p/2 ≤ d < p. Let G be a trace-minimal graph in G(4p, 3p + d − 1).
Then for all sufficiently large values of t

G(nt+ r, n) =
4chG(pt+ d− 1)

t− 3 . (4)

Suppose 0 ≤ d < p/2. Let B be a bipartite-trace-minimal graph in B(4p, d). Then for all sufficiently large
values of t

G(nt+ r, n) =
4(p(t− 1) + 2d)chB(pt+ d)

t(pt+ 2d)
. (5)

Theorem 8 Let r = 4d. Suppose 0 ≤ d ≤ p/2. Let G be a trace-minimal graph in G(4p, d). Then for all
sufficiently large values of t

G(nt+ r, n) =
4chG(pt+ d)

t
.

Suppose p/2 < d < p. Let B be a bipartite-trace-minimal graph in B(4p, p + d). Then for all sufficiently
large values of t

G(nt+ r, n) =
4(pt+ 2d)chB(pt+ d)

(t− 1)(p(t+ 1) + 2d) .

3 Families of trace-minimal and bipartite-trace-minimal graphs

Equipped with the four theorems in Section 2, one can translate the problem of finding an explicit expression
of G(nt + r, n) for a given n, remainder 0 ≤ r < n, and all sufficiently large t into the problem of finding
an appropriate trace-minimal or bipartite-trace-minimal graph. For example suppose n = 11 and r = 9 so
that p = 3 and r = 4d + 1, where d = 2. This case falls within the scope of Theorem 5. Thus we seek
a graph in G(6, 2) that is trace-minimal. It is not hard to see that the 6-cycle is the only trace-minimal
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graph in G(6, 2). Indeed the v-cycle graph is the only trace-minimal graph in G(v, 2). (See Lemma 9.) The
characteristic polynomial of the 6-cycle graph is ch(x) = (x+1)2(x− 1)2(x+2)(x− 2), pt+ d = 3t+2, and
hence by Theorem 5 we have

G(11t+ 9, 11) = 12(3t+ 1)4(3t+ 3)5(3t+ 4)2,

for all sufficiently large t.

By exhibiting appropriate families of trace-minimal and bipartite-trace-minimal graphs, we reprove the old
formulas given in Theorems 1 and 2 and prove the new ones given in Theorems 3 and 4.

The notation for graphs is as follows:

Zv the graph consisting of v independent vertices (no edges)
Kv the complete graph on v vertices
Kv,v the complete bipartite graph with v vertices in each of the bipartition sets
Cv the cycle with v vertices
K2v − vK2 the complete graph on 2v vertices with a perfect matching removed
Kv,v − vK2 the complete bipartite graph with a perfect matching removed
G+H the direct sum of graphs G and H
kG the direct sum of k copies of G.

Even though the families of graphs in this section are relatively simple, they are sufficiently inclusive to
prove all of the formulas in Theorems 1, 2, 3, and 4. A much more extensive list of trace-minimal and
bipartite-trace-minimal graphs along with the corresponding formulas for G(m,n) are given in a sequel
[AFNW].

Lemma 9 The following graphs are trace-minimal:

Zv ∈ G(v, 0)
Kv ∈ G(v, v − 1)
vK2 ∈ G(2v, 1)
Kv,v ∈ G(2v, v)
K2v − vK2 ∈ G(2v, 2v − 2)
Cv ∈ G(v, 2).

The following graphs are bipartite-trace-minimal:

Zv ∈ B(v, 0)
vK2 ∈ B(2v, 1)
Kv,v − vK2 ∈ B(2v, v − 1).
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Proof: Since Zv is the only graph in G(v, 0) it must be trace-minimal and bipartite-trace-minimal in B(v, 0).
Likewise Kv is the only graph in G(v, v − 1), vK2 is the only graph in G(2v, 1), and K2v − vK2 is the only
graph in G(2v, 2v−1) so they are trace-minimal and vK2 is bipartite-trace-minimal in B(2v, 1). The bipartite
graph Kv,v − vK2 is the only graph in B(2v, v − 2), so it is bipartite-trace-minimal.

Next consider the complete bipartite graph Kv,v. It is the only graph in B(2v, v) so it is bipartite-trace-
minimal. But Kv,v is also trace-minimal in G(2v, v). To see this let G ∈ G(2v, v). If G has a 3-cycle, then
tr(A(G)3) > 0 whereas tr(A(Kv,v)

3) = 0. Thus G is not trace-minimal. So suppose G has no 3-cycles and
assume that vertex 1 is adjacent to vertices v + 1, . . . , 2v. Since G has no 3-cycles, none of the vertices
v + 1, . . . , 2v are adjacent to each other. Thus each of the vertices v + 1, . . . , 2v is adjacent to each of the
vertices 1, 2, . . . , v. That is, G = Kv,v.

Finally, consider the v-cycle, Cv and let G ∈ G(v, 2). Since G is 2-regular, it is a direct sum of cycles. Suppose
G has a cycle of length k < v and let k the minimal length of a cycle in G. Then tr(A(G)i) = tr(A(Cv)

i) for
all i < k, but tr(A(G)k) > tr(A(Cv)

k) since G has a k-cycle and Cv does not. Hence G is not trace-minimal.
It follows that the only trace-minimal graph in G(v, 2) is Cv.

3.1 Proof of Theorems 1, 2, and 3

In each case the trace-minimal or bipartite-trace-minimal graph required is among those listed in Lemma
9. Thus the formulas for G(nt+ r, n) are obtained from the corresponding Theorem from Section 2. In the
table below, the values of r, d, the graph class, the appropriate trace-minimal or bipartite-trace-minimal
graph G in the class, and the characteristic polynomial chG(x) are given.

For example, if n = 11 and r = 8 then p = 3, d = 2 and p/2 < d, so we use the second part of Theorem
8. Thus we seek a bipartite-trace-minimal graph B in B(4p, p + d) = B(12, 5). By Lemma 9, the graph
K6,6 − 6K2 ∈ B(12, 5) is bipartite-trace-minimal. It is easy to verify that the characteristic polynomial of
K6,6 − 6K2 is ch(x) = (x− 5)(x− 1)5(x+ 1)5(x+ 5) and that

4(3t+ 4)ch(3t+ 2)

(t− 1)(3(t+ 1) + 4) = 12(3t+ 1)
5(3t+ 3)5(3t+ 4).

Thus the formula for G(11t + 8, 11) in Theorem 3 is proved. All other parts of Theorems 1, 2, and 3 are
proved in a similar manner.

3.1.1 n = 3

r d class graph G chG(x)
0 0 G(4, 0) Z4 x4

1 0 G(2, 0) Z2 x2

2 0 G(2, 1) K2 (x− 1)(x+ 1)
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3.1.2 n = 7

r d class graph G chG(x)
0 0 G(8, 0) Z8 x8

1 0 G(4, 0) Z4 x4

2 0 G(4, 2) C4 (x− 2)x2(x+ 2)
3 1 G(8, 6) K8 − 4K2 (x− 6)x4(x+ 2)3
4 1 G(8, 1) 4K2 (x− 1)4(x+ 1)4
5 1 G(4, 1) 2K2 (x− 1)2(x+ 1)2
6 1 G(4, 3) K4 (x− 3)(x+ 1)3

3.1.3 n = 11

r d class graph G chG(x)
0 0 G(12, 0) Z12 x12

1 0 G(6, 0) Z6 x6

2 0 G(6, 3) K3,3 (x− 3)x4(x+ 3)
3 1 B(12, 1) 6K2 (x− 1)6(x+ 1)6
4 1 G(12, 1) 6K2 (x− 1)6(x+ 1)6
5 1 G(6, 1) 3K2 (x− 1)3(x+ 1)3
6 1 G(6, 4) K6 − 3K2 (x− 4)x3(x+ 2)2
7 2 G(12, 10) K12 − 6K2 (x− 10)x6(x+ 2)5
8 2 B(12, 5) K6,6 − 6K2 (x− 5)(x− 1)5(x+ 1)5(x+ 5)
9 2 G(6, 2) C6 (x− 2)(x− 1)2(x+ 1)2(x+ 2)
10 2 G(6, 5) K6 (x− 5)(x+ 1)5

3.2 Proof of Theorem 4, n = 15

r d class graph G chG(x)
0 0 G(16, 0) Z16 x16

1 0 G(8, 0) Z8 x8

2 0 G(8, 4) K4,4 (x− 4)x6(x+ 4)
3 1 B(16, 1) 8K2 (x− 1)8(x+ 1)8
4 1 G(16, 1) 8K2 (x− 1)8(x+ 1)8
5 1 G(8, 1) 4K2 (x− 1)4(x+ 1)4
6 1 G(8, 5) K8 − (C3 + C5) (x− 5)x2(x+ 3)(x2 + x− 1)2
7 2 G(16, 13) K16 − (4C3 + C4) (x− 13)(x− 1)x8(x+ 1)2(x+ 3)4
8 2 G(16, 2) C16 (x− 2)x2(x+ 2)(x2 − 2)2(x4 − 4x2 + 2)2
9 2 G(8, 2) C8 (x− 2)x2(x+ 2)(x2 − 2)2
10 2 G(8, 6) K8 − 4K2 (x− 6)x4(x+ 2)3
11 3 G(16, 14) K16 − 8K2 (x− 14)x8(x+ 2)7
12 3 B(16, 7) K8,8 − 8K2 (x− 7)(x− 1)7(x+ 1)7(x+ 7)
13 3 G(8, 3) C8(1, 4) (x− 3)(x− 1)2(x+ 1)(x2 + 2x− 1)2
14 3 G(8, 7) K8 (x− 7)(x+ 1)7

For r 6= 6, 7, 13, the associated graph is among those shown to be trace-minimal or bipartite-trace-minimal
in Lemma 9. Let C8(1, 4) ∈ G(8, 3) be the graph with 8 vertices and an edge (i, j) if |i− j| ≡ 1, 4 (mod 8).
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It remains only to show that the graphs K8 − (C3 +C5) for r = 6, K16 − (4C3 +C4) for r = 7, and C8(1, 4)
for r = 13 are trace-minimal.

3.2.1 K8 − (C3 + C5)

There are only three graphs G in G(8, 3): K8 − C8, K8 − 2C4, and K8 − (C3 + C5). For the first two, the
value of tr(A(G)3) is 96, and for the last one is 90. So K8 − (C3 + C5) is trace-minimal.

3.2.2 K16 − (4C3 + C4)

Let G be a graph in G(16, 13). Then the complement G0 is in G(16, 2) and hence is a direct sum of disjoint
cycles. Let A(G0) = J16 − I16 − A(G) be the adjacency matrix of G0. Since A(G0)J = JA(G0) = 2J ,
J2 = 16J , and tr(A(G0)2) = 32, we have

tr(A(G)3) = tr((J − I −A(G0))3)
= tr(139J − (I +A(G0)3)
= 139 · 16− tr(I + 3A(G0) + 3A(G0)2 +A(G0)3)
= 2224− 16− 3(32)− tr(A(G0)3)
= 2112− tr(A(G0)3).

Thus to minimize tr(A(G)3) for G ∈ G(16, 13) it is enough to maximize tr(A(G0)3), i.e., the number of
triangles, in the complement G0 ∈ G(16, 2). But G0 is a direct sum of disjoint cycles, thus it can have at
most four triangles, which occurs only if G0 = 4C3 + C4.

3.2.3 C8(1, 4)

It is easy to see that tr(A(G)3) = 0 if and only if G is triangle-free. There are only two triangle-free
graphs in G(8, 3): The graph Q obtained from the edges of a cube and C8(1, 4). Since tr(A(Q)

4) = 168 and
tr(A(C8(1, 4))

4) = 152, C8(1, 4) is trace-minimal.

4 Proofs of Theorems 5, 6, 7, 8

In this section we prove Theorems 5, 6, 7, 8. Several of the lemmas used in the section require lengthy
proofs, which will be given in later sections.

4.1 A correspondence with (±1)-matrices

We begin with a definition. A design matrix X ∈Mm,n(0, 1) is balanced if each row of X contains exactly 2p
ones and 2p− 1 zeros. Let Bal(m,n, (0, 1)) denote the subset of Mm,n(0, 1) consisting of all balanced design
matrices. For all sufficiently large m, all D-optimal design matrices are balanced.
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Lemma 10 [NWZ1] Let n = 4p − 1 be a positive integer. For all sufficiently large values of m, every
D-optimal matrix X ∈Mm,n(0, 1) is balanced.

We now define a map L on Bal(m,n, (0, 1)). Let X ∈ Bal(m,n, (0, 1)) where m = nt + r, with 0 ≤ r < n.
Define a matrix L(X) as follows:

L(X) =

·
Jm,1 Jm,n − 2X
Jt,1 Jt,n

¸
.

(Ja,b is the a× b matrix all of whose entries are one.) Clearly L(X) is a (4pt+ r)× 4p, (±1)-matrix each of
whose first (4p − 1)t + r rows contains exactly 2p ones and 2p negative ones and whose last t rows consist
entirely of ones. We denote the set of all such matrices by C(4pt + r, 4p,±1). It is clear that the map
L : Bal(m,n, (0, 1)) → C(4pt + r, 4p,±1) is one-to-one and onto. Furthermore, the determinants of XTX
and L(X)TL(X) are related in the following way:

Lemma 11 [NWZ1] Let n = 4p− 1 be a positive integer and suppose that X ∈ Bal(m,n, (0, 1)). Then
detL(X)TL(X) = t4n detXTX.

Thus it is clear that if X0 ∈ Bal(m,n, (0, 1)) and Y0 = L(X0) ∈ C(4pt+ r, 4p,±1) then
det(Y TY ) ≤ det(Y T0 Y0),

for all Y ∈ C(4pt+ r, 4p,±1) if and only if
det(XTX) ≤ det(XT

0 X0)

for all X ∈ Bal(m,n, (0, 1)). In view of Lemmas 10 and 11 we now focus our attention on C(4pt+ r, 4p,±1)
and characterize those matrices Y0 ∈ C(4pt + r, 4p,±1) for which detY TY ≤ detY T0 Y0 for all Y ∈ C(4pt +
r, 4p,±1). Such a matrix Y0 is also called D-optimal.

4.2 Remainder matrices

Let S be a symmetric 4p× 4p integral matrix. Then S is a remainder matrix if there exist t ≥ 0, 0 ≤ r < n,
and a matrix Y ∈ C(4pt+ r, 4p,±1) such that

Y TY = 4ptI4p + S. (6)

In this section we give necessary and sufficient conditions for a symmetric integral matrix to be a remainder
matrix and we characterize the remainder matrices S for which the corresponding design matrix Y is D-
optimal for all sufficiently large t.

One property of a remainder matrix S satisfying Equation (6) is that its diagonal entries must be r. This is
clear since the diagonal entries of Y TY are 4pt+ r. Another, not so obvious, property is that a remainder
matrix S is permutation similar to an integral block-matrix of the form·

U V
V T W

¸
, (7)

where U is a u × u symmetric matrix, W is a w × w symmetric matrix, u and w are even integers with
u + w = 4p, and there exists an integer r such that U,W ≡ r (mod 4) and V ≡ r + 2 (mod 4). (If either
u or w is zero, then there is only one block.) A matrix in block-form (7) satisfying the above properties is
said to be blocked. Remainder matrices are characterized in the following lemma:



D-optimal, v. 23 12

Lemma 12 Let S = (sij) be a symmetric 4p × 4p integral matrix. Then S is a remainder matrix if and
only if the following conditions are satisfied:

a) each row of S sums to zero,
b) there exists an integer r with 0 ≤ r < 4p− 1 such that sii = r, for all i,
c) S is permutation similar to a blocked matrix.

Another way to state the result in Lemma 12 is this: Let S = (sij) be a symmetric 4p× 4p integral matrix
and let t ≥ 0 be an integer. Define a subset Y(S, t) of C(4pt+ r, 4p,±1) as follows:

Y(S, t) = {Y ∈ C(4pt+ r, 4p,±1) : Y TY = 4ptI4p + S}.

Lemma 12 is equivalent to the statement that there exists an integer t0 ≥ 0 for which Y(S, t0) is non-empty
if and only if S satisfies conditions a), b), and c). But it turns out that if S is a remainder matrix, then
Y(S, t) is non-empty for all sufficiently large t.

Lemma 13 Let S be a remainder matrix. Then there exists an integer t0 such that Y(S, t) is non-empty
for all t ≥ t0.

Now suppose that Y(S, t) is nonempty. Since Y TY = 4ptI4p + S for all Y ∈ Y(S, t), either all matrices in
Y(S, t) are D-optimal or none are D-optimal. We say that a nonempty class Y(S, t) is a D-optimal class, if
every Y ∈ Y(S, t) is a D-optimal matrix and Y(S, t) is a non-D-optimal class if none are D-optimal.

Define a subset of Bal(m,n, (0, 1)) as follows:

X (S, t) = {X ∈ Bal(m,n, (0, 1)) : L(X) ∈ Y(S, t)}.

And for 0 ≤ r < n, letM(r) stand for the set of remainder matrices whose diagonal entries equal r. It follows
from Lemma 10 and the argument above that if S ∈M(r) then X (S, t) is non-empty for all sufficiently large
values of t. And from Lemma 11 it follows that if X ∈ X (S, t) then

detXTX =
1

t4n
detL(X)TL(X)

=
1

t4n
det(4ptI4p + S).

Thus detXTX is the same for all X ∈ X (S, t) and it follows that either all design matrices in X (S, t) are
D-optimal or none are D-optimal. As before, we say that X (S, t) is a D-optimal class if every X ∈ X (S, t) is
a D-optimal design matrix and X (S, t) is a non-D-optimal class if none are D-optimal. We summarize the
above discussion in the following lemma:

Lemma 14 Let S ∈M(r). For all sufficiently large t, X (S, t) and Y(S, t) are nonempty and X (S, t) is a
D-optimal class if and only if Y(S, t) is a D-optimal class.

For a given remainder matrix S ∈M(r), it turns out that either Y(S, t) is a D-optimal class for all sufficiently
large t or a non-D-optimal class for all sufficiently large t. In other words, there cannot be infinitely many
values of t for which Y(S, t) is a D-optimal class and infinitely many values of t for which Y(S, t) is a
non-D-optimal class.
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4.3 Spectrum-maximal remainder matrices

We now characterize those remainder matrices S for which Y(S, t) is a D-optimal class for all sufficiently
large t. To do so, define an order relation ¹ on M(r) as follows: if S1, S2 ∈M(r) then S1 ¹ S2 if either
spec(S1) = spec(S2) or there exists an integer 2 ≤ k < 4p such that Ei(S1) = Ei(S2) for i < k and
Ek(S1) < Ek(S2). (Ei(X) stands for the elementary symmetric functions of the eigenvalues of X. Since
E1(S) = trS = 4pr for all S ∈M(r), k must be at least 2.) A matrix S0 ∈M(r) is spectrum-maximal if
S ¹ S0 for every S ∈M(r).

Theorem 15 Let S ∈M(r). If S is spectrum-maximal, then Y(S, t) and X (S, t) are nonempty D-optimal
classes for all sufficiently large t.

If S is not spectrum-maximal, then Y(S, t) and X (S, t) are nonempty non-D-optimal classes for all sufficiently
large t.

SinceM(r) is infinite, it is not immediately clear that eachM(r) contains a spectrum-maximal matrix. In
fact it does, as we shall see in Lemmas 16, 17, 18, and 19.

4.4 Trace-minimal graphs

To complete the proofs of Theorems 5, 6, 7, and 8 we show that every spectrum-maximal remainder matrix
is associated with a trace-minimal or a bipartite-trace-minimal graph. In fact we completely characterize
spectrum-maximal remainder matrices (and hence the D-optimal classes X (S, t)) in terms of these graphs.

Rather than having to state throughout the rest of the paper that a remainder matrix is permutation
similar to a blocked matrix, we will now assume that all remainder matrices are blocked. This assumption
is harmless: if P is a 4p × 4p permutation matrix and Y ∈ C(4pt + r, 4p,±1) with Y TY = 4pI4p + S, then
Y1 = Y P ∈ C(4pt + r, 4p,±1), Y T1 Y1 = 4pI4p + P

TSP , and detY TY = detY T1 Y1. In particular, every
remainder matrix is permutation similar to a blocked remainder matrix. So nowM(r) stands for the set of
all blocked remainder matrices whose main diagonal entries equal r.

4.4.1 r ≡ 1 (mod 4)

Let r = 4d+ 1. Let G1, G2 be graphs in G(2p, d) and define a symmetric integral 4p× 4p matrix as follows:

S1(G1, G2) := 4dI4p +

·
J2p − 4A(G1) −J2p
−J2p J2p − 4A(G2)

¸
. (8)

It is easy to verify that S1(G1, G2) satisfies conditions a), b), and c) of Lemma 12. Thus S1(G1, G2) ∈M(r).

Lemma 16 Let r = 4d+ 1 and suppose that S ∈M(r). Then S is spectrum-maximal in M(r) if and only
if there exist trace-minimal graphs G1, G2 in G(2p, d) such that S = S1(G1, G2).

Furthermore, the following equation holds for all graphs G1, G2 in G(2p, d):

det(4ptI4p + S1(G1, G2)) =
44p(t+ 1)chG1

(pt+ d)chG2
(pt+ d)

t
. (9)
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We should point out that since the set of graphs G(2p, d) is finite, there always exists a graph in G(2p, d)
that is trace-minimal. Thus Lemma 16 guarantees the existence of a spectrum-maximal remainder matrix
in M(r). Also notice that the assumption S is blocked allows us to state that S equals S1(G1, G2) rather
than S is permutation similar to S1(G1, G2).

With the help of Lemma 16, we can now prove Theorem 5.

Proof: of Theorem 5 Let G be a trace-minimal graph in G(2p, d). By Lemma 16, S = S1(G,G) is a
spectrum-maximal remainder matrix inM(r). By Theorem 15 there exists t0 such that the class of design
matrices X (S, t) is nonempty, balanced, and D-optimal for all t ≥ t0. Let X ∈ X (S, t) and let Y = L(X).
Then by Lemma 11

G(nt+ r, n) = detXTX

=
1

t4n
detY TY

=
1

t4n
det(4ptI4p + S).

Equation (3) now follows from Equation (9).

4.4.2 r ≡ 2 (mod 4)

Let r = 4d + 2. Let G1, G2 be graphs in G(2p, p + d) and define a symmetric 4p × 4p integral matrix as
follows:

S2(G1, G2) := 4dI4p +

·
2J2p − 4A(G1) 0

0 2J2p − 4A(G2)
¸
. (10)

As in the case r ≡ 1 (mod 4) it is easy to verify that S2(G1, G2) ∈M(r).

Lemma 17 Let r = 4d+ 2 and suppose that S ∈M(r). Then S is spectrum-maximal in M(r) if and only
if there exist trace-minimal graphs G1, G2 in G(2p, p+ d) such that S = S2(G1, G2).

Furthermore, the following equation holds for all graphs G1, G2 in G(2p, p+ d):

det(4ptI4p + S2(G1, G2)) =
44pt2chG1(pt+ d)chG2(pt+ d)

(t− 1)2 . (11)

Using Lemma 17, the proof of Theorem 6 is almost identical to the proof of Theorem 5 given above.

4.4.3 r ≡ −1 (mod 4)

Let r = 4d − 1. The form of a spectrum-maximal remainder matrix depends on whether 0 ≤ d < p/2,
p/2 < d < p, or d = p/2. We define two types of matrices inM(r). Let G be a graph in G(4p, 3p + d − 1)
and define

S31(G) := 4(d− 1)I4p + 3J4p − 4A(G). (12)

The second remainder matrix comes from a bipartite graph B in B(4p, d):

S32(B) := 4dI4p +

·−J2p J2p
J2p −J2p

¸
− 4A(B). (13)
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Lemma 18 Let r = 4d− 1 and let S ∈M(r). If p/2 < d < p, then S is spectrum-maximal inM(r) if and
only if there exists a trace-minimal graph G in G(4p, 3p+ d− 1) such that S = S31(G).

Furthermore, the following equation holds for all graphs G in G(4p, 3p+ d− 1):

det(4ptI4p + S31(G)) =
44ptchG(pt+ d− 1)

t− 3 . (14)

If 0 ≤ d < p/2, then S is spectrum-maximal in M(r) if and only if there exists a bipartite-trace-minimal
graph B in B(4p, d) such that S = S32(B).

Furthermore, the following equation holds for all bipartite graphs B in B(4p, d):

det(4ptI4p + S32(B)) =
44p(p(t− 1) + 2d)chB(pt+ d)

pt+ 2d
. (15)

If d = p/2, then S is spectrum-maximal inM(r) if and only if either there exists a trace-minimal graph G in
G(4p, 7p/2− 1) such that S = S31(G), or there exist a bipartite graph B in B(4p, p/2) such that S = S32(B)
and the complement B0 of B in G(4p, 7p/2− 1) defined by

A(B0) =
·

J − I J −N(B)
J −N(B)T J − I

¸
is trace-minimal.

Furthermore, Equation (14) holds for all graphs G (or B0) in G(4p, 7p/2− 1).

If d = p/2, B ∈ B(4p, p/2), and B0 ∈ G(4p, 7p/2−1) is defined as above, then spec(S32(B)) = spec(S31(B0)).

With the help of Lemma 18, we now prove Theorem 7.

Proof: of Theorem 7 Let p/2 ≤ d < p, and G be a trace-minimal graph in G(4p, 3p+ d− 1). By Lemma
18, S = S31(G) is a spectrum-maximal remainder matrix inM(r). By Theorem 15, there exists a positive
integer t0 such that the class of design matrices X (S, t) is non-empty, balanced, and D-optimal for t ≥ t0.
Let X ∈ X (S, t) and let Y = L(X). Then by Lemma 11

G(nt+ r, n) = detXTX

=
1

t4n
detY TY

=
1

t4n
det(4ptI4p + S).

Equation (4) now follows from Equation (14).

Note that if d = p/2 there are two possible kinds of spectrum-maximal remainder matrices S ∈M(r). The
first is S = S31(G) where G ∈ G(4p, 7p/2 − 1) is a trace-minimal graph. The other is S = S32(B) where
B ∈ B(4p, p/2) and the complement graph B0 ∈ G(4p, 7p/2 − 1) is trace-minimal. The second possibility
does not always occur because it may happen that no B0 is trace-minimal in G(4p, 7p/2 − 1). However, in
the case where B0 is a trace-minimal graph in G(4p, 7p/2−1), then spec(S31(B0)) = spec(S32(B)) and hence
Equation (4) holds in case d = p/2.
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Next let 0 ≤ d < p/2 and let B be a bipartite-trace-minimal graph in B(4p, d). By Lemma 18, S = S32(B) is
a spectrum-maximal remainder matrix inM(r). By Theorem 15, there exists a positive integer t0 such that
the class of design matrices X (S, t) is non-empty, balanced, and D-optimal for all t ≥ t0. Let X ∈ X (S, t)
and let Y = L(X). Then by Lemma 11

G(nt+ r, n) = detXTX

=
1

t4n
detY TY

=
1

t4n
det(4ptI4p + S).

Equation (5) now follows from Equation (15).

4.4.4 r ≡ 0 (mod 4)

Let r = 4d. As in the case r ≡ −1 (mod 4), the form of a spectrum-maximal remainder matrix in M(r)
depends on whether 0 ≤ d < p/2, p/2 < d ≤ p, or d = p/2. We need to define two types of matrices in
M(r). Let G be a graph in G(4p, d) and define a matrix inM(r) by

S01(G) := 4dI4p − 4A(G). (16)

Let B be a bipartite graph in B(4p, p+ d) and define

S02(B) := 4dI4p +

·
0 2J2p
2J2p 0

¸
− 4A(B). (17)

Lemma 19 Let r = 4d and suppose S ∈ M(r). If 0 ≤ d < p/2, then S is spectrum-maximal in M(r) if
and only if there exists a trace-minimal graph G in G(4p, d) such that S = S01(G).

Furthermore, the following equation holds for all G in G(4p, d):
det(4ptI4p + S01(G)) = 4

4pchG(pt+ d). (18)

If p/2 < d < p, then S is spectrum-maximal in M(r) if and only if there exists a bipartite-trace-minimal
graph B in B(4p, p+ d) such that S = S02(B).

Furthermore, the following equation holds for all bipartite graphs B in B(4p, p+ d):

det(4ptI4p + S02(B)) =
44pt(pt+ 2d)chB(pt+ d)

(t− 1)(p(t+ 1) + 2d)

If d = p/2 then S is spectrum-maximal in M(r) if and only if either there exists a trace-minimal graph G
in G(4p, p/2) such that S = S01(G) or there exists a bipartite graph B in B(4p, 3p/2) such that S = S02(B)
and the graph B0 ∈ G(4p, p/2) defined by

A(B0) =
·

0 J −N(B)
J −N(B)T 0

¸
is trace-minimal.
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Furthermore, Equation (18) holds for all G in G(4p, p/2).

If d = p/2, B ∈ B(4p, 3p/2), and B0 ∈ G(4p, p/2) is defined as above, then spec(S01(B0)) = spec(S02(B)).

The proof of Theorem 8 is almost identical to the proof of Theorem 7 above.

It remains to prove Lemmas 12, 13, Theorem 15, and Lemmas 16, 17, 18, and 19, which will be done in
Sections 5, 6, and 7.

5 Proof of Lemmas 12 and 13

5.1 The module M

We begin by defining a Z-module M. Let S(4p, 2p) = {v1, . . . , vN} be the set of all 4p-tuples having 2p
coordinates equal to 1 and 2p coordinates equal to −1. Then N =

¡
4p
2p

¢
. Let M be the Z-module generated

by the 4p× 4p symmetric integral matrices {vvT : v ∈ S(4p, 2p)}. Clearly if M is a matrix in M, then M is
symmetric, each row of M sums to zero, and the entries on the main diagonal of M are the same. Only one
additional property is necessary and sufficient for M to be in the module M:

Lemma 20 LetM = (Mij) be a symmetric 4p×4p integral matrix. ThenM ∈M if and only if the following
conditions are satisfied:

a) the rows of M sum to zero,
b) there exists an integer m such that mii = m for all i,
c) mis +mit +mjs +mjt ≡ 0 (mod 4) for all i, j, s, t.

Furthermore, ifM satisfies conditions a) and b), thenM satisfies condition c) if and only ifM is permutation
similar to a blocked matrix.

5.1.1 Proof of Lemma 20

Each of the generators vvT of M satisfies conditions a), b), c) and thus every matrix M ∈M also satisfies
these homogeneous linear conditions.

Next we show that if M satisfies conditions a) and b), then M satisfies c) if and only if it is permutation
similar to a blocked matrix. Let M be a symmetric integral matrix that satisfies conditions a) and b).

First suppose that P is a permutation matrix such that P−1MP is blocked. Since condition c) is the same
for M as it is for P−1MP , we may assume that M is blocked. Let 1 ≤ i, j, s, t ≤ 4p and suppose that mis

and mit are in the same block so that mis+mit ≡ 2m (mod 4). Thenmjs and mjt are in the same block and
so mjs +mjt ≡ 2m (mod 4). It follows that condition c) holds. In case mis and mit are in different blocks,
we have mis+mit ≡ 2m+2 (mod 4). But then mjs and mjt are in different blocks and mjs+mjt ≡ 2m+2
(mod 4). Again, condition c) holds.

Conversely, suppose that condition c) holds. Since 2m + 2mis = mii +mis +msi +mss ≡ 0 (mod 4), all
entries ofM have the same parity as m. By performing a permutation similarity onM , we may assume that
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an integer k exists such that m1s ≡ m (mod 4) for 1 ≤ s ≤ k and m1s ≡ m+ 2 (mod 4) for k < s ≤ 4p. To
see that M is blocked, suppose 1 ≤ i, s ≤ k. Then 0 ≡ m11 +m1s +mi1 +mis ≡ 3m +mis (mod 4). So
mis ≡ m (mod 4); that is, all entries in the k × k upper left block of M are congruent to m modulo 4. For
the upper right block, let 1 ≤ i ≤ k and k < s ≤ 4p. Then m1i ≡ m (mod 4) and m1s ≡ m + 2 (mod 4).
Thus 0 ≡ m11+m1s+mi1+mis ≡ 3m+2+mis (mod 4). So mis ≡ m+2 (mod 4). The argument for the
other blocks is the same. Thus M is blocked. The fact that k is even follows from condition b).

Now suppose that a matrix M satisfies conditions a), b), and c). We break the proof that M ∈M into two
sublemmas.

Lemma 21 Let M satisfy the three conditions in Lemma 20. Then there exist a matrix M0 ∈M such that
M −M0 ≡ 0 (mod 4) and each diagonal entry of M −M0 is zero.

Proof: Let M satisfy the conditions in Lemma 20. Since M is blocked, we assume that M is of the form
of the block-matrix in (7), where the lower right block W is 2k × 2k and 2k ≤ 4p. There are four cases:
m ≡ 0, 1, 2, 3 (mod 4).

We consider the case m = 4q + 2 ≡ 2 (mod 4) first. Let a, b be nonnegative integers with a + b = 2p and
define vectors v1, v2 ∈ S(4p, 2p) as follows:

v1 = [+ea, −ea, +eb, −eb]
v2 = [+ea, −ea, −eb, +eb].

(ea stands for the a-tuple of ones.) A direct calculation gives

M2 := v1v
T
1 + v2v

T
2 =

·
U2 V2
V T2 W2

¸
,

where U2 is a square matrix of size 2a × 2a, W2 is a square matrix of size 2b × 2b, U2,W2 ≡ 2 (mod 4),
and V2 ≡ 0 (mod 4). Letting a = 2p − k and b = k, we get the matrix M2 such that M − M2 ≡ 0
(mod 4). Each main diagonal entry of M −M2 equals 4q. Letting v be any vector in S(4p, 2p), we have
M0 =M2 + 4qvv

T ∈M, M −M0 ≡ 0 (mod 4), and the main diagonal entries of M −M0 are zero.

If m = 4q ≡ 0 (mod 4), then take M0 = v1v
T
1 − v2vT2 + 4qvvT ∈ M. Again M −M0 ≡ 0 (mod 4) and the

diagonal entries of M −M0 are zero.

The case m = 4q + 3 ≡ 3 (mod 4) is a little more complicated. Let a, b, c, d, f, g, h be nonnegative integers
and define vectors v1, v2, v3 as follows:

v1 = [+ea, +eb, −ec, −ed, −ef , +eg, +eh]
v2 = [+ea, −eb, +ec, −ed, +ef , −eg, +eh]
v3 = [+ea, −eb, −ec, +ed, +ef , +eg, −eh].

A direct calculation gives

M3 := v1v
T
1 + v2v

T
2 + v3v

T
3 =

·
U3 V3
V T3 W3

¸
,

where U3 is a square matrix of size a+b+c+d, W3 is a square matrix of size f +g+h, U3,W3 ≡ 3 (mod 4),
and V3 ≡ 1 (mod 4). We will specify the parameters a, b, c, d, f, g, h satisfying

a+ b+ c+ d = 4p− 2k (19)

f + g + h = 2k
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so that M3 is 4p× 4p and W3 is 2k × 2k and
a+ b− c− d− f + g + h = 0 (20)

a− b+ c− d+ f − g + h = 0

a− b− c+ d+ f + g − h = 0

so that v1, v2, v3 ∈ S(4p, 2p).

The choice of parameters depends on the congruence class of k modulo 3. Let k = 3j + q, where q = 0, 1 or
2. Choose

(a, b, c, d, f, g, h) = (p− 3j, p− j, p− j, p− j, 2j, 2j, 2j) + wq,
where

w0 = (0, 0, 0, 0, 0, 0, 0)

w1 = (−1,−1, 0, 0, 0, 1, 1)
w2 = (−2, 0,−1,−1, 2, 1, 1).

It is easy to verify that these choices for the parameters satisfy Equations (19) and (20). Thus we take
M0 =M3 + 4qvv

t so that M −M0 ≡ 0 (mod 4) and the main diagonal entries of M −M0 are zero.

If m = 4q + 1 ≡ 1 (mod 4) take M0 = −M3 + 4(q + 1)vv
t. Again M −M0 ≡ 0 (mod 4), the main diagonal

entries of M −M0 are zero, and Lemma 21 is proved.

The second lemma required for the proof of Lemma 20 is this:

Lemma 22 Let T = (tij) be a symmetric 4p× 4p integral matrix satisfying the following conditions:

a) each row of T sums to zero,
b) tii = 0 for all i,
c) tij ≡ 0 (mod 4).

Then T ∈M.

Proof: Suppose T = (tij) satisfies the three conditions. Define four vectors as follows:

v1 = (+1, +1, −1, −1, u, −u)
v2 = (+1, −1, +1, −1, u, −u)
v3 = (−1, +1, −1, +1, u, −u)
v4 = (−1, −1, +1, +1, u, −u),

where u is the (2p− 2)-tuple consisting of all ones. Clearly vi ∈ S(4p, 2p) and a direct calculation gives

Q2 := v1v
T
1 − v2vT2 − v3vT3 + v4vT4 =


0 4 −4 0
4 0 0 −4
−4 0 0 4
0 −4 4 0

⊕ 0.
Clearly Q2 ∈M. By performing an appropriate permutation similarity on Q2, we obtain a matrix Qi ∈M
having +4 in positions (1, i), (i, 1), (2, i+ 1), (i+ 1, 2) and −4 in positions (1, i+ 1), (i+ 1, 1), (2, i), (i, 2)
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and zeros elsewhere for each 3 ≤ i ≤ 4p − 1. Since each entry of T is divisible by 4, we have in particular
that t1,2 = 4s2 for some integer s2. Thus the (1,2) entry of the matrix T1 := T −s2Q2 is zero and T1 satisfies
the conditions in the lemma. The (1, 3) entry of T1 is divisible by 4 and hence there is an integer s3 such
that the (1, 3) entry of T2 := T1 − s3Q3 is zero and T2 satisfies the conditions of the lemma. Inductively,
there are integers si such that all entries in the first row (column) of T − s2Q2 − · · ·− s4p−1Q4p−1 are zero
except possibly the (1, 4p) entry. But that entry must also be zero since the row sums of T , Q2, · · · , Q4p−1
are zero. To summarize: there exists a matrix Q ∈M such that the first row (and column) of T −Q is zero.

Arguing inductively on rows 2 to 4p− 3 we have a matrix Q ∈M such that

T −Q = 0⊕
 0 a b
a 0 c
b c 0

 ,
where a, b, c are integers. The row sums of T and Q are zero so a = b = c = 0. Thus T = Q ∈M.

Now it is clear from Lemmas 21 and 22 that if M is a matrix satisfying conditions a), b), c) of Lemma 20
then M ∈M. The proof of Lemma 20 is complete.

5.1.2 The matrix Y0

We need one more ingredient before embarking on the proofs of Lemmas 12 and 13. Let Y0 be the N × 4p
(±1)-matrix whose rows consist of all (4p)-tuples in S(4p, 2p). It is not hard to show that N = 2C(4p− 1)
and that X

viv
T
i = Y T0 Y0

= (N + 2C)I4p − 2CJ4p
= 2C(4pI − J),

where C = 1
2p

¡
4p−2
2p−1

¢
is a Catalan number and hence an integer. For example, to compute the dot product

of two distinct columns of Y0, notice that they have the same sign in 2
¡
4p−2
2p−2

¢
coordinates and different signs

in 2
¡
4p−2
2p−1

¢
coordinates. Thus all off-diagonal entries of Y T0 Y0 equal

2

µ
4p− 2
2p− 2

¶
− 2
µ
4p− 2
2p− 1

¶
= −1

p

µ
4p− 2
2p− 1

¶
= −2C.

5.2 Proof of Lemma 12

Suppose S is a remainder matrix. Then there exist a nonnegative integer t, a remainder 0 ≤ r < n, and
Y ∈ C(4pt+ r, 4p,±1) such that Equation (6) holds. Thus

Y =

·
Y1
Jt,4p

¸
,

where Y1 is a ((4p − 1)t + r) × 4p (±1)-matrix in which each row has 2p ones and 2p negative ones. Thus
Y TY = Y T1 Y1 + tJ4p,4p. Each row of Y1 sums to zero. Thus each row of Y

T
1 Y1 sums to zero, and so each

row of Y TY sums to 4pt. It follows that each row of S sums to zero.
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Each diagonal entry of Y TY equals 4pt+ r. It follow that each diagonal entry of S is r.

Finally, to see that S is permutation similar to a blocked matrix, assume that the first u columns of Y have
an even number of negative ones and the last w columns have an odd number of negative ones. Since the
total number of negative ones in Y is even, u,w are even. Now suppose

S =

·
U V
V T W

¸
,

where U is u× u and W is w × w.

For each pair of integers 1 ≤ i, j ≤ 4p define aij to be the number of coordinates in which both the ith and
jth columns of Y are 1, bij the number of coordinates in which the ith column is 1 and the jth column is −1,
cij the number of coordinates in which the ith column is −1 and the jth column is 1, and dij the number
of coordinates in which both the ith and jth columns are −1. Then

(Y TY )ij = aij − bij − cij + dij
≡ (aij + bij + cij + dij) + 2(bij + dij) + 2(cij + dij) (mod 4)

≡ r + 2(bij + dij) + 2(cij + dij) (mod 4).

If 0 ≤ i, j ≤ u, then both bij + dij and cij + dij are even. Thus U ≡ r (mod 4). If u < i, j ≤ 4p, then both
bij + dij and cij + dij are odd and so W ≡ r (mod 4). If 1 ≤ i ≤ u < j ≤ 4p then bij + dij is even and
cij + dij is odd and thus V ≡ r + 2 (mod 4).

Conversely, suppose that S satisfies the conditions of Lemma 12. Then S ∈ M. Thus S = P
xiviv

T
i for

some integers xi. Choose an integer y such that y+ xi ≥ 0 for all i and let Y1 be the matrix whose rows are
the vectors vi repeated y + xi times. Then

Y T1 Y1 =
X
(y + xi)viv

T
i

= yY T0 Y0 + S

= 2Cy(4pI − J) + S.
Then Y1 has 2Cy(4p − 1) + r rows. Append t = 2Cy rows consisting of ones to Y1 to get a matrix
Y ∈ C(4pt+ r, 4p,±1). Then Y TY = 2Cy(4pI − J) + S + 2CyJ = 4ptI + S. Thus S is a remainder matrix.
The proof of Lemma 12 is complete.

5.3 Proof of Lemma 13

Let S be a remainder matrix with main diagonal entries equal to some r with 0 ≤ r < 4p − 1. We show
that Y(S, t) is nonempty for all sufficiently large t. The 4p × 4p matrix 4pI − J satisfies the conditions of
Lemma 20 and thus is inM. It follows that q(4pI−J)+S ∈M for every integer q and in particular for each
0 ≤ q < 2C. Indeed, for each 0 ≤ q < 2C, we have q(4pI − J) + S =Pxiviv

T
i for some integers xi. Let yq

be an integer large enough that yq+xi ≥ 0 for all i. Let Yq be the matrix whose rows consists of the vectors
vi repeated yq + xi times. Then the number of rows in Yq is

P
yq + xi = 2Cyq(4p− 1) + (4p− 1)q + r, and

Y Tq Yq =
X
(yq + xi)viv

T
i

= yq
X

viv
T
i +

X
xiviv

T
i

= 2Cyq(4pI − J) + q(4pI − J) + S
= (2Cyq + q)(4pI − J) + S.
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Let t0 be the maximum value of 2Cyq + q for 0 ≤ q < 2C and suppose that t ≥ t0. We show that
Y(S, t) is nonempty. Let t = 2Cy + q for some 0 ≤ q < 2C and suppose t ≥ t0. Then y ≥ yq. Let

Y T = [Y T0 , . . . , Y
T
0 , Y

T
q , Jt,4p

T ], where the matrix Y T0 is repeated y − yq times. Then the number of rows in
Y is 2C(4p − 1)(y − yq) + 2C(4p − 1)yq + (4p − 1)q + r + t = 4pt + r. The first (4p − 1)t + r rows are in
S(4p, 2p) and the last t rows consist of ones, so Y ∈ C(4pt+ r, 4p,±1).

To complete the proof, we must show that Y TY = 4ptI + S:

Y TY = (y − yq)Y T0 Y0 + Y Tq Yq + tJ
= 2C(y − yq)(4pI − J) + (2Cyq + q)(4pI − J) + S + tJ
= 4ptI + S.

Thus Y ∈ Y(S, t), that is, Y(S, t) is nonempty and the proof of Lemma 13 is complete.

6 Proof of Theorem 15

We begin with an inequality about nonnegative real numbers. Let λ be a multiset of k > 1 real numbers
w1, . . . , wk satisfying

P
wi = s1 and

P
w2i = s2. It follows from the Cauchy-Schwarz inequality that

ks2 − s21 ≥ 0. Conversely, if s1 and s2 are real numbers with ks2 − s21 ≥ 0, then there is a multiset
whose sum is s1 and sum of squares is s2. In fact, there is such a multiset with only two distinct values,
α(s1, s2) ≤ β(s1, s2) where α(s1, s2) occurs with multiplicity k− 1 and β(s1, s2) with multiplicity one. That
is there exist real numbers α(s1, s2) ≤ β(s1, s2) such that

(k − 1)α(s1, s2) + β(s1, s2) = s1, (k − 1)α(s1, s2)2 + β(s1, s2)
2 = s2.

These essentially quadratic equations have two real solutions, but by choosing the plus/minus signs as follows:

α(s1, s2) =
(k − 1)s1 −

p
(k − 1)(ks2 − s21)

k(k − 1)

β(s1, s2) =
s1 +

p
(k − 1)(ks2 − s21)

k
,

we get the desired two-valued multiset with α(s1, s2) ≤ β(s1, s2). So {
k−1z }| {

α, . . . ,α,β} is the required two-valued
multiset, with α = α(s1, s2),β = β(s1, s2), described above. It is easy to see that if s1 ≥ 0 and s21 − s2 ≥ 0,
then α(s1, s2) is nonnegative.

Now define a function
P (s1, s2) := α(s1, s2)

k−1β(s1, s2) (21)

on the region ks2 − s21 ≥ 0. We record some properties of the function P in the next lemma:

Lemma 23 Let P (s1, s2) be the function defined by Equation (21) on the region ks2 − s21 ≥ 0. Then

1. α(kτ + s1, kτ
2 + 2τs1 + s2) = τ + α(s1, s2).

β(kτ + s1, kτ
2 + 2τs1 + s2) = τ + β(s1, s2).
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2. P (kτ + s1, kτ
2 + 2τs1 + s2)

= (τ + α(s1, s2))
k−1(τ + β(s1, s2))

= τk + s1τ
k−1 + 1

2(s
2
1 − s2)τk−2 +Q(s1, s2, τ),

for all real τ , where Q(s1, s2, t) is a polynomial in t of degree k − 3 whose coefficients depend only on
s1, s2.

3. P (s1, s2) is decreasing in s2, if s
2
1 − s2 ≥ 0, and s1 ≥ 0.

4. If λ = {w1, . . . , wk} is a multiset of k nonnegative reals with
P
wi = s1 and

P
w2i = s2, thenQ

wi ≤ P (s1, s2).

Proof: The last part of Lemma 23 was proved by Cohn [Co].

To prove the third part, let

f(s1, s2) =
1

k − 1
q
(k − 1)(ks2 − s21),

so that

α(s1, s2) =
s1 − f(s1, s2)

k
, β(s1, s2) =

s1 + (k − 1)f(s1, s2)
k

.

Clearly, f(s1, s2) is an increasing function of s2. Now let

F (s1, x) := (s1 − x)k−1(s1 + (k − 1)x).

It is easy to verify that if 0 ≤ x ≤ s1, then ∂F/∂x ≤ 0. But 0 ≤ f(s1, s2) ≤ s1 if and only if s21 − s2 ≥ 0 and
s1 ≥ 0. Thus kkP (s1, s2) = F (s1, f(s1, s2)) is a decreasing function of s2.

To prove the first and second parts of the lemma, suppose that ks2−s21 ≥ 0, τ is a real number, s01 = kτ +s1
and s02 = kτ2 + 2τs1 + s2. Then ks02 − s021 = ks2 − s21. Thus (s01, s02) is in the domain of P and f(s01, s02) =
f(s1, s2). It follows that

α(s01, s
0
2) = τ + α(s1, s2)

β(s01, s
0
2) = τ + β(s1, s2).

To complete the proof, expand

(τ + α)k−1(τ + β) = τk + ((k − 1)α+ β)τk−1 + ((k − 1)αβ + 1
2
(k − 1)(k − 2)α2)τk−2 + · · ·

= τk + s1τ
k−1 +

1

2
(s21 − s2)τk−2 + · · · ,

which follows since (k − 1)α+ β = s1 and (k − 1)α2 + β2 = s2.

Another technical lemma is needed, which is an application of Lemma 23 to the spectrum of a remainder
matrix. Let S ∈M(r) and define s1(S) = tr(S) to be the sum of the eigenvalues of S and s2(S) = tr(S

2) to
be the sum of the squares of the eigenvalues of S.

Lemma 24 Let S0 be a remainder matrix in M(r). Then there exists a positive integer t0 such that if
t ≥ t0, S ∈M(r), and s2(S) > s2(S0), then either Y(S, t) is empty or det(4ptI4p + S) < det(4ptI4p + S0).
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Proof: Assume that S0 ∈M(r). There exists an integer t1 such that 4ptI4p + S0 has positive eigenvalues
for all t ≥ t1. Let τ = 4pt. Since 2E2(S0) = (4pr)2 − s2(S0), we have

det(τI4p + S0) = τ4p + 4prτ4p−1 +
1

2
((4pr)2 − s2(S0))τ4p−2 + q1(S0, t), (22)

where q1(S0, t) = E3(S0)τ
4p−3 + · · ·+En(S0) is a polynomial of degree 4p− 3 with coefficients that depend

only on S0.

Since the set of integers s2(S) as S ∈ M(r) are nonnegative, there exists S1 ∈ M(r) such that s2(S1) is
minimal among all s2(S) for which S ∈M(r) and s2(S) > s2(S0). That is, if S ∈M(r) and s2(S) > s2(S0)
then s2(S) ≥ s2(S1) > s2(S0). There exists an integer t2 such that 4ptI4p + S1 has positive eigenvalues for
all t ≥ t2. Let t ≥ t2 and τ = 4pt. Then (s1(τI4p + S1), s2(τI4p + S1)) is in the domain of the function
P (s1, s2) and by Lemma 23 we have

P (s1(τI4p + S1), s2(τI4p + S1)) = τ4p + 4prτ4p−1 +
1

2
((4pr)2 − s2(S1))τ4p−2 + q2(S1, t), (23)

where q2(S1, t) is a polynomial of degree 4p− 3 with coefficients depending only on S1.

Since s2(S1) > s2(S0), there exists an integer t3 such that

1

2
((4pr)2 − s2(S1))τ4p−2 + q2(S1, t) < 1

2
((4pr)2 − s2(S0))τ4p−2 + q1(S0, t), (24)

if t ≥ t3.

Choose t0 to be the maximum of t1, t2, t3. Suppose that t ≥ t0, S ∈ M(r), and s2(S) > s2(S0). Then
s2(S) ≥ s2(S1) and s2(τI4p+S) ≥ s2(τI4p+S1). If Y(S, t) is empty we are finished. If Y ∈ Y(S, t) for some
Y then Y TY = 4ptI4p+S has nonnegative eigenvalues. Since the eigenvalues of 4ptI4p+S are nonnegative,
s1(τI4p + S)

2 − s2(τI4p + S) ≥ 0. Thus by Lemma 23 applied to 4ptI4p + S, we get

det(τI4p + S) ≤ P (s1(τI4p + S), s2(τI4p + S)) (25)

≤ P (s1(τI4p + S1), s2(τI4p + S1)).

Combining Inequalities (24) and (25) with Equations (23) and (22) we get det(τI4p+S) < det(τI4p+S0).

Theorem 15 follows from the next result. To describe the notation k(S) used in the next theorem, let S, S0
be remainder matrices in M(r) and suppose S0 is spectrum-maximal but S is not spectrum-maximal. By
the definition of spectrum-maximal, there exists an integer 2 ≤ k(S) ≤ 4p such that Ei(S) = Ei(S0) for
i < k(S) and Ei(S) < Ei(S0) for i = k(S).

Theorem 25 Let S0 ∈ M(r) be a spectrum-maximal remainder matrix and let k(S) be defined on the
S ∈M(r) that are not spectrum-maximal as above. There exists an integer t0 with the following properties:

a. If S ∈M(r) is not spectrum-maximal and k(S) = 2, then for all t ≥ t0 either Y(S, t) is empty or Y(S, t)
is a non-D-optimal class.

b. If S ∈M(r) is not spectrum-maximal and k(S) > 2, then for all t ≥ t0 Y(S, t) is a nonempty non-D-
optimal class.

c. If t ≥ t0, then Y(S0, t) is a nonempty D-optimal class.
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Proof: Let S0 ∈M(r) be a spectrum-maximal remainder matrix. Let t2 be an integer such that Y(S0, t)
is nonempty for all t ≥ t2.

Proof of part a). By Lemma 24, there exists an integer t1 such that if S ∈M(r) and s2(S) > s2(S0), then
either Y(S, t) is empty or det(4ptI4p + S) < det(4ptI4p + S0). Now let ta be the maximum of t1, t2 and
suppose that S ∈M(r) and k(S) = 2. Then E2(S) < E2(S0) and so s2(S) > s2(S0). If Y(S, t) is nonempty,
there exists Y ∈ C(4pt+ r, 4p,±1) such that Y TY = 4ptI4p+S. Since Y(S0, t) is also nonempty there exists
Y0 ∈ C(4pt+ r, 4p,±1) such that Y T0 Y0 = 4ptI4p + S0. But then

detY TY = det(4ptI4p + S) (26)

< det(4ptI4p + S0)

= detY T0 Y0.

Hence Y is not D-optimal and Y(S, t) is a non-D-optimal class.

To prove part b), letM0(r) be the subset of remainder matrices S inM(r) that are not spectrum-maximal
and for which k(S) > 2. Then E2(S) = E2(S0) and hence s2(S) = s2(S0) for all S ∈M0(r). Since S is an
integral matrix on the ball s2(S) = s2(S0) for S ∈M0(r), it follows thatM0(r) is finite.

Let τ = 4pt. We have

det(τI + S) =
X
k

τ4p−kEk(S),

and
det(τI + S0) =

X
k

τ4p−kEk(S0).

Since Ei(S) = Ei(S0) for i < k(S),
det(τI + S0)− det(τI + S)

is a polynomial in τ of degree 4p − k(S) and since Ek(S) < Ek(S0) for k = k(S), the leading coefficient is
positive. Hence there is a positive integer t(S) such that if t ≥ t(S) then

det(τI + S) < det(τI + S0),

for all t ≥ t(S). Let t3 be the maximum value of t(S) as S runs over the finite setM0(r). It follows that if
t ≥ t3 then det(τI + S) < det(τI + S0) for all S ∈M0(r).

Finally, for each S ∈M0(r) there exists an integer t4(S) such that if t ≥ t4(S) then Y(S, t) is nonempty.
Choose t4 to be the maximum value of t4(S) as S runs over the finite setM0(r). Let tb be the maximum
of t2, t3, t4 and suppose t ≥ tb, S ∈M(r) is not spectrum maximal, and k(S) > 2. Then S ∈M0(r), there
exist Y ∈ Y(S, t), Y0 ∈ Y(S0, t), and

detY TY = det(4ptI4p + S) (27)

< det(4ptI4p + S0)

= detY T0 Y0.

Thus Y(S, t) is a non-D-optimal class.

Next we prove part c). Let t ≥ ta, tb. Then Y(S0, t) is nonempty, say Y0 ∈ Y(S0, t). Suppose Y ∈
C(4pt+r, 4p,±1) with Y TY = 4ptI4p+S for some S ∈M(r), that is, Y ∈ Y(S, t). We show that detY TY ≤
detY T0 Y0. If S is spectrum-maximal, then det(4ptI4p+S) = det(4ptI4p+S0) and hence detY

TY = detY T0 Y0.
If S is not spectrum-maximal and k(S) = 2, then by Equation (26) detY TY < detY T0 Y0, and if k(S) > 2,
then by Equation (27) detY TY < detY T0 Y0.

Theorem 15 follows directly from Lemma 14 and Theorem 25.
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7 Proofs of Lemmas 16, 17, 18, and 19

Let S, S0 be remainder matrices in M(r) and suppose that S0 is spectrum-maximal. By the definition of
spectrum-maximal, E2(S) ≤ E2(S0). And since 2E2(M) = (trM)2 − tr(M2) and tr(M2) = ||M ||2 for any
symmetric matrixM , and tr(S) = tr(S0) = 4pr, we have ||S0||2 ≤ ||S||2. Thus we have the following lemma:

Lemma 26 Let S0 ∈ M(r) be a spectrum-maximal remainder matrix. Then ||S0||2 ≤ ||S||2 for all S ∈
M(r).

In order to prove Lemmas 16, 17, 18, and 19, which characterize spectrum-maximal remainder matrices, we
first characterize the minimal-norm remainder matrices. That is those S0 ∈M(r) for which ||S0||2 ≤ ||S||2
for all S ∈M(r). The results in this section establish that all minimal-norm remainder matrices come from
certain regular graphs on either 2p or 4p vertices. We also compute det(4ptI4p+S) for each of the remainder
matrices with minimal norm in terms of the characteristic polynomial of the adjacency matrix of the graph.
These characterizations along with the determinant formulas will be used to establish Lemmas 16, 17, 18,
and 19.

We use the following notation: the spectrum of the adjacency matrix A(G) for a δ-regular graph G is denoted
by spec(A(G)). Since δ is always an eigenvalue of A(G), we define and denote the reduced spectrum of A(G)
by spec0(A(G)) = spec(A(G)) − {δ}. When G is connected, δ is a simple eigenvalue of A(G) and thus
spec0(A(G)) does not contain δ. If B is a bipartite δ-regular graph, spec(A(B)) is symmetric with respect
to zero, that is spec(A(B)) = −spec(A(B)). Indeed, the eigenvalues of

A(B) =

·
0 N(B)

N(B)T 0

¸
are of the form ±λ where λ is a singular value of N(B). That is, the λ are the nonnegative square roots
of the eigenvalues of N(B)TN(B). Since B is δ-regular, one of the singular values of N(B) is δ. Denote
the remaining singular values of N(B) by sing0(N(B)). Then the eigenvalues of A(B) are ±δ and ±λ as
λ ∈ sing0(N(B)).

We also need Newton’s Identities [BP], which when applied to the eigenvalues of a matrix X are:

0 = tr(Xq)−E1(X)tr(Xq−1) +E2(X)tr(Xq−2)− · · ·+ (−1)qqEq(X). (28)

7.1 r ≡ 2 (mod 4)

Let r = 4d+ 2. Let G1, G2 be graphs in G(2p, p+ d) and let S2(G1, G2) be the remainder matrix defined in
Equation (10). It is clear that ||S2(G1, G2)||2 = 4p(4d+ 2)2 + 32p2 − 16p. In the next lemma, we show that
the minimal norm for matrices inM(r) is achieved only for remainder matrices of the form S2(G1,G2). We
also express det(4ptI4p+S2(G1, G2)) in terms of the characteristic polynomials of the adjacency matrices of
G1 and G2, from which we establish Equation (11) of Lemma 17.

Lemma 27 Let r = 4d+ 2 and suppose that S ∈M(r). Then

||S||2 ≥ 4p(4d+ 2)2 + 32p2 − 16p, (29)

with equality if and only if there exist graphs G1,G2 in G(2p, p+ d) such that S = S2(G1,G2).
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Furthermore,

det(4ptI4p + S2(G1, G2)) =
44pt2chG1(pt+ d)chG2(pt+ d)

(t− 1)2 . (30)

Proof: Let S ∈M(r) with

S =

·
U V
V T W

¸
,

where U is a u × u matrix, W is a w × w matrix, u + w = 4p, U,W ≡ 2 (mod 4) and V ≡ 0 (mod 4).
Then ||U ||2 ≥ u(4d + 2)2 + 4u(u − 1), with equality only if each off-diagonal entry of U is ±2. Likewise,
||W ||2 ≥ w(4d+ 2)2 + 4w(w − 1) with equality only if each off-diagonal entry of W is ±2. Thus

||S||2 = ||U ||2 + ||W ||2 + 2||V ||2
≥ u(4d+ 2)2 + 4u(u− 1) + w(4d+ 2)2 + 4w(w − 1)
= 4p(4d+ 2)2 + 4(u2 + w2)− 4(4p)
≥ 4p(4d+ 2)2 + 4((2p)2 + (2p)2)− 16p
= 4p(4d+ 2)2 + 32p2 − 16p.

The second inequality follows from the fact that u2 + w2 is minimal at u = w = 2p. Thus Inequality (29)
holds.

Inequality (29) is strict unless u = w = 2p, V = 0, and each off-diagonal entry of U and of W is ±2.
In that case U = 4dI2p + 2J2p − 4A1, for some (0, 1)-matrix A1. Since each row of U sums to zero, each
row of A1 contains exactly d + p ones. That is, A1 = A(G1) for some graph G1 in G(2p, p + d). Likewise
W = 4dI2p + 2J2p − 4A(G2) for some graph G2 in G(2p, p+ d). Thus S = S2(G1, G2).

To prove Equation (30), notice that

4ptI4p + S2(G1, G2) = [4(pt+ d)I2p + 2J2p − 4A(G1)]
⊕ [4(pt+ d)I2p + 2J2p − 4A(G2)].

Since G1 is (p+ d)-regular,

chG1(x) = (x− (p+ d))
Y
(x− λ)

and
chG1(pt+ d) = p(t− 1)

Y
(pt+ d− λ),

where the products are taken over λ ∈ spec0(A(G1)). It follows that the eigenvalues of 4dI2p+2J2p−4A(G1)
are 0, and 4(d− λ) where λ ∈ spec0(A(G1)). Thus

det(4ptI2p + 4dI2p + 2J2p − 4A(G1)) = 4pt
Y
4(pt+ d− λ)

= 42ppt
Y
(pt+ d− λ)

=
42ptchG1(pt+ d)

t− 1 .

A similar equality holds for G2 and Equation (30) follows.
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7.2 Proof of Lemma 17: r ≡ 2 (mod 4)

Let G1,G2 be trace-minimal graphs in G(2p, p+d), S0 = S2(G1, G2), and let S ∈M(r). We must show that
S ¹ S0.

From Lemma 27 we have ||S||2 ≥ ||S0||2 and thus E2(S) ≤ E2(S0). If the inequality is strict, then S ¹ S0 and
we are finished. So assume that ||S||2 = ||S0||2. Then by Lemma 27 there exist graphs H1,H2 in G(2p, p+d)
such that S = S2(H1,H2). In the proof of Lemma 27 we showed that the eigenvalues of S2(H1,H2) are
0, 0, 4(d− h1), 4(d− h2) where h1 ∈ spec0(A(H1)) and h2 ∈ spec0(A(H2)). Thus

tr(Si) = 4i

"X
h1

(d− h1)i +
X
h2

(d− h2)i
#

= 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j

"X
h1

hj1 +
X
h2

hj2

#
(31)

= 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j £tr(A(H1)j) + tr(A(H2)j)− 2(p+ d)j¤ ,

where the inner sums are taken over h1 ∈ spec0(A(H1)) and h2 ∈ spec0(A(H2)). Likewise

tr(Si0) = 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j £tr(A(G1)j) + tr(A(G2)j)− 2(p+ d)j¤ . (32)

Since G1 is trace-minimal, either spec(A(H1)) = spec(A(G1)) or there exists a positive integer k1 such that

tr(A(G1)
i) = tr(A(H1)

i) for i < k1

tr(A(G1)
k1) < tr(A(H1)

k1).

A similar statement holds for G2 and H2. If spec(S) = spec(S0) then we are finished. If not, let k be the
least positive integer for which either tr(A(G1)

k) < tr(A(H1)
k) or tr(A(G2)

k) < tr(A(H2)
k). Then from

Equations (31) and (32) we have tr(Si0) = tr(S
i) for i < k and (−1)ktr(Sk0 ) < (−1)ktr(Sk). It follows from

Newton’s Identities (28) that Ei(S0) = Ei(S) for i < k and Ek(S) < Ek(S0). Thus S ¹ S0.

Conversely, suppose that S ∈ M(r) is a spectrum-maximal remainder matrix. By Lemma 26, S is a
minimal-norm remainder matrix and by Lemma 27 there exist graphs H1,H2 in G(2p, p + d) such that
S = S2(H1,H2). Now let G1, G2 be trace-minimal graphs in G(2p, p+ d). By the first part of this lemma,
S2(G1, G2) is spectrum-maximal. Since S2(H1,H2) is also spectrum-maximal, they have the same spec-
trum and hence tr(S2(H1,H2)

i) = tr(S2(G1,G2)
i) for all i. If tr(A(H1)

i) = tr(A(G1)
i) and tr(A(H2)

i) =
tr(A(G2)

i) for all i, then H1 and H2 are trace-minimal. Otherwise there is a least value of k for which
either tr(A(G1)

k) < tr(A(H1)
k) or tr(A(G2)

k) < tr(A(H2)
k) then, arguing as above, we would have

Ek(S2(H1,H2)) < Ek(S2(G1,G2)), contradicting the assumption that S2(H1,H2) is spectrum-maximal.
It follows that H1,H2 are trace-minimal.

7.3 r ≡ 1 (mod 4)

Let r = 4d + 1, Let G1, G2 be graphs in G(2p, d) and let S1(G1, G2) be the remainder matrix defined in
Equation (8). Then ||S1(G1, G2)||2 = 4p(4d + 1)2 + 16p2 + 32pd − 4p and this is the minimum norm for a
matrix inM(r).
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Lemma 28 Let r = 4d+ 1 and suppose that S ∈M(r). Then

||S||2 ≥ 4p(4d+ 1)2 + 16p2 + 32pd− 4p, (33)

with equality if and only if the exist graphs G1,G2 in G(2p, d) such that S = S1(G1, G2).

Furthermore,

det(4ptI4p + S1(G1, G2)) =
44p(t+ 1)chG1

(pt+ d)chG2
(pt+ d)

t
. (34)

Proof: Let S ∈M(r) and let T = 4pI4p−J4p−S. Then T satisfies the conditions in Lemma 12 and hence
T ∈ M(4d0 + 2), where d0 = p − d − 1. It is easy to see that ||S||2 = ||T ||2 − 64p3 + 48p2 + 128p2d. By
Lemma 27 applied to T , we have

||T ||2 ≥ 4p(4d0 + 2)2 + 32p2 − 16p (35)

and so

||S||2 ≥ 4p(4d0 + 2)2 + 32p2 − 16p− 64p3 + 48p2 + 128p2d
= 4p(4d+ 1)2 + 16p2 + 32pd− 4p.

Now suppose that equality holds in Inequality (33). Then equality holds in Inequality (35) and by Lemma
27 there exist graphs G01, G02 in G(2p, p+ d0) such that T = S2(G01,G02). Let G1, G2 be the complements of
G01, G

0
2. Then G1, G2 are in G(2p, d) and A(G0i) = J2p − I2p −A(Gi). Thus

S = 4pI4p − J4p − S2(G01, G02)
= 4pI4p − J4p − 4d0I4p −

·
2J2p − 4A(G01) 0

0 2J2p − 4A(G02)
¸

= 4dI4p +

·
J2p − 4A(G1) −J2p
−J2p J2p − 4A(G2)

¸
= S1(G1,G2).

We now prove Equation (34). Since G1,G2 are in G(2p, d), we have
chG1(x) = (x− d)

Y
(x− λ1),

chG1
(pt+ d) = pt

Y
(pt+ d− λ1),

where the products are taken over λ1 ∈ spec0(A(G1)), and
chG2(x) = (x− d)

Y
(x− λ2),

chG2(pt+ d) = pt
Y
(pt+ d− λ2),

where the products are taken over λ2 ∈ spec0(A(G2)). Thus the eigenvalues of

S1(G1,G2) = 4dI4p +

·
J2p − 4A(G1) −J2p
−J2p J2p − 4A(G2)

¸
are 0, 4p, 4(d− λ1), and 4(d− λ2), where λ1 ∈ spec0(A(G1)) and λ2 ∈ spec0(A(G2)). Thus

det(4ptI4p + S1(G1, G2)) = (4pt)(4p(t+ 1))
Y
4(pt+ d− λ1)

Y
4(pt+ d− λ2)

=
44p(t+ 1)chG1(pt+ d)chG2(pt+ d)

t
.
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7.4 Proof of Lemma 16: r ≡ 1 (mod 4)

Let G1, G2 be trace-minimal graphs in G(2p, d), S0 = S1(G1, G2), and let S ∈M(r). To prove that S0 is
spectrum-maximal we must show that S ¹ S0.

From Lemma 28, we have ||S||2 ≥ ||S0||2 and thus E2(S) ≤ E2(S0). If E2(S) < E2(S0), then we are
finished. So assume that E2(S) = E2(S0). Then by Lemma 28 there exist graphs H1,H2 in G(2p, d)
such that S = S1(H1,H2). In the proof of Lemma 28 we showed that the eigenvalues of S2(H1,H2) are
0, 4p, 4(d− h1), 4(d− h2) where h1 ∈ spec0(A(H1)) and h2 ∈ spec0(A(H2)). Thus

tr(Si) = (4p)i + 4i

"X
h1

(d− h1)i +
X
h2

(d− h2)i
#

= (4p)i + 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j

"X
h1

hj1 +
X
h2

hj2

#
(36)

= (4p)i + 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j £tr(A(H1)j) + tr(A(H2)j)− 2dj¤ ,

where the inner sums are taken over h1 ∈ spec0(A(H1)) and h2 ∈ spec0(A(H2)). Likewise

tr(Si0) = (4p)i + 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j £tr(A(G1)j) + tr(A(G2)j)− 2dj¤ . (37)

Since G1 is trace-minimal, either spec(A(H1)) = spec(A(G1)) or there exists a positive integer k1 such that

tr(A(G1)
i) = tr(A(H1)

i) for i < k1

tr(A(G1)
k1) < tr(A(H1)

k1).

A similar statement holds forG2 andH2. If spec(A(Hq)) = spec(A(Gq)) for q = 1, 2, then spec(S) = spec(S0)
and we are finished. If not, let k be the least positive integer for which either tr(A(G1)

k) < tr(A(H1)
k) or

tr(A(G2)
k) < tr(A(H2)

k). Then tr(A(G1)
i) = tr(A(H1)

i) and tr(A(G2)
i) = tr(A(H2)

i), for i < k. In view
of Equations (36) and (37), it follows that tr(Si) = tr(Si0) for i < k and (−1)ktr(Sk0 ) < (−1)ktr(Sk). Since
tr(Si) = tr(Si0) for i < k, it follows from Newton’s Identities (28) that Ei(S) = Ei(S0) for i < k. And since
(−1)ktr(Sk0 ) < (−1)ktr(Sk), we have Ek(S) < Ek(S0).

Conversely, suppose that S ∈M(r) is a spectrum-maximal remainder matrix. By Lemma 26, S is a minimal-
norm remainder matrix and by Lemma 28 there exist graphs H1,H2 in G(2p, d) such that S = S1(H1,H2).
Now let G1,G2 be trace-minimal graphs in G(2p, d). By the first part of this Lemma, S1(G1, G2) is
spectrum-maximal. Since S1(H1,H2) is also spectrum-maximal, they have the same spectrum and hence
tr(S1(H1,H2)

i) = tr(S1(G1, G2)
i) for all i. If tr(A(H1)

i) = tr(A(G1)
i) and tr(A(H2)

i) = tr(A(G2)
i) for all

i, then H1 and H2 are trace-minimal. Otherwise there is a least value of k for which either tr(A(G1)
k) <

tr(A(H1)
k) or tr(A(G2)

k) < tr(A(H2)
k). Then, arguing as above, we would have Ek(S1(H1,H2)) <

Ek(S1(G1, G2)), contradicting the assumption that S1(H1,H2) is spectrum-maximal. It follows that H1,H2
are trace-minimal.

Finally, Equation (9) has been proved in the proof of Lemma 28.
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7.5 r ≡ 0 (mod 4)

Let r = 4d. The minimum norm for a matrix inM(r) depends on whether 0 ≤ d ≤ p/2 or p/2 ≤ d ≤ p. Let
G be a graph in G(4p, d) and let S01(G) be the remainder matrix inM(r) defined in Equation (16). Then
||S01(G)||2 = 4p(4d)2 + 64pd. The other remainder matrix S02(B) ∈M(r), defined in Equation (17), comes
from a bipartite graph B in B(4p, p + d). Its norm is given by ||S02(B)||2 = 4p(4d)2 + 32p2. It is easy to
check that S01(G) has the smaller norm if 0 ≤ d < p/2 and that S02(B) has the smaller norm if p/2 < d ≤ p.
If p is even and d = p/2, then the norms are equal.

Lemma 29 Let r = 4d and suppose S ∈M(r). If 0 ≤ d < p/2, then
||S||2 ≥ 4p(4d)2 + 64pd,

with equality if and only if there exists a graph G in G(4p, d) such that S = S01(G).

Furthermore,
det(4ptI4p + S01(G)) = 4

4pchG(pt+ d). (38)

If p/2 < d < p, then
||S||2 ≥ 4p(4d)2 + 32p2,

with equality if and only if there exists a bipartite graph B in B(4p, p+ d) such that S = S02(B).

Furthermore

det(4ptI4p + S02(B)) =
44pt(pt+ 2d)chB(pt+ d)

(t− 1)(p(t+ 1) + 2d) . (39)

If p is even and d = p/2, then

||S||2 ≥ 4p(4d)2 + 64pd = 4p(4d)2 + 32p2,
with equality if and only if either there exists a graph G in G(4p, p/2) such that S = S01(G) or there exists
a bipartite graph B in B(4p, 3p/2) such that S = S02(B).

Proof: Let S ∈M(r) with

S =

·
U V
V T W

¸
,

where U is a u × u matrix, W is a w × w matrix, u + w = 4p, U,W ≡ 0 (mod 4) and V ≡ 2 (mod 4).
Assume, without loss of generality, that u ≤ 2p. Let P(P ) denote the sum of all entries in the matrix P
and

P
off(P ) the sum of all off-diagonal entries of P . Since the row sums of S are zero,

P
off(U) + 4du =P

(U) = −P(V ) = P(W ) = Poff(W ) + 4dw. Thus
P
off(U) −

P
off(W ) = 4d(w − u) = 4d(4p − 2u). Let

|U | be the matrix whose entries are |Ui,j | and |U |(2) the matrix whose entries are |Ui,j |2. Then
X
off

(|U |(2)) +
X
off

(|W |(2)) ≥ 4

ÃX
off

(|U |) +
X
off

(|W |)
!

≥ 4

ÃX
off

(U)−
X
off

(W )

!
= 16d(w − u),



D-optimal, v. 23 32

with equality if and only if all nonzero off-diagonal entries of U are 4 and all nonzero off-diagonal entries of
W are −4. Thus

||S||2 = ||U ||2 + ||W ||2 + 2||V ||2
= 4p(4d)2 +

X
off

(|U |(2)) +
X
off

(|W |(2)) + 2||V ||2

≥ 4p(4d)2 + 16d(w − u) + 2uw(±2)2
= 4p(4d)2 + 16d(4p− 2u) + 8uw
= 4p(4d)2 + 64pd+ 8[4(p− d)u− u2],

with equality if and only if all nonzero off-diagonal entries of U are 4, all nonzero off-diagonal entries of W
are −4, and each off-diagonal entry of V is ±2. The graph of the function f(u) = 4(p−d)u−u2 is a parabola
with vertex at (2(p− d), 4(p− d)2). Thus f(u) attains its minimum value on the interval 0 ≤ u ≤ 2p at one
of the end points, either u = 0 or u = 2p. There are three cases.

First suppose 0 ≤ d < p/2, then p < 2(p − d) so f(u) is minimal at u = 0. Thus ||S||2 ≥ 4p(4d)2 + 64pd,
with equality if and only if S =W (since u = 0), and each nonzero off-diagonal entry of S is −4. Since the
diagonal entries of S are 4d, and each row of S sums to zero, there are exactly d nonzero off-diagonal entries
in each row of S. That is S = S01(G) for some graph G in G(4p, d).

We now prove Equation (38). Since G is a d-regular graph,

chG(x) = (x− d)
Y
(x− λ),

and
chG(pt+ d) = pt

Y
(pt+ d− λ),

where the products are taken over λ ∈ spec0(A(G)). It follows that the eigenvalues of S01(G) are 0 and
4d− 4λ as λ ∈ spec0(A(G)). Thus

det(4ptI4p + S01(G)) = 4pt
Y
(4pt+ 4d− 4λ)

= 44ppt
Y
(pt+ d− λ)

= 44pchG(pt+ d).

Second suppose that p/2 < d ≤ p. Then 2(p − d) < p so f(u) is minimal at u = 2p. Thus ||S||2 ≥
4p(4d)2 + 64pd + 8f(2p) = 4p(4d)2 + 32p2, with equality if and only if u = w = 2p, each nonzero off-
diagonal entry of U is 4, each nonzero off-diagonal entry of W is −4, and all entries of V are ±2. Now sinceP
(U) =

P
(W ), all off-diagonal entries of both U and W are zero. Thus each row and each column of V

sums to −4d. Thus each row and each column of V contains exactly p−d entries equal to 2 and p+d entries
equal to −2. It follows that V = 2J2p− 4N where N is a (0, 1)-matrix having exactly p+ d ones in each row
and each column. To summarize,

S = 4dI4p +

·
0 2J2p − 4N

2J2p − 4NT 0

¸
.

Now let B be the bipartite graph in B(4p, p+ d) such that N(B) = N . That is

A(B) =

·
0 N
NT 0

¸
=

·
0 N(B)

N(B)T 0

¸
.
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Then S = S02(B).

We now prove Equation (39). The eigenvalues of A(B) are ±(d+ p) and ±λ as λ ∈ sing0(N(B)). Thus

chB(x) = (x− (p+ d))(x+ (p+ d))
Y
(x− λ)(x+ λ),

where the product is taken over λ ∈ sing0(N(B)). Thus

chB(pt+ d) = p(t− 1)(p(t+ 1) + 2d)
Y
(pt+ d− λ)(pt+ d+ λ).

It follows that the eigenvalues of

S02(B) = 4dI4p +

·
0 2J2p
2J2p 0

¸
− 4A(B)

are 0, 8d, and 4d± 4λ, where λ ∈ sing0(N(B)). Hence

det(4ptI4p + S02(B)) = 4pt(4pt+ 8d)
Y
(4pt+ 4d− 4λ)(4pt+ 4d+ 4λ)

= 44ppt(pt+ 2d)
Y
(pt+ d− λ)(pt+ d+ λ)

=
44pt(pt+ 2d)chB(pt+ d)

(t− 1)(p(t+ 1) + 2d) .

Third and finally, suppose that d = p/2. Then p = 2(p − d) and so f(u) is minimal at both u = 0 and
u = 2p. Arguing as in the previous cases we see that either S = S01(G) for some graph G in G(4p, p/2) or
S = S02(B) for some bipartite graph B in B(4p, 3p/2).

7.6 Proof of Lemma 19: r ≡ 0 (mod 4)

Let 0 ≤ d < p/2, G be a trace-minimal graph in G(4p, d), S0 = S01(G), and S ∈ M(r). To prove that
S is spectrum-maximal, we must show that S ¹ S0. From Lemma 29 we have ||S||2 ≥ ||S0||2 and thus
E2(S) ≤ E2(S0). If E2(S) < E2(S0) then we are finished. So assume that E2(S) = E2(S0). Then by Lemma
29, there exists a graph H in G(4p, d) such that S = S01(H).

The eigenvalues of S01(H) are 0 and 4(d− h), where h ∈ spec0(A(H)). Thus

tr(S01(H)
i) =

X
h

[4(d− h)]i

= 4i
iX

j=0

µ
i

j

¶
(−1)jdi−j

X
h

hj (40)

= 4i
X
j

µ
i

j

¶
di−j(−1)j [tr(A(H)j)− dj ].

Likewise

tr(S01(G)
i) = 4i

X
j

µ
i

j

¶
di−j(−1)j [tr(A(G)j)− dj ].
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If spec(A(H)) = spec(A(G)) then spec(S) = spec(S0) and we are finished. If not, let 3 ≤ k ≤ 4p be an
integer such that tr(A(H)i) = tr(A(G)i) for i < k and tr(A(G)k) < tr(A(H)k). It follow from Equation (40)
that tr(Si) = tr(Si0) for i < k and (−1)ktr(Sk0 ) < (−1)ktr(Sk). Thus from Newton’s Identities (28) we have
Ek(S) < Ek(S0) and we are finished.

Let p/2 < d < p, B be a bipartite-trace-minimal graph in B(4p, p+d), S0 = S02(B), and S ∈M(r). We must
show that S ¹ S0. From Lemma 29 we have ||S||2 ≥ ||S0||2. If the inequality is strict, then E2(S) < E2(S0)
and we are finished. So assume that ||S||2 = ||S0||2. Then by Lemma 29 there exists a bipartite graph H in
B(4p, p+ d) such that S = S02(H). Then

chH(x) = (x− (p+ d))(x+ (p+ d))
Y
(x− λ)(x+ λ),

where the product is taken over λ ∈ sing0(N(H)). The eigenvalues of S02(H) are 0, 8d, and 4(d± λ) where
λ ∈ sing0(N(H)). Thus

tr(S02(H)
i) = (8d)i +

X
λ

[4(d+ λ)]i + [4(d− λ)]i

= (8d)i + 4i
X
λ

iX
j=0

µ
i

j

¶
[di−jλj + di−j(−λ)j ]

= (8d)i + 4i
X
j

µ
i

j

¶
di−j

X
λ

[λj + (−λ)j ]

= (8d)i + 4i
X
j

µ
i

j

¶
di−j [tr(A(H)j)− ((d+ p)j + (−(d+ p))j)].

Likewise

tr(S02(B)
i) = (8d)i + 4i

X
j

µ
i

j

¶
di−j [tr(A(B)j)− ((d+ p)j + (−(d+ p))j)].

If spec(A(H)) = spec(A(B)) then spec(S02(H)) = spec(S02(B)) and we are finished. If not, since B
is bipartite-trace-minimal, there exists 4 ≤ k ≤ 2p such that tr(A(H)2i) = tr(A(B)2i) for i < k and
tr(A(B)2k) < tr(A(H)2k). It follows from the above formulas for tr(S02(B)

i) and tr(S02(H)
i) that tr(S02(B)

i) =
tr(S02(H)

i) for i < 2k and tr(S02(B)
2k) < tr(S02(H)

2k). Thus by Newton’s Identities (28) with q ≤ 2k we
have Ei(S02(H)) = Ei(S02(B)) for i < 2k and E2k(S02(H)) < E2k(S02(B)) and we are finished.

Finally, the proof of the case d = p/2 is based on the following observation: if B ∈ B(4p, 3p/2) and B0 is the
graph whose adjacency matrix is

A(B0) =
·

0 J −N(B)
J −N(B)T 0

¸
, (41)

then
spec(S02(B)) = spec(S01(B

0)). (42)

Indeed, write S01(B
0) = 4dI4p + T1 and S02(B) = 4dI4p + T2, where

T1 =

·
0 −4J + 4N(B)

−4J + 4N(B)T 0

¸
, T2 =

·
0 2J − 4N(B)

2J − 4N(B)T 0

¸
.
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Clearly tr(T i1) = tr(T i2) = 0 if i is odd. Thus it suffices to show that T 21 = T 22 . Direct calculations give
T 21 =M1 ⊕MT

1 where

M1 = (−4J + 4N(B)T )(−4J + 4N(B))
= 16(−J +N(B)T )(−J +N(B))
= 16(−pJ +N(B)TN(B)).

The last equality follows from the fact thatN(B) has 3p/2 ones in each row and column. A similar calculation
gives T 22 =M2 ⊕MT

2 where

M2 = (2J − 4N(B)T )(2J − 4N(B))
= 4(J − 2N(B)T )(J − 2N(B))
= 16(−pJ +N(B)TN(B)).

Again, the last equality follows from the fact that N(B) has 3p/2 ones in each row and column. Thus
M1 =M2, T

2
1 = T

2
2 , spec(T1) = spec(T2), and so Equation (42) holds.

Now suppose G is a trace-minimal graph in G(4p, p/2). We show that S01(G) is spectrum-maximal inM(r).

Let S ∈ M(r). If ||S||2 > ||S01(G)||2 we are finished since this implies that E2(S) < E2(S01(G)). If
||S||2 = ||S01(G)||2 then by Lemma 29 either S = S01(H) for some H ∈ G(4p, p/2) or S = S02(B) for some
B ∈ B(4p, 3p/2). In the first case, use the same argument as in the case 0 ≤ d < p/2 to get S01(H) ¹ S01(G).
For the second case, let B0 ∈ G(4p, p/2) be the graph defined by Equation (41). As before, with H = B0, we
have S01(B

0) ¹ S01(G). Thus by Equation (42), S02(B) ¹ S01(G).

To finish the case d = p/2, we now assume that B ∈ B(4p, 3p/2) is a bipartite graph such that the graph
B0 defined in Equation (41) is trace-minimal. By the previous argument, S01(B0) is spectrum-maximal in
M(r), and thus by Equation (42), S02(B) is spectrum-maximal inM(r).

We now prove the converse of Lemma 19. Suppose 0 ≤ d < p/2 and that S ∈M(r) is spectrum-maximal.
Let G be a trace-minimal graph in G(4p, d). By the first part of the proof, S01(G) is spectrum-maximal.
It follows that spec(S) = spec(S01(G)), since all spectrum-maximal remainder matrices in M(r) have the
same spectrum. In particular ||S||2 = ||S01(G)||2 and thus by Lemma 29 there exists a graph H ∈ G(d, 4p)
such that S = S01(H). Thus spec(S01(H)) = spec(S01(G)) and hence spec(A(H)) = spec(A(G)). It follows
that H is trace-minimal.

The argument for the converse in the case, p/2 < d < p is similar.

Now suppose d = p/2 and S ∈M(r) is spectrum-maximal. Let G be a trace-minimal graph in G(4p, p/2).
As in the previous case, it follows that spec(S) = spec(S01(G)) and ||S||2 = ||S01(G)||2. Thus by Lemma 29,
either there exists a graphH ∈ G(4p, p/2) such that S = S01(H) or there is a bipartite graph B ∈ B(4p, 3p/2)
such that S = S02(B). In the first case it follows, as in the previous case, that H is trace-minimal. For the
second case, spec(S01(G)) = spec(S01(B

0)), by Equation (42), and hence spec(A(B0)) = spec(A(G)). Thus
B0 is trace-minimal.

7.7 r ≡ −1 (mod 4)

Let r = 4d − 1. As in the case r ≡ 0 (mod 4), the minimum norm for a matrix in M(r) depends on how
large d is in comparison to p/2. Let G be a graph in G(4p, 3p + d − 1) and let S31(G) be the remainder



D-optimal, v. 23 36

matrix defined in Equation (12). Let B be a bipartite graph in B(4p, d) and let S32(B) be the remainder
matrix defined in Equation (13). Then

||S31(G)||2 = 4p(4d− 1)2 + 48p2 − 32pd− 4p
||S32(B)||2 = 4p(4d− 1)2 + 16p2 + 32pd− 4p.

Lemma 30 Let r = 4d− 1 and let S ∈M(r). If p/2 < d < p, then

||S||2 ≥ 4p(4d− 1)2 + 48p2 − 32pd− 4p, (43)

with equality if and only if there exists a graph G in G(4p, 3p+ d− 1) such that S = S31(G).

Furthermore

det(4ptI4p + S31(G)) =
44ptchG(pt+ d− 1)

t− 3 . (44)

If 0 ≤ d < p/2, then
||S||2 ≥ 4p(4d− 1)2 + 16p2 + 32pd− 4p, (45)

with equality if and only if there exists a bipartite graph B in B(4p, d) such that S = S32(B).

Furthermore

det(4ptI4p + S32(B)) =
44p(p(t− 1) + 2d)chB(pt+ d)

pt+ 2d
. (46)

If d = p/2, then
||S||2 ≥ 4p(4d− 1)2 + 32p2 − 36p,

with equality if and only if there exists a graph G in G(4p, 7p/2− 1) such that S = S31(G), or there exist a
bipartite graph B in B(4p, p/2) such that S = S32(B).

Proof: Let S ∈M(r) and let T = 4pI4p−J4p−S. Then T ∈M(4d0), where d0 = p−d. It is easy to verify
that

||S||2 = ||T ||2 − 64p3 − 16p2 + 128p2d. (47)

By Lemma 29 applied to T , we have
||T ||2 ≥ 4p(4d0)2 + 64pd0, (48)

if 0 ≤ d0 < p/2, and
||T ||2 ≥ 4p(4d0)2 + 32p2, (49)

if p/2 < d0 < p. Using Equation (47), we find that Inequality (43) is equivalent to Inequality (48) and
Inequality (45) is equivalent to Inequality (49).

To prove the cases for equality, first assume that p/2 < d < p and that equality holds in Inequality (43). Then
equality holds in (48). Thus by Lemma 29, there exists a graph G0 in G(4p, d0) such that T = 4d0I4p−4A(G0).
Let G be the complement of G0. Then G ∈ G(4p, 3p+ d− 1) and A(G0) = J4p − I4p −A(G). Thus

S = 4pI4p − J4p − T
= 4(d− 1)I4p + 3J4p − 4A(G)
= S31(G).
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We now prove Equation (44). Since G is in G(4p, 3p+ d− 1),

chG(x) = (x− (3p+ d− 1))
Y
(x− λ),

and
chG(pt+ d− 1) = p(t− 3)

Y
(pt+ d− 1− λ),

where the products are taken over λ ∈ spec0(A(G)). Thus the eigenvalues of S31(G) = 4(d− 1)I4p + 3J4p −
4A(G) are 0, 4(d− 1− λ), where λ ∈ spec0(A(G)) so that

det(4ptI4p + S31(G)) = det(4ptI4p + 4(d− 1)I4p + 3J4p − 4A(G))
= 4pt

Y
(4pt+ 4(d− 1)− 4λ)

= 44ppt
Y
(pt+ d− 1− λ).

It follows that

det(4ptI4p + S31(G)) =
44ptchG(pt+ d− 1)

t− 3 .

Now assume that 0 ≤ d < p/2 and that equality holds in Inequality (45). Then equality holds in Inequality
(49) as well. By Lemma 29, there exists a bipartite graph B0 in B(4p, p+ d0) such that T = S02(B0). Let

A(B0) =
·

0 N(B0)
N(B0)T 0

¸
.

Then N(B0) is a (0, 1)-matrix and each row and column of N(B0) has exactly d0 + p = 2p− d ones. Thus

S = 4pI4p − J4p − T
= 4dI4p +

· −J2p 4N(B0)− 3J2p
4N(B0)T − 3J2p −J2p

¸
= 4dI4p +

·−J2p J2p
J2p −J2p

¸
− 4

·
0 A
AT 0

¸
,

where A = J2p −N(B0). Let B be the bipartite graph on 4p vertices with adjacency matrix

A(B) =

·
0 A
AT 0

¸
=

·
0 N(B)

N(B)T 0

¸
.

Then B is in B(4p, d) and S = S32(B).

We now prove Equation (46). The eigenvalues of A(B) are ±d,±λ, where λ ∈ sing0(N(B)). Thus

chB(x) = (x− d)(x+ d)
Y
(x− λ)(x+ λ),

and
chB(pt+ d) = pt(pt+ 2d)

Y
(pt+ d− λ)(pt+ d+ λ),

where the product runs over λ ∈ sing0(N(B)). Next observe that 0 and −4p are eigenvalues of the matrix·−J2p J2p
J2p −J2p

¸
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with eigenvectors [e2p,±e2p]T . Thus 0, 8d− 4p, 4(d± λ) are eigenvalues of S32(B). Hence

det(4ptI4p + S32(B)) = 4pt(4p(t− 1) + 8d)
Y
(4pt+ 4d− 4λ)(4pt+ 4d+ 4λ)

= 44ppt(p(t− 1) + 2d)
Y
(pt+ d− λ)(pt+ d+ λ)

=
44p(p(t− 1) + 2d)chB(pt+ d)

pt+ 2d
.

7.8 Proof of Lemma 18: r ≡ −1 (mod 4)

This proof follows the same pattern as the proof of Lemma 19. The only difference is that if p/2 < d < p
and G ∈ G(4p, 3p+ d− 1), then

tr(S31(G)
i) = 4i

iX
j=0

µ
i

j

¶
(−1)j(d− 1)i−j [tr(A(G)j)− (3p+ d− 1)j ],

and if 0 ≤ d < p/2 and B ∈ B(4p, d), then

tr(S32(B)
i) = (8d− 4p)i + 4i

iX
j=0

µ
i

j

¶
di−j [tr(A(B)j)− dj − (−d)j ].
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