On Crossing Numbers of Geometric Proximity Graphs

Bernardo M. Ábrego* Ruy Fabila-Monroy ${ }^{\dagger}$ Silvia Fernández-Merchant*
David Flores-Peñaloza ${ }^{\ddagger}$ Ferran Hurtado ${ }^{\S}$ Vera Sacristán ${ }^{\S}$ Maria Saumell ${ }^{\S}$

Abstract

Let P be a set of n points in the plane. A geometric proximity graph on P is a graph where two points are connected by a straight-line segment if they satisfy some prescribed proximity rule. We consider four classes of higher order proximity graphs, namely, the k-nearest neighbor graph, the k-relative neighborhood graph, the k-Gabriel graph and the k-Delaunay graph. For $k=0$ ($k=1$ in the case of the k-nearest neighbor graph) these graphs are plane, but for higher values of k in general they contain crossings. In this paper we provide lower and upper bounds on their minimum and maximum number of crossings. We give general bounds and we also study particular cases that are especially interesting from the viewpoint of applications. These cases include the 1-Delaunay graph and the k-nearest neighbor graph for small values of k.

Keywords Proximity graphs; geometric graphs; crossing number.

1 Introduction and basic notation

A geometric graph on a point set P is a pair $G=(P, E)$ in which the vertex set P is assumed to be in general position, i.e., no three points are collinear, and the set E of edges consists of straight-line segments with endpoints in P. Notice that the focus is more on the drawing rather than on the underlying graph, as carefully pointed out by Brass, Moser and Pach in their survey book ([6], page 373).

A proximity graph is a graph $G=(V, E)$ in which the nodes represent geometric objects in a given set, typically points, and two nodes are adjacent when the corresponding objects are considered to be neighbors according to some specific proximity criterion. A geometric proximity graph is a geometric graph in which the adjacency is decided by some neighborhood rule; they are also sometimes called proximity drawings [18]. Examples of these graphs are the k-nearest neighbor graph, k-NNG (P), in which every point is joined with a directed segment to its k closest neighbors, and the k-Delaunay graph, k - $\mathrm{DG}(P)$, in which p_{i} and p_{j} are connected with a segment if there is some circle through p_{i} and p_{j} that contains at most k points from P in its interior. Other similar definitions are given later in this paper.

Proximity graphs have been widely used in applications in which extracting shape or structure from a point set is a required tool or even the main goal, as is the case of computer vision, pattern

[^0]recognition, visual perception, geographic information systems, instance-based learning, and data mining [13, 19, 26]. In the area of graph drawing [5, 12, 14] the main goal is to realize -or to draw - a given combinatorial graph as a geometric proximity graph, which leads to problems on characterizing the graphs that admit such a representation and designing efficient algorithms to construct the drawing whenever possible (see the survey [18] in this respect).

Usually graphs are drawn in the plane with points as nodes and Jordan arcs as edges. When two edges share an interior point, we say that there is a crossing. Both as a natural aesthetic measure for graph drawing and as a fundamental issue in the mathematical context, the number of crossings is a parameter that has been attracting extensive study. Given a graph G, the crossing number of G, denoted by $\operatorname{cr}(G)$, is the minimum number of edge crossings in any drawing of G; if this number is 0 , we say that the graph is planar. The rectilinear crossing number of G, denoted by $\overline{c r}(G)$, is the smallest number of crossings in any drawing of G in which the edges are represented by straight-line segments.

Computing the crossing number of a graph is an NP-hard problem [9], and both the generic and rectilinear crossing numbers of very fundamental graphs, such as the complete graph K_{n} and the complete bipartite graph $K_{m, n}$ are still unknown [29, 11]. These problems have been attracting a great amount of attention and recently a continuous chain of improvements has led progressively to narrow the gap between the lower and upper bounds $[15,3,2]$. There are also several results on the numbers of crossings that are sensitive to the size of the graph - particulary the crossing lemma $[4,17,6]$ - , or to the exclusion of some configurations $[6,20,22,28,8]$.

In this paper we study the crossing numbers of several higher order geometric proximity graphs related to Delaunay graphs. If P is a set of points in the plane, each of the proximity graphs we consider is a geometric graph on P that has some number of crossings that will be denoted by $\boxtimes()$, and we investigate how this number varies when all possible point sets P in general position, with $|P|=n$, are considered. The generic conclusion that may be derived from our research is that this family of graphs has a relatively small number of crossings.

The fact that this specific issue has not been investigated previously is somehow surprising. As an explanation, one may first consider that 0 -order proximity graphs, which have attracted most of the research and are better understood, are planar. On the other hand, regarding the applications in shape analysis, the data are what they are, and the user would not have the possibility of moving the points around to decrease the number of crossings. It is worth mentioning here that, while higher order proximity graphs were introduced and studied about twenty years ago [24, 25], there has been a renewal of interest on them, especially for low orders, as they offer a flexibility which is desirable in several applications. For example, the Delaunay triangulation (DT) is unique, while one can extract a large number of different triangulations from the 1-Delaunay graph, all of them "close" to DT, which may be preferable under some criterion (see for example the papers $[16,1]$ and the numerous references there).

From the viewpoint of proximity drawings, it is desirable to have a small number of crossings, and hence we study its minimum value. On the other hand, we also consider the shape analysis situation in which choosing the points is not possible, which leads to study how large the number of crossings can be, i.e., its maximum value.

For example, consider the k-nearest neighbor graph of point sets P with $|P|=n$. We introduce and study the rectilinear crossing number and the worst crossing number defined respectively as

$$
\begin{aligned}
\overline{c r}(k-\operatorname{NNG}(n)) & =\min _{|P|=n} \boxtimes(k-\operatorname{NNG}(P)), \\
\overline{w c r}(k-\operatorname{NNG}(n)) & =\max _{|P|=n} \boxtimes(k-\operatorname{NNG}(P)) .
\end{aligned}
$$

We define analogous parameters for the k-relative neighborhood graph, k - $\mathrm{RNG}(P)$, in which
p_{i}, p_{j} are adjacent if the open intersection of the circles centered at p_{i} and p_{j} with radius $\left|p_{i} p_{j}\right|$ contains at most k points from P; the k-Gabriel graph, k - $\mathrm{GG}(P)$, in which p_{i} and p_{j} are adjacent if the closed circle with diameter $p_{i} p_{j}$ contains at most k points from P different from p_{i}, p_{j}; and the k-Delaunay graph, k - $\mathrm{DG}(P)$. It is well known that

$$
\begin{equation*}
(k+1)-\mathrm{NNG}(\mathrm{P}) \subseteq k-\mathrm{RNG}(P) \subseteq k-\mathrm{GG}(P) \subseteq k-\mathrm{DG}(P) \tag{1}
\end{equation*}
$$

Notice that, when the rectilinear crossing number of a combinatorial graph is considered, we draw the same graph on top of different points sets, while here we study a specific kind of proximity graph on top of different point sets, but the underlying combinatorial graphs may be different for many of these sets. Another somehow subtle issue that deserves a specific comment is the fact that the combinatorial graph obtained from a proximity drawing may have a smaller crossing number than the rectilinear crossing number of its proximity drawing. This is clearer with an example: We prove in this paper that $\overline{c r}(1-\mathrm{DG}(n))=n-4$; this means that 1-DG (P) contains at least $n-4$ crossings for any set P of n points, and that for some point set Q this number is achieved. The graph on Figure 1 (left) is the 1-Delaunay graph of its vertex set (the six shown points) and has 2 crossings; however, the combinatorial graph can be drawn on top of a different set and have only one crossing (Figure 1, right). Obviously the latter is not the 1-Delaunay graph of its vertex set.

Figure 1: The graph on the left is a 1-Delaunay graph; black edges belong to 0-DG. The graph on the right is isomorphic.

A substantial part of our research focus on the 1-Delaunay graph and on the graphs k-NNG (P) with small k, widely used in classification scenarios, as these are the most interesting situations from the viewpoint of applications [1, 7, 10, 16]. We present these results in Subsections 2.1 and 2.2. In Subsection 2.3 we look at the number of crossings for large values of k. Throughout the paper we assume that point sets P are in general position in an extended sense meaning: no three points are collinear, no four points are concyclic and, for each $p \in P$, the set of its k nearest points in P is well-defined, i.e., has cardinality k, for any $k \geq 1$.

Throughout the paper we denote by $V(G)$ (respectively, $E(G)$) the set of vertices (respectively, edges) of a given graph G, and by $v(G)$ (respectively, $e(G)$) the cardinality of this set. If v is a vertex in $V(G)$, we denote by $d_{G}(v)$ the degree of v in G. We consider a generic set P of n points in general position, and we denote by h the size of the convex hull of P.

2 Results

Given the number of results in the paper and the length of some proofs, in this section we only state our bounds deferring the proofs to the subsequent section.

2.1 1-Delaunay graphs

In this subsection we carry out a detailed analysis of the number of crossings in a 1-Delaunay graph. We study the general case and also the particular case where all points are in convex position. Our contributions are presented in Table 1. Note that we establish the exact value of the rectilinear crossing number of the 1-Delaunay graph for both the general case and the convex case.

	general case	convex case
$\overline{c r}$	$n-4$	$6 n-3\left\lfloor\frac{n}{2}\right\rfloor-19$
$\overline{w c r}$	$n^{2}+\Theta(n) \leq \overline{w c r} \leq 4 n^{2}+\Theta(n)$	$\frac{n^{2}}{2}+\Theta(n) \leq \overline{w c r} \leq \frac{7 n^{2}}{8}+\Theta(n)$

Table 1: 1-Delaunay graphs.
As shown in [1], the number of elements in $E(1-\mathrm{DG}(P))-E(0-\mathrm{DG}(P))$ is linear. Since 0-DG (P) is maximal planar, this immediately yields that every 1-Delaunay graph contains a linear number of crossings. More accurate observations lead to the following bound:

Theorem 2.1.1. For every point set $P, \boxtimes(1-\mathrm{DG}(P)) \geq n-4$.
Proposition 2.1.2. There exists a point set Q such that $\boxtimes(1-D G(Q))=n-4$.
If P is in convex position, the bounds can be strengthened:
Theorem 2.1.3. For every set P in convex position, $\boxtimes(1-\mathrm{DG}(P)) \geq 6 n-3\left\lfloor\frac{n}{2}\right\rfloor-19$.
Proposition 2.1.4. There exists a point set Q in convex position such that $\boxtimes(1-\mathrm{DG}(Q))=6 n-$ $3\left\lfloor\frac{n}{2}\right\rfloor-19$.

In principle, every pair of edges in $E(1-\mathrm{DG}(P))-E(0-\mathrm{DG}(P))$ might cross, so the number of crossings in 1-DG (P) could be quadratic. In the following lines we provide quadratic upper bounds on the number of crossings of 1-DG(P), and show that in some cases this parameter is indeed quadratic.
Theorem 2.1.5. For every set of points $P, \boxtimes(1-\mathrm{DG}(P)) \leq 4 n^{2}+\Theta(n)$.
Proposition 2.1.6. There exists a point set Q such that $\boxtimes(1-\mathrm{DG}(Q))=n^{2}+\Theta(n)$.
For the convex case we prove tighter bounds:
Theorem 2.1.7. For every set of points P in convex position, $\boxtimes(1-D G(P)) \leq 7 n^{2} / 8+\Theta(n)$.
Proposition 2.1.8. There exists a set of points Q in convex position such that $\boxtimes(1-\mathrm{DG}(Q))=$ $n^{2} / 2+\Theta(n)$.

$2.2 k$-nearest neighbor graphs for small values of k

We provide bounds on the rectilinear crossing number of the k-nearest neighbor graph k-NNG for $k \leq 10$. Due to the inclusion relations satisfied by the graphs we investigate, the lower bounds also hold for the rectilinear crossing number of the other proximity graphs if we shift the value of k one unit down (see (1)).

Our results are summarized in Table 2. It is interesting noticing that, even though the lower bounds do not rely on specific properties of k-NNG but on generic results, for many values of k we are able to construct point sets attaining these bounds.

Theorem 2.2.1. The rectilinear crossing number of $\mathrm{k}-\mathrm{NNG}$, when $k \in\{1,2, \ldots, 10\}$, satisfies the equalities and inequalities shown in Table 2.

k	$\overline{c r}(k$-NNG $(n))$
1	0
2	0
3	0
4	0, for $n \geq 14$
5	0, for $n \geq 44$
6	≤ 58, for $n \geq 39$
7	$n / 2+\Theta(1)$
8	$n+\Theta(1)$
9	$13 n / 6+50 / 3 \leq \overline{c r} \leq 31 n / 13+\Theta(1)$
10	$10 n / 3+50 / 3 \leq \overline{c r} \leq 4 n+\Theta(1)$

Table 2: $\overline{c r}(k-\mathrm{NNG}(n))$ for the first values of k.
As for the worst crossing number, we will give bounds for all k in Subsection 2.3, and we can improve on these only minimally for small k. Thus we omit those details.

2.3 General bounds

In this subsection we are interested in the number of crossings in the graphs under study when the value of k is large. We have derived bounds for both the rectilinear crossing number and the worst crossing number of all graphs (see Table 3). Observe that in all cases we can specify the exact order of magnitude of these parameters up to multiplicative constants.

	k-NNG (n)	k-RNG (n)	k-GG (n)	k-DG (n)
$\overline{c r} \geq$	$\frac{128}{31827} k^{3} n$	$\frac{128}{31827} k^{3} n$	$\frac{128}{31827} k^{3} n$	$\frac{1024}{31827} k^{3} n$
$\overline{c r} \leq$	$\frac{1}{9 \pi^{2}} k^{3} n$	$\frac{\pi}{9(2 \pi / 3-\sqrt{3} / 2)^{3}} k^{3} n$	$\frac{64}{9 \pi^{2}} k^{3} n$	$\frac{64}{9 \pi^{2}} k^{3} n$
$\overline{w c r} \geq$	$\frac{1}{3} k^{3} n$	$\frac{1}{3} k^{3} n$	$\frac{1}{4} k^{2} n^{2}$	$\frac{1}{2} k^{2} n^{2}$
$\overline{w c r} \leq$	$k^{3} n$	$9 k^{3} n$	$3 k^{2} n^{2}$	$3 k^{2} n^{2}$

Table 3: Dominant terms of the general bounds. Some of the bounds only hold for "intermediate" values of k. We refer to the precise statements in the rest of the subsection.

2.3.1 Rectilinear crossing number

Our lower bounds for the rectilinear crossing numbers follow from an improved version of the crossing lemma given in [21].

Theorem 2.3.1. If $k \geq 13$, then
i) $\overline{c r}(k-\operatorname{NNG}(n)) \geq \frac{128}{31827} k^{3} n$,
ii) $\overline{c r}(k-\operatorname{RNG}(n)) \geq \frac{128}{31827} k^{3} n$,
iii) $\overline{c r}(k-\mathrm{GG}(n)) \geq \frac{128}{31827} k^{3} n$.

If $6 \leq k<\frac{n}{2}-1$, then
iv) $\overline{c r}(k-\mathrm{DG}(n)) \geq \frac{1024}{31827} k^{3} n$.

As already observed in [1], if $k \geq \frac{n}{2}-1$, then k - $\mathrm{DG}(P)$ is the complete graph.
For the upper bounds we use a suitable construction proposed in [23]. This construction is the current asymptotically best example of a graph with fixed number of edges and minimum number of crossings. In the next proposition we show that it can be seen as a proximity graph.

Proposition 2.3.2. If $\omega(1) \leq k \leq o(n)$, there exists a point set Q such that
i) $\boxtimes(k-\operatorname{NNG}(Q)) \leq \frac{1}{9 \pi^{2}} k^{3} n(1+o(1))$,
ii) $\boxtimes(k-\operatorname{RNG}(Q)) \leq \frac{\pi}{9(2 \pi / 3-\sqrt{3} / 2)^{3}} k^{3} n(1+o(1))$,
iii) $\boxtimes(k-\mathrm{GG}(Q)) \leq \frac{64}{9 \pi^{2}} k^{3} n(1+o(1))$,
iv) $\boxtimes(k-\mathrm{DG}(Q)) \leq \frac{64}{9 \pi^{2}} k^{3} n(1+o(1))$.

2.3.2 Worst crossing number

Any upper bound on the number of edges of some higher order proximity graph can be used to produce an upper bound on its worst crossing number. For k-Delaunay graphs, it has been proved that the number of edges is at most $3(k+1) n-3(k+1)(k+2)$ [1]. In the worst scenario, all pairs of edges might cross, so the number of crossings is no more than $\frac{9}{2} k^{2} n^{2}+o\left(k^{2} n^{2}\right)$. In the following theorem we improve this bound:
Theorem 2.3.3. For every point set P, if $k<n / 2-1$, then $\boxtimes(k-G G(P)) \leq \boxtimes(k$ - $\mathrm{DG}(P)) \leq$ $\left(3 k^{2}+6 k+3\right) n^{2}+\left(-6 k^{3}-21 k^{2}-\frac{51}{2} k-\frac{21}{2}\right) n+\left(3 k^{4}+15 k^{3}+\frac{57}{2} k^{2}+\frac{51}{2} k+9\right)$.

The preceding bounds are tight up to a multiplicative constant:
Proposition 2.3.4. If $k=o(n)$, there exists a point set Q such that $\boxtimes(k-G G(Q))=k^{2} n^{2} / 4+$ $o\left(k^{2} n^{2}\right)$.
Proposition 2.3.5. If $k=o(n)$, there exists a point set Q such that $\boxtimes(k-\mathrm{DG}(Q))=k^{2} n^{2} / 2+$ $o\left(k^{2} n^{2}\right)$.

For k-relative neighborhood graphs, it can be shown that the number of edges is bounded from above by $3 k n+3 n$ (see Appendix), which yields an upper bound of $9 k^{2} n^{2}+o\left(k^{2} n^{2}\right)$ for the worst crossing number. We have proved that the order of magnitude of this parameter is lower provided that $k=o(n)$:
Theorem 2.3.6. For every point set $P, \boxtimes(k-\operatorname{RNG}(P)) \leq\left(9 k^{2}+18 k+9\right) k n$.
Finally, the number of edges of k-NNG is no greater than $k n$. In this case Theorem 2.3.7 and Proposition 2.3 .8 show that the worst crossing number is also cubic in k and linear in n :
Theorem 2.3.7. For every point set $P, \boxtimes(k$-NNG $(P)) \leq\left(2 k^{2}-3 k+1\right) k n / 2$.
Proposition 2.3.8. If $k=o(n)$, there exists a point set Q such that $\boxtimes(k-\operatorname{RNG}(Q)) \geq \boxtimes(k-\operatorname{NNG}(Q))=$ $k^{3} n / 3+o\left(k^{3} n\right)$.

3 Proofs

3.1 Proofs of the results in Subsection 2.1

Let us introduce some notation. We partition the edges of the 1-Delaunay graph into two groups: we say that an edge is blue if it also appears in $0-\mathrm{DG}(P)$ and we say that it is red otherwise. We set $e_{b}=e(0-\mathrm{DG}(P))$ and $e_{r}=e(1-\mathrm{DG}(P))-e(0-\mathrm{DG}(P))$. Note that a red edge $p_{i} p_{j}$ corresponds to an element in $E\left(0-\mathrm{DG}\left(P \backslash\left\{p_{l}\right\}\right)\right)$ for some $p_{l} \in P$. We say that $p_{i} p_{j}$ is generated by p_{l}. Observe that the fact that $p_{i} p_{j}$ is generated by p_{l} is equivalent to the existence of a disk through p_{i} and p_{j} containing p_{l} and no other point in P, which implies that $p_{i} p_{l}$ and $p_{j} p_{l}$ belong to $E(0-\mathrm{DG}(P))$. Thus $p_{i} p_{j}$ is generated by at most two points. (See [1].)

In the figures of this subsection the blue edges will be represented in black and the red edges will be represented in gray.

3.1.1 Proof of Theorem 2.1.1

Since the graph 0-DG (P) is maximal planar, each red edge induces at least one crossing in 1-DG (P). We prove that the number of red edges in 1-DG (P) is at least $n-4$ (see Theorem 3.1.5). Part of our proof follows the lines of previous techniques used in [1].

Let us introduce some notation. Let H and I be the convex and interior points of P. For convenience, sets are denoted with a capital letter and their cardinalities with the corresponding lower case letter (thus h and i denote the cardinality of H and I respectively).

For a point $p \in P$, let $d_{G}(p)$ denote the degree of p in G, where $G=0-\mathrm{DG}(P)$, and let $d^{*}(p)$ be the value 2 plus the number of points of I that are in the convex hull of $P \backslash\{p\}$.

Our proof requires several remarks, already stated in [1]:
Lemma 3.1.1. The set of red edges generated by exactly two points induces a perfect matching on the triangles of 0-DG (P). Moreover, two so matched triangles are adjacent triangles of $0-\mathrm{DG}(P)$ in convex position.

Lemma 3.1.2. The number of red edges generated by an element $p \in P$ is:

- $d_{G}(p)-d^{*}(p)$, if $p \in H$;
- $d_{G}(p)-3$, if $p \in I$.

Lemma 3.1.3. If $p_{l} \in I$ is in the convex hull of both $P \backslash\left\{p_{i}\right\}$ and $P \backslash\left\{p_{j}\right\}$, for some pair of points $p_{i}, p_{j} \in H$, then p_{i} and p_{j} are consecutive vertices in the convex hull of P. Furthermore, the triangle $\triangle p_{i} p_{j} p_{l}$ is empty, and the line through p_{i} and p_{l} separates $\triangle p_{i} p_{j} p_{l}$ from the rest of P, as does the line through p_{j} and p_{l}.

Lemma 3.1.4. Each element of I can contribute to $d^{*}\left(p_{i}\right)$ and $d^{*}\left(p_{j}\right)$ for at most two points $p_{i}, p_{j} \in H$, provided that $n \geq 5$.

By Lemma 3.1.4, we may partition I into $I_{0} \cup I_{1} \cup I_{2}$, where I_{j} is the set of elements of I that contribute to d^{*} for exactly j points.

Notice that, if $p_{l} \in I_{2}$ contributes to d^{*} for p_{i} and p_{j}, then, by Lemma 3.1.3, the points p_{i}, p_{j}, and p_{l} together with any other point of P are not in convex position. Hence $\triangle p_{i} p_{j} p_{l}$ is a triangle of 0-DG (P) that does not participate in the matching given by Lemma 3.1.1. Such a triangle is called special triangle.

We wish to bound the number of red edges in 1-DG (P). By Lemma 3.1.2,

$$
\begin{align*}
e_{r} & =\sum_{p \in H}\left(d_{G}(p)-d^{*}(p)\right)+\sum_{p \in I}\left(d_{G}(p)-3\right)-\xi= \\
& =4 n-6-\left(i+\sum_{p \in H} d^{*}(p)\right)-\xi \tag{2}
\end{align*}
$$

where is ξ the number of times a red edge is overcounted in the summation (which happens when two points induce the same edge). Since the set of red edges generated by the removal of two points induces a matching in the triangles of $0-\mathrm{DG}(P)$, we may now introduce a new equation:

$$
\begin{equation*}
\xi=\frac{\triangle-i_{2}-m}{2} \tag{3}
\end{equation*}
$$

where \triangle is the number of triangles in $0-\mathrm{DG}(P)$ (thus $\triangle=h+2 i-2$), and m is the number of non-special triangles in 0-DG (P) not matched by a red edge generated by two points.

Substituting (3) in (2) and using that $\sum_{p \in H} d^{*}(p)=2 h+i_{1}+2 i_{2}$, we obtain that

$$
e_{r}=n-5+i_{0}+\frac{1}{2}\left(h-i_{2}+m\right) .
$$

Since $i_{0} \geq 0, h-i_{2} \geq 0$, and $m \geq 0$, we have that $e_{r} \geq n-5$, and $e_{r}=n-5$ if and only if:

$$
\begin{equation*}
i_{0}=0, h=i_{2}, \text { and } m=0 \tag{4}
\end{equation*}
$$

We make some observations about the structure of P in the case where (4) is satisfied and introduce some useful notation.

Note that any point that contributes to d^{*} for some other point of H is in the second convex layer of P. Therefore if we assume that $i_{0}=0$, then P has exactly two convex layers, and the second one is given by the set $I=I_{2} \cup I_{1}$. We say that each point $p_{l} \in I_{2}$ is associated to two points of H : those points for whom q contributes to d^{*}. Similarly, each point $p_{l} \in I_{1}$ is associated to the point $p_{i} \in H$ for which p_{l} contributes to $d^{*}\left(p_{i}\right)$.

With these last observations we are ready to prove a lower bound on the number of red edges.
Theorem 3.1.5. The graph 1-DG (P) contains at least $n-4$ red edges.
Proof. Suppose by means of a contradiction that $e_{r}=n-5$ and thus (4) holds.
We distinguish two cases.
First we assume that every edge of the convex hull of I is an edge of $0-\mathrm{DG}(P)$. In this case every triangle having exactly one point of H as a vertex is entirely contained between the first and second convex layers of P; see Figure 2 (left). No two of these triangles are matched, because the four vertices of two such adjacent triangles are not in convex position. As $m=0$ and the special triangles cannot be matched, we infer that every triangle having exactly one point of H as a vertex is matched with one triangle contained in the second convex layer of P. However, there are i triangles of the first type and $i-2$ triangles of the second type. Thus $i_{0}=0, h=i_{2}$, and $m=0$ cannot simultaneously hold in this case.

Figure 2: Part of the Delaunay triangulations of the point sets. Interior points are in gray. In the right figure, every edge of the convex hull of I is an edge of $0-\mathrm{DG}(P)$. In the left figure, $p_{i} p_{l}$ is a diagonal such that $G_{1}\left(p_{i} p_{l}\right)$ contains no diagonal of $0-\mathrm{DG}(P)$.

Now let us suppose that there exists an edge e of the convex hull of I that is not an edge of $0-\mathrm{DG}(P)$. Then there is an edge $p_{i} p_{l}$ in $0-\mathrm{DG}(P)$ crossing e such that p_{i} is a point of H and p_{l} is not associated with p_{i}. We call such an edge $p_{i} p_{l}$ a diagonal.

For each diagonal $p_{i} p_{l}$, if $p_{l} \in H$, let $\operatorname{pol}\left(p_{i} p_{l}\right)$ be the edge $p_{i} p_{l}$; otherwise, let $\operatorname{pol}\left(p_{i} p_{l}\right)$ be the polygonal chain $p_{i} p_{l} p_{j}$, where p_{j} is a point of H with whom p_{l} is associated. In both cases $\operatorname{pol}\left(p_{i} p_{l}\right)$ is a polygonal chain joining two vertices of H. If we take the two sub-polygonal chains of the convex hull of P joining the endpoints of $\operatorname{pol}\left(p_{i} p_{l}\right)$ together with $\operatorname{pol}\left(p_{i} p_{l}\right)$, we define two closed polygonal chains that are the boundary of two bounded regions $C_{1}\left(p_{i} p_{l}\right)$ and $C_{2}\left(p_{i} p_{l}\right)$.

The regions $C_{1}\left(p_{i} p_{l}\right)$ and $C_{2}\left(p_{i} p_{l}\right)$ define two non-empty subsets $P_{1}\left(p_{i} p_{l}\right)$ and $P_{2}\left(p_{i} p_{l}\right)$, the points of P that lie at the interior or at the boundary of $C_{1}\left(p_{i} p_{l}\right)$ and $C_{2}\left(p_{i} p_{l}\right)$, respectively. Without loss of generality, assume that $P_{1}\left(p_{i} p_{l}\right)$ is the smallest of the two sets. Let $G_{1}\left(p_{i} p_{l}\right)$ and $G_{2}\left(p_{i} p_{l}\right)$ be the subgraphs of 0-DG (P) induced by $P_{1}\left(p_{i} p_{l}\right)$ and $P_{2}\left(p_{i} p_{l}\right)$.

Let $p_{i} p_{l}$ be a diagonal in 0-DG (P) such that $G_{1}\left(p_{i} p_{l}\right)$ contains no diagonal of 0-DG(P). Observe that p_{l} is a point of I. Among all points of H with whom p_{l} is associated, let p_{j} be the one that yields the smallest possible value for $\left|P_{1}\left(p_{i} p_{l}\right)\right|$. Now let $I^{\prime}:=I \cap P_{1}\left(p_{i} p_{l}\right)$ and $H^{\prime}:=H \cap P_{1}\left(p_{i} p_{l}\right)$.

The intersection of the convex hulls of I and I^{\prime} is a convex polygonal chain Q_{2} that has I^{\prime} as its vertex set and p_{l} as an endpoint. Since the only diagonal of $0-\operatorname{DG}(P)$ in $G_{1}\left(p_{i} p_{l}\right)$ is $p_{i} p_{l}, Q_{2}$ is a subgraph of $G_{1}\left(p_{i} p_{l}\right)$ (see Figure 2, right). Let p_{m} denote the endpoint of Q_{2} different from p_{l}. The edge $p_{i} p_{l}$ is a side of some triangle of $G_{1}\left(p_{i} p_{l}\right)$; since there are no diagonals of 0-DG (P) in $G_{1}\left(p_{i} p_{l}\right)$ except for $p_{i} p_{l}$, the third vertex of this triangle is p_{m}. Thus $G_{1}\left(p_{i} p_{l}\right)$ contains a triangulation of I^{\prime} as subgraph.

Let T_{h} be the set of triangles of $G_{1}\left(p_{i} p_{l}\right)$ consisting of an edge of Q_{2} and a point in H^{\prime}, and T_{i} be the set of triangles of $G_{1}\left(p_{i} p_{l}\right)$ with all their vertices in I^{\prime}. It is not difficult to see that any triangle in T_{h} that participates in the matching is matched with a triangle in T_{i}. Since $\left|T_{h}\right|=i^{\prime}-1$ and $\left|T_{i}\right|=i^{\prime}-2$, we conclude that m is greater than zero also in this case.

3.1.2 Proof of Proposition 2.1.2

We start with $n-2$ points in a vertical segment, denoted from top to bottom by $q_{1}, q_{2}, \ldots, q_{n-2}$. We add one point to the left of this group, and one point to the right, as in Figure 3 (left). Then we slightly move the even points q_{2}, q_{4}, \ldots to the right, and the odd points q_{3}, q_{5}, \ldots to the left.

The only red edges in 1-DG (Q) are $q_{i} q_{i+2}$, for $i=1,2, \ldots, n-4$. No pair of such edges crosses, and each of them creates exactly one crossing with $0-\mathrm{DG}(Q)$. Thus the number of crossings of
$1-\mathrm{DG}(Q)$ is $n-4$.

3.1.3 Proof of Theorem 2.1.3

Let p_{1}, \ldots, p_{n} denote the points in P in clockwise order. Note that all edges of type $p_{i} p_{i+2}$ are in 1-DG (P), and that the total number of crossings between two edges of this family is n. Let G^{\prime} be the graph obtained from 1-DG (P) by removing these edges and the ones in the convex hull of P. Since $e_{r} \geq 2 n-\left\lfloor\frac{n}{2}\right\rfloor-5$ (see [1]), G^{\prime} contains at least $2 n-\left\lfloor\frac{n}{2}\right\rfloor-8$ edges. Each of them induces two crossings with the edges that have been removed.

Let G_{p}^{\prime} be a maximal planar subgraph of G^{\prime}. It is easy to see that G_{p}^{\prime} contains at most $n-5$ edges. Thus there are at least $n-\left\lfloor\frac{n}{2}\right\rfloor-3$ edges in G^{\prime} but not in G_{p}^{\prime}, each of which induces at least one crossing with an edge of G_{p}^{\prime}.

Adding everything up, the graph 1-DG (P) has no less than $6 n-3\left\lfloor\frac{n}{2}\right\rfloor-19$ crossings.

3.1.4 Proof of Proposition 2.1.4

Consider two horizontal lines such that each point in one line has a counterpart in the other line with the same abscissa. Add one point to the left of both lines such that its ordinate is the average of the ordinates of the lines. If the positions of the points are carefully chosen, it is possible to perturb them so that the point set is in convex position and 1-DG (Q) contains only the edges drawn in Figure 3 (middle). Easy calculations show that, in this case, the number of crossings of the graph is $6 n-3\left\lfloor\frac{n}{2}\right\rfloor-19$.

Figure 3: Left: point set whose 1-Delaunay graph has $n-4$ crossings. Middle: point set in convex position whose 1-Delaunay graph has $6 n-3\left\lfloor\frac{n}{2}\right\rfloor-19$ crossings. Right: point set in convex position whose 1-Delaunay graph has $n^{2} / 2+\Theta(n)$ crossings.

3.1.5 Proof of Theorem 2.1.5

Theorem 2.3.3 says that at most $12 n^{2}-63 n+81$ crossings are present in 1-DG (P). In this proof we improve the dominant term of this bound to $4 n^{2}$.

A crossing in 1-DG (P) is caused either by a red edge and a blue one or by a pair of red edges. We denote the cardinal number of the first and second sets of crossings by $r \otimes b$ and $r \otimes r$, respectively. We derive upper bounds for $r \otimes b$ and $r \otimes r$.

The bound for $r \otimes b$ is given in Lemma 3.1.9 and requires several technical lemmas and observations:
Observation 3.1.6. Let $p_{i} p_{j}, p_{l} p_{m}$ be two crossing edges. Either every circle through p_{i}, p_{j} contains p_{l} or p_{m}, or every circle through p_{l}, p_{m} contains p_{i} or p_{j}.

Lemma 3.1.7. If u, v, w are three vertices of a planar graph G on n vertices, then $d_{G}(u)+d_{G}(v)+$ $d_{G}(w) \leq 2 n+2$.

Proof. Let $V^{\prime}(G)$ be the set of vertices in $V(G) \backslash\{u, v, w\}$ that are adjacent to u, v and w. Then $d_{G}(u)+d_{G}(v)+d_{G}(w) \leq 3\left|V^{\prime}(G)\right|+2\left(n-3-\left|V^{\prime}(G)\right|\right)+6=2 n+\left|V^{\prime}(G)\right|$. Since the graph $K_{3,3}$ is not planar, we have that $\left|V^{\prime}(G)\right| \leq 2$.
Lemma 3.1.8. Let G be a graph on n vertices. If G is a plane triangulation, then $\sum_{v \in V(G)} d_{G}^{2}(v) \leq$ $2 n^{2}+33 n$.

Proof. We prove the lemma by induction on the order of the graph. The small cases are trivial. We next proceed to the inductive step.

Let us first assume that there exists a vertex v^{\prime} not in the external face having degree three, four or five. Let G^{\prime} be a graph containing all the edges in $G \backslash v^{\prime}$ and where the face bounded by the neighbors of v^{\prime} in G has been triangulated. Let $w_{1}, w_{2}, \ldots, w_{I}$ be the vertices in $V(G)$ such that $d_{G^{\prime}}\left(w_{i}\right)=d_{G}\left(w_{i}\right)-1$. Note that: if $d_{G}\left(v^{\prime}\right)=3$, then $I=3$; if $d_{G}\left(v^{\prime}\right)=4$, then $I=2$; and, if $d_{G}\left(v^{\prime}\right)=5$, then $I=2$. For any $v \in V(G), v \neq v, w_{1}, \ldots, w_{I}$, we have that $d_{G}(v) \leq d_{G^{\prime}}(v)$. Then

$$
\begin{aligned}
\sum_{v \in V(G)} d_{G}^{2}(v) & =\sum_{v \neq v^{\prime}, w_{i}} d_{G}^{2}(v)+d_{G}^{2}\left(v^{\prime}\right)+\sum_{i=1, \ldots, I} d_{G}^{2}\left(w_{i}\right) \leq \\
& \leq \sum_{v \neq v^{\prime}} d_{G^{\prime}}^{2}(v)+2 \sum_{i=1, \ldots, I} d_{G^{\prime}}\left(w_{i}\right)+d_{G}^{2}\left(v^{\prime}\right)+I \leq \\
& \leq \sum_{v \neq v^{\prime}} d_{G^{\prime}}^{2}(v)+2 \sum_{i=1, \ldots, I} d_{G^{\prime}}\left(w_{i}\right)+27
\end{aligned}
$$

By the induction hypothesis and Lemma 3.1.7,

$$
\sum_{v \in V(G)} d_{G}^{2}(v) \leq 2(n-1)^{2}+33(n-1)+2(2 n+2)+27=2 n^{2}+33 n
$$

Now suppose that all the interior vertices have degree at least six (or there are no interior vertices). Let H be the set of vertices in the external face and let $h=|H|$. By the handshaking lemma, $\sum_{v \in H} d(v) \leq 4 h-6$. Consequently, there exists a vertex in the external face having degree three or two, and the same strategy can be used to prove the inequality.
Lemma 3.1.9. For every set of points $P, r \otimes b \leq n^{2}+\Theta(n)$.
Proof. If there is a crossing between a red edge r and a blue edge $b=p_{i} p_{j}$, then, by Observation 3.1.6, r is generated by p_{i} or p_{j} (or both). We assign the crossing to this point (or to any of them if r is generated by both).

Next we bound the number of crossings that may be assigned to some point $p \in P$.
First assume that p is not in the convex hull of P. Let $e_{k}=p q_{k}$ be a blue edge incident to p; we want to know how many edges in $0-\mathrm{DG}(P \backslash\{p\})$ it may cross. Consider the triangulation T constituted by the cycle connecting the neighbors of p in $0-\mathrm{DG}(P)$ and the edges generated by p (see Figure 4, left). Let T_{p} be the triangle containing p and $T_{q_{k}}$ be the triangle incident to q_{k} that is traversed by $e_{k}\left(T_{q_{k}}=T_{p}\right.$ if q_{k} is a vertex of $\left.T_{p}\right)$. Observe that the number of edges in $0-\mathrm{DG}(P \backslash\{p\})$ that e_{k} crosses correspond to the distance between $T_{q_{k}}$ and T_{p} in the dual graph
of T. Observe also that, if q_{k} and q_{l} are two different vertices that are adjacent to p in $0-\mathrm{DG}(P)$ and are not vertices of T_{p}, we have that $T_{q_{k}} \neq T_{q_{l}}$. Then it is easy to see that the configuration of the dual graph maximizing the sum of distances between $T_{q_{k}}$ and T_{p}, for all q_{k} neighbor of p in 0-DG (P) (and not vertex of T_{p}), is a tree rooted at T_{p}. Consequently, at most $\sum_{\nu=1}^{d_{G}(p)-3} \nu$ crossings (where $G=0-\mathrm{DG}(P)$) are assigned to p.

Next suppose that p is a vertex of the convex hull of P. Let $q_{1}, q_{2}, \ldots, q_{d_{G}(p)}$ be the neighbors of p in 0-DG (P) in radial order around $p(G=0-\mathrm{DG}(P))$. Let q_{τ} be the first point that belongs to the convex hull of $P \backslash\{p\}$ but does not belong to the convex hull of P (if there is not such q_{τ}, we set $\left.q_{\tau}=q_{d_{G}(p)}\right)$. Let us look at the triangulation of the polygon $p q_{1} q_{2} \ldots q_{\tau} p$ given by the red edges. In order to determine the number of edges in $0-\mathrm{DG}(P \backslash\{p\})$ that an edge $p q_{k}(k \in\{2,3, \ldots, \tau-1\})$ crosses we can use the same argument as before, except that in this case T_{p} is defined as the triangle having p as a vertex. Next we can look at the next point that belongs to the convex hull of $P \backslash\{p\}$ but does not belong to the convex hull of P (let us denote it by q_{ι}) and apply the same argument to the edges of the polygon $p q_{\tau} q_{\tau+1} \ldots q_{\iota} p$. We proceed in this way until we reach $q_{d_{G}(p)}$. Then it is not difficult to see that the number of crossing that may be assigned to p is less than or equal to $\sum_{\nu=1}^{d_{G}(p)-2} \nu$.

Now the result follows from Lemma 3.1.8.

Figure 4: Crossings assigned to p. In the right figure, p is an interior point of P; in the left figure, it belongs to the convex hull of P. The dashed edges correspond to the dual graphs of the triangulations given by the red edges.

Next we give an upper bound for $r \otimes r$, which, combined with the bound just seen, completes the proof of Theorem 2.1.5.

Lemma 3.1.10. For every set of points $P, r \otimes r \leq 3 n^{2}+\Theta(n)$.

Proof. Let the red crossing graph be the graph whose vertices are the red edges of 1-DG (P) and where two vertices are adjacent if their corresponding edges cross. First we will prove that $e_{r} \leq$ $3 n-h-6$, that is, that the red crossing graph has no more than $3 n-h-6$ vertices. Afterwards we will see that every red crossing graph has no 4 -clique. Then we can apply Turán's theorem [27], which states that any K_{r+1}-free graph on m vertices has at most $\left(1-\frac{1}{r}\right) \frac{m^{2}}{2}$ edges. This yields the result.

First we bound the number of vertices of the red crossing graph.
Let H be the set of points in the convex hull of P, I be the set of interior points of P, and $I_{j}(j \in\{0,1,2\})$ be the set of interior points of P appearing in the convex hull of $P \backslash\{p\}$ for j distinct points $p \in H$. We denote the cardinal number of these sets by the corresponding lower case letter. For $p \in H$, let $d^{*}(p)$ be the value 2 plus the number of points of the convex hull of $P \backslash\{p\}$
which are not vertices of the convex hull of P. Finally, let ξ be the number of red edges that are generated by two distinct points of P. We have already seen that

$$
e_{r}=4 n-6-\left(i+\sum_{p \in H} d^{*}(p)\right)-\xi
$$

Using that $\sum_{p \in H} d^{*}(p)=2 h+i_{1}+2 i_{2}$, we obtain that

$$
e_{r}=2 n-6+i_{0}-i_{2}-\xi
$$

Substituting $i_{0} \leq n-h, i_{2} \geq 0$, and $\xi \geq 0$, we can conclude

$$
e_{r} \leq 3 n-h-6
$$

Next we prove that the red crossing graph is K_{4}-free.
By Observation 3.1.6, if two red edges $p_{i} p_{j}, p_{l} p_{m}$ cross, either every circle through p_{i}, p_{j} contains p_{l} or p_{m}, or viceversa. If every circle through p_{i}, p_{j} contains p_{l} or p_{m}, we say that $p_{l} p_{m}$ constrains $p_{i} p_{j}$.

Let $p_{i} p_{j}, p_{l} p_{m}$, and $p_{s} p_{t}$ be three pairwise crossing red edges. Since all the endpoints of these edges are distinct, every edge can only be constrained by one of the other two. Thus, without loss of generality, we can assume that $p_{l} p_{m}$ constrains $p_{i} p_{j}, p_{s} p_{t}$ constrains $p_{l} p_{m}$, and $p_{i} p_{j}$ constrains $p_{s} p_{t}$. Now suppose that there exists a red edge $p_{u} p_{v}$ that crosses $p_{i} p_{j}, p_{l} p_{m}$, and $p_{s} p_{t}$. Then $p_{u} p_{v}$ must be constrained by $p_{i} p_{j}, p_{l} p_{m}$, and $p_{s} p_{t}$, which is impossible because at least one circle through p_{u}, p_{v} only contains one point from P.

3.1.6 Proof of Proposition 2.1.6

We use the construction described in Proposition 2.3.5 for the particular case $k=1$. The number of crossings involving two points from the middle group and either two points from the upper group or two points from the lower group is $2\binom{n-4}{2}$.

3.1.7 Proof of Theorem 2.1.7

First of all we need a technical result.
Lemma 3.1.11. If G is a graph such that $v(G)=n$ and $e(G) \leq n-5$, then $\sum_{v \in V(G)} d_{G}^{2}(v) \leq$ $e^{2}(G)+3 e(G)$.

Proof. The proof of the lemma is by induction on the order of the graph. As in the proof of Lemma 3.1.8, the small cases are trivial, so we proceed to the inductive step.

Observe that there exists a vertex v^{\prime} in the graph having degree zero or one. We distinguish two cases.

First assume that v^{\prime} has degree zero. If G has no edges, the result trivially holds. Otherwise, let $u w$ be an edge of G and let G^{\prime} be defined as the graph $G \backslash v^{\prime} \backslash u w$. We have

$$
\begin{aligned}
\sum_{v \in V(G)} d_{G}^{2}(v) & =\sum_{v \neq v^{\prime}, u, w} d_{G}^{2}(v)+d_{G}^{2}\left(v^{\prime}\right)+d_{G}^{2}(u)+d_{G}^{2}(w)= \\
& =\sum_{v \neq v^{\prime}, u, w} d_{G^{\prime}}^{2}(v)+\left(d_{G^{\prime}}(u)+1\right)^{2}+\left(d_{G^{\prime}}(w)+1\right)^{2}= \\
& =\sum_{v \in V\left(G^{\prime}\right)} d_{G^{\prime}}^{2}(v)+2\left(\left(d_{G^{\prime}}(u)+d_{G^{\prime}}(w)\right)+2\right.
\end{aligned}
$$

Applying the induction hypothesis and using the fact that $d_{G^{\prime}}(u)+d_{G^{\prime}}(w) \leq e\left(G^{\prime}\right)+1$,

$$
\sum_{v \in V(G)} d_{G}^{2}(v) \leq(e(G)-1)^{2}+3(e(G)-1)+2 e(G)+2=e^{2}(G)+3 e(G)
$$

Next suppose that v^{\prime} has degree one. Let u be the vertex adjacent to v^{\prime} in G and G^{\prime} be the graph $G \backslash v^{\prime}$. Then,

$$
\begin{aligned}
\sum_{v \in V(G)} d_{G}^{2}(v) & =\sum_{v \neq v^{\prime}, u} d_{G}^{2}(v)+d_{G}^{2}\left(v^{\prime}\right)+d_{G}^{2}(u)=\sum_{v \neq v^{\prime}, u} d_{G^{\prime}}^{2}(v)+1+\left(d_{G^{\prime}}(u)+1\right)^{2}= \\
& =\sum_{v \in V\left(G^{\prime}\right)} d_{G^{\prime}}^{2}(v)+2 d_{G^{\prime}}(u)+2 \leq(e(G)-1)^{2}+3(e(G)-1)+2(e(G)-1)+2 \leq \\
& \leq e^{2}(G)+3 e(G) .
\end{aligned}
$$

Now we are ready to prove Theorem 2.1.7.
If P is in convex position, then $e_{b}=2 n-3$. Since, in general, $e_{r} \leq 3 n-h-6$ (see the proof of Lemma 3.1.10), in the convex case we have that $e_{r} \leq 2 n-6$.

Let p_{i}, p_{i+1}, and p_{i+2} be three consecutive points in the convex hull of P. Let us suppose that we momentarily remove from 1-DG (P) the edges $p_{i} p_{i+1}, p_{i+1} p_{i+2}$, and $p_{i} p_{i+2}$ for all i. Let $e_{b^{\prime}}$ and $e_{r^{\prime}}$ respectively be the number of blue and red edges in 1-DG (P) after these removals. It is not difficult to see that $n / 2-3 \leq e_{b^{\prime}} \leq n-5$ and $e_{r^{\prime}} \leq 2 n-9-e_{b^{\prime}}$.

For all i, the edges $p_{i} p_{i+1}$ are not involved in any crossing. The edges of the form $p_{i} p_{i+2}$ participate in a total number of at most $5 n-18$ crossings, as pairs of edges of this type generate n crossings, and each of the (at most) $2 n-9$ remaining edges in 1-DG (P) induces two crossings with them. Let $r^{\prime} \otimes r^{\prime}$ denote the number of crossings between two red edges that are not of the form $p_{i} p_{i+2}$. Then

$$
\boxtimes(1-\mathrm{DG}(P)) \leq r \otimes b+r^{\prime} \otimes r^{\prime}+5 n-18
$$

Let $G=0-\mathrm{DG}(P)$ and G^{\prime} be the graph on P consisting of the edges of G not of the form $p_{i} p_{i+1}$ or $p_{i} p_{i+2}$. As we have seen in Lemma 3.1.9,

$$
r \otimes b \leq \sum_{p \in P} \sum_{\nu=1}^{d_{G}(p)-2} \nu=\frac{1}{2} \sum_{p \in P}\left(d_{G}^{2}(p)-3 d_{G}(p)+2\right) .
$$

Notice that, for all $p \in P, d_{G}(p)=d_{G^{\prime}}(p)+4$. Hence

$$
r \otimes b \leq \frac{1}{2} \sum_{v \in P}\left(d_{G^{\prime}}^{2}(v)+5 d_{G^{\prime}}(v)+6\right)
$$

By Lemma 3.1.11,

$$
r \otimes b \leq \frac{e_{b^{\prime}}^{2}}{2}+\frac{13 e_{b^{\prime}}}{2}+3 n
$$

Next we bound $r^{\prime} \otimes r^{\prime}$. Recall that $e_{r^{\prime}} \leq 2 n-9-e_{b^{\prime}}$. Following the same argument as in the proof of Lemma 3.1.10, we obtain

$$
r^{\prime} \otimes r^{\prime} \leq \frac{\left(2 n-9-e_{b^{\prime}}\right)^{2}}{3}
$$

Thus, putting everything together,

$$
\boxtimes(1-\mathrm{DG}(P)) \leq \frac{5 e_{b^{\prime}}^{2}}{6}+\left(\frac{25}{2}-\frac{4 n}{3}\right) e_{b^{\prime}}+\left(\frac{4 n^{2}}{3}-4 n+9\right)=: f\left(e_{b^{\prime}}\right) .
$$

For n large enough, the maximum value of the function $f\left(e_{b^{\prime}}\right)$ in the domain $[n / 2-3, n-5]$ is achieved in the lower extreme of the interval and is equal to $7 n^{2} / 8+15 n / 4-21$. This completes the proof.

3.1.8 Proof of Proposition 2.1.8

Consider a set of $n-2$ points on a circle together with 2 points close to its center, as in Figure 3 (right). In the graph 1-DG (Q) each point in the circular chain is adjacent to both central points. Therefore the number of crossings of 1-DG (Q) is greater than $\binom{n-2}{2}$.

3.2 Proof of the results in Subsection 2.2

In this subsection we prove the results in Table 2. The arrows in the figures have been suppressed for the sake of readability.

Proposition 3.2.1. For any $n \geq 2, \overline{c r}(1-\mathrm{NNG}(n))=0$.

Proof. For any n-point set P, the graph 1-NNG (P) is plane, so it has no crossings.
Proposition 3.2.2. For any $n \geq 3, \overline{c r}(2-\mathrm{NNG}(n))=0$.

Proof. Let Q be the set of vertices of a slightly perturbed (so that no four points are concyclic) regular n-gon. Then, in 2-NNG (Q), each vertex is adjacent to its two contiguous vertices in the boundary of the polygon. Thus 2-NNG (Q) is a plane graph.

Proposition 3.2.3. For any $n \geq 4, \overline{c r}(3-\mathrm{NNG}(n))=0$.
Proof. Consider the examples of plane 3-NNG (Q) for $|Q|=4,5,6,7$ in Figure 5. Let $Q_{i}(i \in$ $\{4,5,6,7\}$) denote the example with i points. If $n=4 l+j$, with $l \in \mathbb{N}$ and $j \in\{0,1,2,3\}$, we construct an n-point set made up of $l-1$ copies of Q_{4} and one copy of Q_{4+j}. If these clusters are far enough from each other, the three nearest neighbor graph of the resulting set of points do not contain edges whose endpoints belong to two different clusters. Consequently, the graph is plane.

Figure 5: Point sets of cardinality $4,5,6$ and 7 whose 3 -NNG is plane.

Proposition 3.2.4. For any $n \geq 14, \overline{c r}(4-N N G(n))=0$.

Proof. If n is even, first we place the vertices of a (slightly perturbed) regular $n / 2$-gon. Afterwards we add an interior $n / 2$-gon such that each vertex is very close to the midpoint of one of the edges of the exterior polygon (see Figure 6, left). If $n \geq 8$, the four nearest neighbor graph of this set of points contains the boundaries of both polygons and the edges connecting each point in the exterior polygon to its two closest points in the interior polygon.

If n is odd, consider the previous construction with $n-1$ points and add a new point close to the center. If $n \geq 15$, the four nearest neighbor graph is augmented by only four new edges, namely, the ones connecting the new point to its four nearest neighbors, which are all in the interior polygon (see Figure 6, right). Hence no crossing is created.

Figure 6: Point sets of cardinality 10 and 17 whose 4-NNG is plane.

Proposition 3.2.5. For any $n \geq 44, \overline{c r}(5-\mathrm{NNG}(n))=0$.
Proof. We start considering values of n of the form $n=4 l$, with $l \geq 13$. We place the following four groups of l points $(i \in\{1,2, \ldots, l\})$:

$$
\begin{aligned}
p_{i} & =\frac{1}{2 \sin (\pi / l)}\left(\cos \left(\frac{2 \pi i}{l}\right), \sin \left(\frac{2 \pi i}{l}\right)\right) \\
q_{i} & =\left(\frac{1}{2 \tan (\pi / l)}+\frac{\sqrt{3}}{2}\right)\left(\cos \left(\frac{2 \pi i}{l}+\frac{\pi}{l}\right), \sin \left(\frac{2 \pi i}{l}+\frac{\pi}{l}\right)\right) \\
r_{i} & =\frac{1}{2 \sin (\pi / l)(1-2 \sin (\pi / l))}\left(\cos \left(\frac{2 \pi i}{l}\right), \sin \left(\frac{2 \pi i}{l}\right)\right) \\
s_{i} & =\left(\frac{1}{2 \tan (\pi / l)}+\frac{\sqrt{3}}{2}\right)(1+2 \sin (\pi / l))\left(\cos \left(\frac{2 \pi i}{l}+\frac{\pi}{l}\right), \sin \left(\frac{2 \pi i}{l}+\frac{\pi}{l}\right)\right) .
\end{aligned}
$$

These points correspond to four regular and concentric l-gons with increasing radius (see Figure 7). Easy calculations show that $\left|p_{i} p_{i+1}\right|=\left|p_{i+1} q_{i}\right|=\left|q_{i} p_{i}\right|=1,\left|p_{i} r_{i}\right|=\left|r_{i} r_{i+1}\right|$ and $\left|q_{i} q_{i+1}\right|=\left|q_{i} s_{i}\right|$. In order to break the last two equalities we slightly decrease the radius of the third and fourth polygons. We also perturb the points to reach a general position.

The five nearest neighbor graph of the resulting set of points has the edges shown in Figure 7. In particular, it is plane. If $l<13$, the adjacencies change and the graph contains several crossings. However, for $l=11$ and $l=12$ these crossings can be removed by decreasing a bit the radius of the third circle. So we have proved that for any $n \geq 44, n \equiv 0(\bmod 4)$, there exist an n-point set Q_{n} whose five nearest neighbor graph is plane.

If $n=4 l+j$, with $l \geq 11$ and $j \in\{1,2,3\}$, we can add j points close to the center of the set $Q_{4 l}$ in such a way that the five nearest neighbor graph remains plane.

Figure 7: Set of 56 points whose 5-NNG is plane.

Proposition 3.2.6. For any $n \geq 39, \overline{c r}(6-\mathrm{NNG}(n)) \leq 58$.
Proof. Let us first assume that $n=13 l$, with $l \geq 3$.
Consider a group of l regular and concentric 13 -gons $R_{1}, R_{2}, \ldots, R_{l}$. The polygon R_{i}, for $i \in$ $\{2,3, \ldots, l-1\}$, is rotated by an angle of $\pi / 13$ with respect to the polygon R_{i-1}, while R_{l} is rotated by an angle slightly larger than $\pi / 13$ with respect to R_{l-1} to break ties. The radius of R_{1} is 0.9 , and the radius of R_{i} for $i>2$ is 1.386^{i-1}. The points are perturbed so that they are in general position. See Figure 8.

Regardless of the value of l, the six nearest neighbor graph of this set of points has 52 crossings, as the crossings only involve vertices from R_{1}, R_{l-2}, R_{l-1} and R_{l}. This settles the problem for values of n that are multiple of 13 .

If $n=13 l+j$, with $l \geq 3$ and $j \in\{1,2, \ldots, 12\}$, we add j consecutive points of the polygon R_{l+1}. The six nearest neighbor graph of the new point set has 6 extra crossings.

Proposition 3.2.7. For any $n \geq 11$,
i) $\overline{c r}(7-\mathrm{NNG}(n)) \geq \frac{n}{2}+6$,
ii) $\overline{c r}(8-\mathrm{NNG}(n)) \geq n+\frac{50}{3}$,
iii) $\overline{c r}(9-\operatorname{NNG}(n)) \geq \frac{13 n}{6}+\frac{50}{3}$,
iv) $\overline{c r}(10-\mathrm{NNG}(n)) \geq \frac{10 n}{3}+\frac{50}{3}$,

Proof. For every set of points P, the number of edges of k - $\mathrm{NNG}(P)$ is at least $k n / 2$, since each vertex has degree k or greater. Now the first bound follows from the well-known fact that, for any graph G, its crossing number satisfies that $\operatorname{cr}(G) \geq e(G)-(3 v(G)-6)$. The remaining bounds are a corollary of the following result:

Figure 8: Set of 78 points whose 6-NNG has 52 crossings.

Theorem 3.2.8. [21] The crossing number of any graph G with $v(G) \geq 3$ vertices and $e(G)$ edges satisfies

$$
c r(G) \geq \frac{7}{3} e(G)-\frac{25}{3}(v(G)-2) .
$$

Proposition 3.2.9. For any $n \geq 8, \overline{c r}(7-\mathrm{NNG}(n)) \leq \frac{n}{2}+\Theta(1)$.
Proof. If $n \leq 24$, the result is trivial.
If $n=25 l$ with $l \geq 1$, we place l regular and concentric 25 -gons $R_{1}, R_{2}, \ldots, R_{l}$ (see Figure 9 , left). The polygons R_{i} such that $i=4 j+1$ or $i=4 j+2$ for some $j \geq 0$ have all the same orientation, while the remaining polygons are rotated by an angle of $\pi / 25$ with respect to them. For all i, the radius of R_{i} is 1.27^{i}. The points are perturbed to attain general position.

Ignoring some crossings that occur near the boundaries, the seven nearest neighbor graph of this point set contains $n / 2$ crossings (or $(n-25) / 2$, depending on the parity of l), because the crossings only take place between consecutive 25 -gons of the form $R_{2 j+1}, R_{2 j+2}$, and, for each pair, the number of such crossings is 25 . The crossings near the boundaries only contribute an additive factor of constant size.

Finally, if $n=25 l+j$, with $l \geq 1$ and $j \in\{1,2, \ldots, 24\}$, we add j consecutive points of the polygon R_{l+1}. This only adds a constant number of extra crossings.

Proposition 3.2.10. For any $n \geq 9, \overline{c r}(8-N N G(n)) \leq n+\Theta(1)$.
Proof. We also use concentric polygons. For constant values of n the bound is trivial, and for $n=26 l+j$ we use the same strategy as in previous cases, so here we focus on the case where $n=26 l$.

Figure 9: Left: point set whose 7-NNG has $n / 2+\Theta(1)$ crossings. Right: point set whose 8 -NNG has $n+\Theta(1)$ crossings.

We consider l regular and concentric 26 -gons $R_{1}, R_{2}, \ldots, R_{l}$ with the same orientation (see Figure 9 , right). For all i, the radius of R_{i} is 1.3^{i}. The points are infinitesimally perturbed.

The eight nearest neighbor graph of this point set has $n+\Theta(1)$ crossings. The linear term comes from the fact that in the region between any pair of consecutive 26 -gons there are 26 crossings. The constant term comes from some additional crossings that take place near the boundaries of the point set.

Proposition 3.2.11. For any $n \geq 10, \overline{c r}(9-N N G(n)) \leq 31 n / 13+\Theta(1)$.

Proof. We propose the construction in Figure 10. A careful analysis of the drawing yields that the nine nearest neighbor graph of the point set has $31 n / 13+\Theta(\sqrt{n})$ crossings. The term $\Theta(\sqrt{n})$ comes from crossings that take place near the boundary of the point set. Since the 9 nearest neighbors of each point are well-defined, the point positions can be slightly perturbed without modifying the set of nearest neighbors of each point. Thus we can rearrange the points in circular strips, where each strip contains exactly the minimum number of points ensuring that the adjacencies in the nine nearest neighbor graph do not change. This reduces the number of crossings to $31 n / 13+\Theta(1)$. We omit further details due to the high complexity of the point set.

Proposition 3.2.12. For any $n \geq 11, \overline{c r}(10-\mathrm{NNG}(n)) \leq 4 n+\Theta(1)$.
Proof. Our construction is shown in Figure 11. It can be seen that the ten nearest neighbor graph of the point set contains $4 n+\Theta(\sqrt{n})$ crossings. Using the same strategy as in the previous example, we can modify the construction to obtain a new set of points whose 10 -NNG has $4 n+\Theta(1)$ crossings.

Figure 10: Left: set of points whose 9-NNG has $31 n / 13+\Theta(\sqrt{n})$ crossings. Right: zoom of the figure on the left.

3.3 Proofs of the results in Subsection 2.3

3.3.1 Proof of Theorem 2.3.1

For every set of points P, the number of edges of k - NNG (P) is no less than $k n / 2$. The graphs k - $\mathrm{RNG}(P)$ and k-GG (P) contain all edges present in k-NNG (P), so they also have at least $k n / 2$ edges.

A stronger lower bound is known for the graph $k-\mathrm{DG}(P)$. If $k<\frac{n}{2}-1$, then the number of edges of k - $\mathrm{DG}(P)$ is at least $(k+1) n$ (see [1]).

Now the bounds on the number of crossings follow from the next theorem:
Theorem 3.3.1. [21] The crossing number of any graph G such that $e(G) \geq \frac{103}{16} v(G)$ satisfies $c r(G) \geq \frac{1024}{31827} \frac{e^{3}(G)}{v^{2}(G)}$.

3.3.2 Proof of Proposition 2.3.2

We use the following result in [23]. We note that, instead of $\pi / 9$, the incorrect coefficient $2 \pi / 27$ was originally reported. The correct coefficient was later reported in [21].

Proposition 3.3.2. [23] Let $\omega(1) \leq d \leq o(\sqrt{n})$. Let Q be a set of n points arranged in a slightly perturbed unit square grid of size $\sqrt{n} \times \sqrt{n}$, so that the points are in general position. Define G_{d} as the geometric graph on Q where two points are connected if their distance is at most d. Then the number of crossings in G_{d} satisfies $\boxtimes\left(G_{d}\right)=\frac{\pi}{9} n d^{6}(1+o(1))$.

Let Q be the set just described. First note that the k closest points to a point in Q not close to the boundary consist of those points inside a circle of radius $d=\sqrt{k / \pi}+\Theta(1)$. For the points close to the boundary, that is within d from it, their k closest points consist of those points in Q inside a circle of radius at most $2 d$. Thus k-NNG (Q) has all the edges in G_{d} and some of the edges

Figure 11: Point set whose 10-NNG has $4 n+\Theta(\sqrt{n})$ crossings.
in $G_{2 d}$ whose endpoints are within d of the boundary. Thus

$$
\begin{aligned}
\boxtimes(k-\mathrm{NNG}(Q)) & \leq \frac{\pi}{9} n d^{6}(1+o(1))+\left(\frac{\pi}{9} n(2 d)^{6}(1+o(1))-\frac{\pi}{9}(\sqrt{n}-2 d)^{2}(2 d)^{6}(1+o(1))\right) \leq \\
& \leq \frac{\pi}{9} n d^{6}(1+o(1))+\Theta\left(\sqrt{n} d^{7}\right)=\frac{\pi}{9} n d^{6}(1+o(1))=\frac{1}{9 \pi^{2}} k^{3} n(1+o(1)) .
\end{aligned}
$$

Except for a similar analysis for the points close to the boundary, two points in Q are neighbors in k-RNG (Q) if their distance is at most $d=\sqrt{k /(2 \pi / 3-\sqrt{3} / 2)}+\Theta(1)$. Similarly, two points are neighbors in $k-\mathrm{GG}(Q)$ or in k - $\mathrm{DG}(Q)$ if their distance is at most $d=2 \sqrt{k / \pi}$. The result follows by the Proposition and by noting that the extra crossings caused by the points close to the boundary are at most $o\left(n d^{6}\right)$.

3.3.3 Proof of Theorem 2.3.3

Let e be an edge of k - $\mathrm{DG}(P)$. Let us see that there are many edges in k - $\mathrm{DG}(P)$ that do not cross e.
For the sake of simplicity, let us assume that e is horizontal. The line extending e divides P minus the endpoints of e into two groups. Let P_{a} and P_{b} respectively denote the set of points above and below the line. We set $\left|P_{a}\right|=l$. Observe that $\left|P_{b}\right|=n-l-2$.

Let us first assume that $\left|P_{a}\right| \geq k+2$ and $\left|P_{b}\right| \geq k+2$. Let $p_{1}, p_{2}, \ldots, p_{l}$ denote the points in P_{a} sorted from top to bottom. If $i \in[2, k+2]$ and $j \in[1, i-1]$, then p_{i} is adjacent to p_{j} in k-DG (P). It suffices to consider the circle through p_{i} and p_{j} tangent to the horizontal line containing p_{i}. From all points in P, this circle can only contain $\left\{p_{1}, p_{2}, \ldots, p_{i-1}\right\} \backslash\left\{p_{j}\right\}$ in its interior. Notice that the edges $p_{i} p_{1}, p_{i} p_{2}, \ldots, p_{i} p_{i-1}$ do not cross e.

If $i \in[k+3, l]$, we consider the same family of circles. More precisely, we consider a circle tangent to the horizontal line through p_{i} growing until its interior contains $k+1$ points from P_{a} (it could happen that the interior of the circle goes from having k points from P_{a} to having $k+2$ points from P_{a}; this case is similar). Then in $k-\operatorname{DG}(P)$ these $k+1$ points are connected to p_{i} and all these edges do not cross e.

In conclusion, there exist $(k+1)(k+2) / 2+(l-(k+2))(k+1)$ edges between points in P_{a} not crossing e. By analogous arguments, there exist $(k+1)(k+2) / 2+(n-l-2-(k+2))(k+1)$ edges
between points in P_{b} not crossing e. This adds up to a total number of $(k+1)(n-k-4)$ edges.
It remains to settle the case where either $\left|P_{a}\right|<k+2$ or $\left|P_{b}\right|<k+2$. Let us suppose that $\left|P_{a}\right|<k+2$; since $k<n / 2-1$, we have that $\left|P_{b}\right| \geq k+1$. Arguing as in the previous case, we find $(l-1) l / 2+(k+1)(k+2) / 2+(n-l-2-(k+2))(k+1)$ edges that do not cross e. It is not difficult to see that, for any $l<k+2$, this number is always greater than $(k+1)(n-k-4)$.

In summary, since k - $\mathrm{DG}(P)$ contains at most $3(k+1) n-3(k+1)(k+2)$ edges, e crosses no more than $3(k+1) n-3(k+1)(k+2)-1-(k+1)(n-k-4)$ edges in k-DG (P). Hence the number of crossings of k - DG (P) is upper bounded by $\frac{1}{2}(3(k+1) n-3(k+1)(k+2))(3(k+1) n-3(k+1)(k+$ $2)-1-(k+1)(n-k-4))$.

3.3.4 Proof of Proposition 2.3.4

Refer to Figure 12 (left). The upper chain contains $n-k-1$ points on a circle C such that the distance between consecutive points is constant. Let q_{i}, q_{i+1} be two such consecutive points. Let l be the line through q_{i+1} perpendicular to $\overrightarrow{q_{i} q_{i+1}}$, and let d be the distance between l and the center of C. The lower chain forms a convex chain seen from the upper chain and contains $k+1$ points that are at distance less than d from the center of C. This ensures that the closed disk with diameter given by q_{i} and some point from the lower chain does not contain any point from the upper chain different from q_{i}. Thus in $k-\mathrm{GG}(Q)$ each point from the upper group is adjacent to each point from the lower group. Notice that the construction can be perturbed to attain general position.

3.3.5 Proof of Proposition 2.3.5

Refer to Figure 12 (right). The number of points in the upper group is $k+1$, and the lower group contains the same number of points. The rest of points are placed in the middle group. In k - $\mathrm{DG}(Q)$ each point q_{i} in the middle group is connected to all upper and lower points, as it suffices to consider families of increasing circles through q_{i} with center at the vertical line through q_{i}. This construction can be perturbed so that it becomes non-degenerate.

Figure 12: Left: set of points whose k-GG has $k^{2} n^{2} / 4+o\left(k^{2} n^{2}\right)$ crossings. Right: set of points whose k-DG has $k^{2} n^{2} / 2+o\left(k^{2} n^{2}\right)$ crossings.

3.3.6 Proof of Theorem 2.3.6

Lemma 3.3.3. In any angular sector with apex $p \in P$ and amplitude $\alpha \leq \pi / 3$, the only points that can be connected to p in the graph k - $\mathrm{RNG}(P)$ are the $k+1$ closest points to p that are contained in the sector.

Proof. Let p_{1}, p_{2}, \ldots be the points of P that are contained in the sector sorted by increasing distance to p. For each $i \geq 2$, the points $p_{1}, p_{2}, \ldots, p_{i-1}$ are contained in the intersection of the two disks centered at p, p_{i} with radius $\left|p p_{i}\right|$ (see Figure 13, left). Consequently, p and p_{i} are not connected in k - $\mathrm{RNG}(P)$ if $i-1>k$.

Let $e=p_{i} p_{j}$ be an edge in $k-\operatorname{RNG}(P)$. We define the lens associated to e as the open intersection of the circles centered at p_{i} and p_{j} with radius $\left|p_{i} p_{j}\right|^{*}$.

Now let us define a charging scheme that assigns every crossing in k-RNG (P) to each of the two involved edges e satisfying that at least one of the endpoints of the other edge is contained in the lens associated to e. Since each crossing defines a quadrilateral having at least one obtuse angle, the crossing is (at least) assigned to the edge opposite to this angle.

Let e be an edge in k - $\operatorname{RNG}(P)$. The lens associated to e contains at most k points in P. By Lemma 3.3.3, each of them is adjacent to no more than $3 k+3$ points in P such that the edge that connects them crosses e. Consequently, at most $3 k^{2}+3 k$ crossings may be assigned to e.

Since each vertex in P has degree at most $6 k+6$ (see Lemma 3.3.3), the number of edges of k-RNG (P) does not exceed $3 k n+3 n$, which yields the theorem.

3.3.7 Proof of Theorem 2.3.7

The proof of Theorem 2.3.7 requires several technical lemmas. The first one is a corollary of Lemma 3.3.3:

Lemma 3.3.4. In any angular sector with apex $p \in P$ and amplitude $\alpha \leq \pi / 3$, the only points that can be connected to p in the graph k-NNG (P) are the k closest points to p that are contained in the sector.

Lemma 3.3.5. Let $p_{i}, p_{j}, p_{l}, p_{m}$ be four elements of P, with $\left|p_{i} p_{j}\right|<\left|p_{i} p_{l}\right|<\left|p_{i} p_{m}\right|$. If $p_{j} p_{m}$ crosses $p_{i} p_{l}$, then $\left|p_{j} p_{l}\right|<\left|p_{j} p_{m}\right|$.

Proof. Let $C_{i, l}$ and $C_{j, l}$ respectively be the circles centered at p_{i} and p_{j} containing p_{l} in the boundary (see Figure 13, middle). These circles have a non empty intersection and, since p_{i}, p_{j}, and p_{l} are not aligned, $C_{i, l}$ is not contained in $C_{j, l}$, nor $C_{j, l}$ is contained in $C_{i, l}$. Let q be the intersection point between $C_{i, l}$ and the ray starting at p_{j} and passing through p_{i}. We have that $\left|p_{j} q\right|>\left|p_{j} p_{l}\right|$. Therefore the ray starting at p_{j} and passing through p_{i} intersects $C_{j, l}$ before $C_{i, l}$. This property is maintained for all rays starting at p_{j} and contained in the wedge induced by the angle $\angle p_{i} p_{j} p_{l}$. In particular, it is maintained for the ray starting at p_{j} and containing p_{m}. Since p_{m} lies outside $C_{i, l}, p_{m}$ is not contained in $C_{j, l}$, so $\left|p_{j} p_{l}\right|<\left|p_{j} p_{m}\right|$.

Lemma 3.3.6. Let p_{i}, p_{j}, p_{l} be three elements of P, with $\left|p_{i} p_{j}\right|<\left|p_{i} p_{l}\right|$. Then all points p_{m} such that $p_{j} p_{m}$ crosses $p_{i} p_{l},\left|p_{i} p_{l}\right|<\left|p_{i} p_{m}\right|,\left|p_{m} p_{i}\right|>\left|p_{m} p_{j}\right|$, and $\left|p_{m} p_{l}\right|>\left|p_{m} p_{j}\right|$ are contained in an angular sector with apex p_{i} and amplitude at most $\pi / 3$.

Proof. Without loss of generality, we assume that the line through p_{i} and p_{l} is vertical, p_{i} is above p_{l}, and p_{j} is to the left of this line. The other situations are symmetric.

Let C be the circle centered at p_{i} and containing p_{l} in the boundary. Let $l_{i, j}$ and $l_{j, l}$ respectively be the bisectors of $p_{i} p_{j}$ and $p_{j} p_{l}$. A point p_{m} satisfying the hypothesis of the lemma lie on the intersection R of the following four regions: the exterior of C, the semiplane opposite to p_{i}

[^1]

Figure 13: Left: an angular sector with apex p and amplitude $\alpha \leq \pi / 3$. Middle: four points satisfying the hypothesis of Lemma 3.3.5. Right: the region R in Lemma 3.3.6.
determined by $l_{i, j}$, the semiplane opposite to p_{l} determined by $l_{j, l}$, and the wedge induced by the angle $\angle p_{i} p_{j} p_{l}$ (see Figure 13, right).

If p_{j} has greater or equal ordinate than p_{i}, it is not difficult to see that region R is empty. Observe that R is also empty if $l_{i, j}$ or $l_{j, l}$ do not intersect the arc of C determined by the wedge induced by $\angle p_{i} p_{j} p_{l}$. Therefore the lemma clearly holds in these cases.

Let us now suppose that p_{j} has smaller ordinate than $p_{i}, l_{i, j}$ intersects the arc of C determined by the wedge induced by $\angle p_{i} p_{j} p_{l}$ in a point q, and $l_{j, l}$ intersects the arc of C determined by the wedge induced by $\angle p_{i} p_{j} p_{l}$ in a point r. Let t be the intersection of $l_{i, j}$ and $l_{j, l}$. In order for R not to be empty t must lie outside C. Let us assume that we are in this situation.

Consider the wedge formed by the ray starting at p_{j} and passing through q together with the ray starting from p_{j} and passing through r. Observe that R is contained in this wedge. We will end the proof by showing that this wedge has angle at most $\pi / 3$. Let t^{\prime} be the intersection of the bisector of $p_{i} p_{l}$ with the the arc of C determined by the wedge induced by $\angle p_{i} p_{j} p_{l}$. Notice that $\angle p_{j} p_{i} q>\angle p_{j} p_{i} t^{\prime}>\angle p_{l} p_{i} t^{\prime}$. By analogous arguments, $\angle p_{j} p_{l} r>\angle p_{i} p_{l} t^{\prime}$. Since $\angle p_{l} p_{i} t^{\prime}$ and $\angle p_{i} p_{l} t^{\prime}$ are angles of the equilateral triangle formed by p_{i}, p_{l}, and t^{\prime}, then $\angle p_{j} p_{i} q$ and $\angle p_{j} p_{l} r$ are greater than $\pi / 3$. This implies that $\angle p_{i} p_{j} q$ and $\angle p_{l} p_{j} r$ are greater than $\pi / 3$, since $\angle p_{j} p_{i} q=\angle p_{i} p_{j} q$ and $\angle p_{l} p_{j} r=\angle p_{j} p_{l} r$. Given that $\angle p_{i} p_{j} q+\angle q p_{j} r+\angle r p_{j} p_{l}<\pi$, we conclude that $\angle q p_{j} r<\pi / 3$.

Now we are ready to prove Theorem 2.3.7.
Consider two crossing edges in k-NNG (P) involving vertices $p_{i}, p_{j}, p_{l}, p_{m}$. We assign the crossing to each of the pairs of edges $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$ satisfying: (i) one of the two crossing edges is $\overrightarrow{p_{i} p_{l}}$; (ii) $\left|p_{i} p_{j}\right|<\left|p_{i} p_{l}\right|$ (so $\left.\overrightarrow{p_{i} p_{j}} \in E(k-\operatorname{NNG}(P))\right)$.

Let us show that this assignment is consistent. The quadrilateral defined by the vertices involved in the crossing has at least one obtuse angle. Then the crossing is assigned to the pair of directed edges consisting of the edge opposite to this obtuse angle (which is a diagonal of the quadrilateral) and one edge with the same origin and lying in one side of the quadrilateral.

We devise a charging scheme that divides the weight of each crossing by the number of pairs of edges the crossing is assigned to. We say that a crossing is simple if it is only assigned to one pair of edges, and we say that it is multiple otherwise. In the following we find the maximum weight that a pair of edges can receive.

Let p_{j} and p_{l} be two of the k nearest neighbors of p_{i}, with $\left|p_{i} p_{j}\right|<\left|p_{i} p_{l}\right|$. Each crossing assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$ can be associated with a vertex adjacent to p_{j} in k-NNG (P) (the fourth point involved in the crossing). We want to bound the maximum number of such vertices. Let \hat{w} be the wedge
induced by $\angle p_{i} p_{j} p_{l}$. If \hat{w} has amplitude at most $2 \pi / 3$, then, by Lemma 3.3.4, the maximum number of crossings that may be assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$ is $2 k$. Otherwise we partition \hat{w} into three wedges \hat{w}_{1}, \hat{w}_{2}, and \hat{w}_{3} as follows: \hat{w}_{1} is bounded by the half-line with origin at p_{j} and direction given by $\overrightarrow{p_{j} p_{i}}$ and has amplitude $p i / 3 ; \hat{w}_{3}$ is bounded by the half-line with origin at p_{j} and direction given by $\overrightarrow{p_{j} p_{l}}$ and has amplitude $p i / 3 ; \hat{w}_{2}$ consists of the part of \hat{w} not covered by \hat{w}_{1} and \hat{w}_{3}. For $\nu \in\{1,2,3\}$, let n_{ν} be the number of vertices in \hat{w}_{ν} that create a crossing assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$. A direct application of Lemma 3.3.4 yields that $n_{\nu} \leq k$ for $\nu \in\{1,2,3\}$. Furthermore, since p_{i} is a point in \hat{w}_{1} adjacent to p_{j}, we have that $n_{1} \leq k-1$. Finally, consider the k closest points to p_{j} contained in \hat{w}_{3}, which, by Lemma 3.3.4, are the only candidates to be connected to p_{j} in k-NNG (P). Observe that p_{l} belongs to this set: otherwise, by Lemma 3.3.5, there would be k points p_{m} such that $\left|p_{i} p_{l}\right|>\left|p_{i} p_{m}\right|$, which is absurd because $\overrightarrow{p_{i} p_{l}} \in E(k$-NNG $(P))$. Thus $n_{3} \leq k-1$. In conclusion, the maximum number of crossings that may be assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$ is $3 k-2$.

Next we analyze the maximum number of simple crossings that may be assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$. Let p_{m} be a vertex in P such that the edge $p_{j} p_{m}$ (with some orientation) causes a crossing assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$. If $\left|p_{i} p_{m}\right|<\left|p_{i} p_{l}\right|$, then the crossing is also assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{m}}\right\}$. If $\left|p_{i} p_{m}\right|>\left|p_{i} p_{l}\right|$ and $\overrightarrow{p_{j} p_{m}} \in E(k$-NNG $(P))$, then, by Lemma 3.3.5, $\left|p_{j} p_{l}\right|<\left|p_{j} p_{m}\right|$ and the crossing is also assigned to $\left\{\overrightarrow{p_{j} p_{m}}, \overrightarrow{p_{j} p_{l}}\right\}$. If $\left|p_{i} p_{m}\right|>\left|p_{i} p_{l}\right|, \overrightarrow{p_{m} p_{j}} \in E(k$-NNG $(P))$, and $\left|p_{m} p_{j}\right|>\left|p_{m} p_{i}\right|$ or $\left|p_{m} p_{j}\right|>\left|p_{m} p_{l}\right|$, then the crossing is also assigned to $\left\{\overrightarrow{p_{m} p_{j}}, \overrightarrow{p_{m} p_{i}}\right\}$ or $\left\{\overrightarrow{p_{m} p_{j}}, \overrightarrow{p_{m} p_{l}}\right\}$. Therefore three necessary conditions for p_{m} to cause a simple crossing assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$ are: (i) $\left|p_{i} p_{m}\right|>\left|p_{i} p_{l}\right|$; (ii) $\overrightarrow{p_{m} p_{j}} \in E(k-\operatorname{NNG}(P))$; (iii) $\left|p_{m} p_{i}\right|>\left|p_{m} p_{j}\right|$ and $\left|p_{m} p_{l}\right|>\left|p_{m} p_{j}\right|$. By Lemmas 3.3.6 and 3.3.4, there are at most k such points.

To conclude, in the worst case k simple crossings and $2 k-2$ crossings of weight $1 / 2$ are assigned to $\left\{\overrightarrow{p_{i} p_{l}}, \overrightarrow{p_{i} p_{j}}\right\}$. Thus any pair of edges in $k-\mathrm{NNG}(P)$ receives weight at most $2 k-1$.

3.3.8 Proof of Proposition 2.3.8

Consider the set $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$, where $q_{i}=\left(2^{i}, 0\right)$. Let us slightly perturb the configuration so that the points are in convex position. The k nearest neighbors of each point q_{i} such that $i>k$ are $q_{i-1}, q_{i-2}, \ldots, q_{i-k}$. Therefore, if $i \in[k+1, n-k]$, then q_{i} is connected in k - $\mathrm{NNG}(Q)$ to its k predecessors and k successors in the "line".

Let $\overrightarrow{q_{i} q_{j}}, \overrightarrow{q_{l} q_{m}}$ be two crossing edges such that $j<m<i<l$. We assign this crossing to q_{j}. Suppose that $j \in[k+1, n-k]$. Then the crossings between $\overrightarrow{q_{i} q_{j}}$ and the following edges are assigned to q_{j} : $\overrightarrow{q_{j+1} q_{j-1}}, \overrightarrow{q_{j+2} q_{j-1}}, \ldots, \overrightarrow{q_{j+k-1} q_{j-1}}, \overrightarrow{q_{j+1} q_{j-2}}, \overrightarrow{q_{j+2} q_{j-2}}, \ldots, \overrightarrow{q_{j+k-2} q_{j-2}}, \ldots, \overrightarrow{q_{j+1} q_{i+1}}, \overrightarrow{q_{j+2} q_{i+1}}, \ldots$, $\overrightarrow{q_{i+k+1} q_{i+1}}$. This adds up to $\sum_{\nu=i+k+1-j}^{k-1} \nu$ crossings. Since i might take values from $j-k$ to $j-2$, the total number of crossings assigned to q_{j} is

$$
\sum_{i=j-k}^{j-2} \sum_{\nu=i+k+1-j}^{k-1} \nu=\sum_{\nu=1}^{k-1} \nu^{2}=\frac{k^{3}}{3}-\frac{k^{2}}{2}+\frac{k}{6} .
$$

Given that j is an index in $[k+1, n-k]$, the preceding charging scheme guarantees that k-NNG (Q) contains $(n-2 k)\left(k^{3} / 3-k^{2} / 2+k / 6\right)$ crossings. Notice that the crossings we have not account for in this argument have order $o\left(k^{3} n\right)$.

References

[1] M. Abellanas, P. Bose, J. García, F. Hurtado, C. M. Nicolás, and P. Ramos. On structural and graph theoretic properties of higher order Delaunay graphs. Internat. J. Comput. Geom. Appl., 19(6):595-615, 2009.
[2] B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, and G. Salazar. 3-symmetric and 3-decomposable drawings of K_{n}. Discrete Appl. Math., to appear.
[3] B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar. A central approach to bound the number of crossings in a generalized configuration. Electron. Notes Discrete Math., 30:273-278, 2008.
[4] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Ann. Discrete Math., 12:9-12, 1982.
[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1998.
[6] P. Brass, W. Moser, and J. Pach. Graph drawings and geometric graphs. Chapter in Research Problems in Discrete Geometry, pp. 373-416. Springer, 2005.
[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley \& Sons, 2001.
[8] V. Dujmović, K. Kawarabayashi, B. Mohar, and D. R. Wood. Improved upper bounds on the crossing number. Proc. SoCG '08, 375-384, 2008.
[9] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebra Discr., 4:312-316, 1983.
[10] J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangulations. Comput. Geom., 23:85-98, 2002.
[11] R. K. Guy. A combinatorial problem. Bull. Malayan Math. Soc., 7:68-72, 1960.
[12] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in information visualization: A survey. IEEE T. VLSI Syst., 6:24-43, 2000.
[13] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Proc. IEEE, 80(9):1502-1517, 1992.
[14] M. Jünger and P. Mutzel. Graph Drawing Software. Springer-Verlag, 2004.
[15] E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program., Ser. B, 109:613-624, 2007.
[16] M. van Kreveld, M. Löffler, and R. I. Silveira. Optimization for first order Delaunay triangulations. Comput. Geom., 43(4):377-394, 2010.
[17] F. T. Leighton. Complexity Issues in VLSI. MIT Press, 1983.
[18] G. Liotta. Proximity drawings. Chapter in Handbook of Graph Drawing and Visualization. Chapman \& Hall/CRC Press, in preparation.
[19] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley \& Sons, 2000.
[20] J. Pach, ed. Towards a Theory of Geometric Graphs. Amer. Math. Soc., 2004.
[21] J. Pach, R. Radoičić, G. Tardos, and G. Tóth. Improving the crossing lemma by finding more crossings in sparse graphs. Discrete Comput. Geom., 36:527-552, 2006.
[22] J. Pach, J. Spencer, and G. Tóth. New bounds on crossing numbers. Discrete Comput. Geom., 24:623-644, 2000.
[23] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427439, 1997.
[24] T.-H. Su and R.-Ch. Chang. The K-Gabriel graphs and their applications. Proc. SIGAL'90. LNCS, vol. 450, pp. 66-75. Springer, 1990.
[25] T.-H. Su and R.-Ch. Chang. Computing the k-relative neighborhood graphs in Euclidean plane. Pattern Recogn., 24:231-239, 1991.
[26] G. Toussaint. Geometric proximity graphs for improving nearest neighbor methods in instancebased learning and data mining. Internat. J. Comput. Geom. Appl., 15(2):101-150, 2005.
[27] P. Turán. On an extremal problem in graph theory. Matematicko Fizicki Lapok, 48:436-452, 1941.
[28] D. R. Wood and J. A. Telle. Planar decompositions and the crossing number of graphs with an excluded minor. New York J. Math., 13:117-146, 2007.
[29] K. Zarankiewicz. On a problem of P. Turán concerning graphs. Fund. Math., 41:137-145, 1954.

[^0]: *Department of Mathematics, California State University, Northridge, CA, \{bernardo.abrego, silvia.fernandez\}@csun.edu.
 ${ }^{\dagger}$ Departamento de Matemáticas, CINVESTAV, Mexico DF, Mexico, ruyfabila@math.cinvestav.edu.mx.
 ${ }^{\ddagger}$ Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, dflorespenaloza@gmail.com.
 §Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain, $\{$ ferran.hurtado, vera.sacristan, maria.saumell\}@upc.edu. Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

[^1]: *Unfortunately, it is standard in the computational geometry literature that a lens is incorrectly called a lune.

