Convex polyhedra in \mathbb{R}^{3} spanning $\left(n^{4 / 3}\right)$ congruent triangles.

Bernardo M. Ábrego
California State University Northridge
bernardo.abrego@csun.edu

Silvia Fernández-Merchant
California State University Northridge
silvia.fernandez@csun.edu

Abstract

We construct n-vertex convex polyhedra with the property stated in the title

In this note we construct, for every fixed triangle T, a n-vertex convex polyhedron determining - $\left(n^{4 / 3}\right)$ triangles congruent to T among its triplets. Even with the convexity assumption dropped, this was only known when T is an isosceles right triangle (see [2] and [4]). With respect to the upper bound Brass [2] proved that n points in \mathbb{R}^{3} span at most $O\left(n^{7 / 4+\varepsilon}\right)$ triangles congruent to T and very recently Agarwal and Sharir [1] improved this and obtained the current best bound of $O\left(n^{5 / 3+\varepsilon}\right)$. There are no better bounds that take advantage of the convexity restriction.

We say that a finite subset of \mathbb{R}^{3} is in convex position if it is the vertex set of a convex polyhedron. $C H(K)$ will denote the convex hull of K and ∂K the boundary of K. We prove a slighthly stronger statement. Let U be a quadrilateral with perpendicular diagonals. Assume $u_{1}=\left(d_{1}, 0,0\right), u_{2}=\left(0,0, d_{2}\right), u_{3}=\left(-d_{3}, 0,0\right)$, and $u_{4}=\left(0,0,-d_{4}\right)$ with $d_{i}>0$ are the vertices of U and $o=(0,0,0)$ is the intersection of its diagonals. For any finite set $P \subseteq \mathbb{R}^{3}$ let $F(U ; P)$ be the number of quadruplets in P congruent to U. Let

$$
F_{3}^{c o n v}(U ; n)=\max \left\{F(U ; P): P \subseteq \mathbb{R}^{3}, P \text { in convex position, }|P|=n\right\},
$$

since any triangle T can be completed to such a quadrilateral U (by reflecting upon the largest side), it is enough to prove that

Theorem $1 \quad F_{3}^{c o n v}(U ; n)=-\left(n^{4 / 3}\right)$
The proof of the Theorem will be based on two lemmas.
For every $0<\alpha<\frac{\pi}{2}$ and $1 \leq i \leq 4$ define the following arcs of circle

$$
\operatorname{Arc}_{i}(\alpha)=\left\{v=(x, y, z): y=0,\|v\|=d_{i},\left|\measuredangle v o u_{i}\right|<\alpha\right\}
$$

Lemma 1 There is $\alpha>0$ so that $\bigcup_{i=1}^{4} \operatorname{Arc}(\alpha) \subseteq \partial\left(C H\left(\bigcup_{i=1}^{4} \operatorname{Arc}(\alpha)\right)\right)$.
Proof. Suppose $d_{1} \leq d_{2}$, let $\alpha_{1,2}=\frac{1}{2} \arcsin \left(d_{1} / d_{2}\right)$. Let a and b be points in the plane $y=0$ defined by $\|a\|=d_{1},\|b\|=d_{2}$, and $\measuredangle u_{1} o a=\measuredangle b o u_{2}=\alpha_{1,2}$. By construction $\measuredangle a o b=$ $\frac{\pi}{2}-2 \alpha_{1,2}$, thus $\cos (\measuredangle a o b)=\sin \left(2 \alpha_{1,2}\right)=d_{1} / d_{2}$, and then $\measuredangle o a b=\frac{\pi}{2}$. This proves that $\operatorname{Arc}_{1}\left(\alpha_{1,2}\right) \cup \operatorname{Arc}_{2}\left(\alpha_{1,2}\right) \subseteq \partial\left(C H\left(\operatorname{Arc}_{1}\left(\alpha_{1,2}\right) \cup \operatorname{Arc}_{2}\left(\alpha_{1,2}\right)\right)\right)$. Clearly any value smaller than $\alpha_{1,2}$ would work for the pair $\left(d_{1}, d_{2}\right)$, therefore by picking $\alpha \leq \frac{1}{2} \arcsin \left(\min _{1 \leq i, j \leq 4} d_{i} / d_{j}\right)$ the result follows.

Let $e_{1}=(1,0,0), e_{2}=(0,0,1), e_{3}=(-1,0,0), e_{4}=(0,0,-1)$, and $S=\left\{v \in \mathbb{R}^{3}:\|v\|=1\right\}$. The next lemma without the additional property (ii) was first proved in [4] by Erdős et al.

Lemma 2 For every $\varepsilon>0$ and $n \in \mathbb{N}$ there are n-sets $Q_{1}, Q_{2}, Q_{3}, Q_{4} \subseteq S$ with the following properties
(i) There are $c n^{4 / 3}$ quadruplets $\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ with $q_{i} \in Q_{i}$ and $q_{1} q_{2} q_{3} q_{4}$ a square of diameter 2.
(ii) $\measuredangle q_{i} o e_{i}<\varepsilon$ for every $q_{i} \in Q_{i}, 1 \leq i \leq 4$.

Proof. Erdős (see [3]) constructed an n-element set P in the plane and a set of n lines L such that the number of incidences among them is at least $c n^{4 / 3}$ (The set P consists of a $\sqrt{n} \times$ \sqrt{n} grid, and L includes the n lines with more points in P). We can assume that all lines in L have slope smaller than -1 and also that $P \subseteq\left\{(x, y,-1) \in \mathbb{R}^{3}: x \in(m, m+1), y \in(0,1)\right\}$. For every $p=\left(x_{p}, y_{p},-1\right) \in P$ let q_{p}^{1} and q_{p}^{3} be the points obtained as the intersection of S with the line $p o$, i.e., if $p=(x, y,-1)$ then $q_{p}^{1}=-q_{p}^{3}=\|p\|^{-1}\left(x_{p}, y_{p},-1\right)$. Also for every $l \in L$ with equation $z=-1, A_{l} x+B_{l} y=C_{l},\left(C_{l}>0\right.$ and $\left.A_{l}^{2}+B_{l}^{2}+C_{l}^{2}=1\right)$ consider the plane π_{l} through o which contains l. Let q_{l}^{2} and q_{l}^{4} be the points obtained as the intersection of S with the line through o perpendicular to π_{l}, i.e., $q_{l}^{2}=-q_{l}^{4}=\left(A_{l}, B_{l}, C_{l}\right)$.

For $i=1,3$ let $Q_{i}=\left\{q_{p}^{i}: p \in P\right\}$ and $Q_{i+1}=\left\{q_{l}^{i+1}: l \in L\right\}$. Assume $p \in l$, by construction, q_{l}^{2} and q_{l}^{4} are at distance $\sqrt{2}$ from every point in the circle $\pi_{l} \cap S$, in particular from q_{p}^{1} and q_{p}^{3}. Since q_{p}^{1}, q_{p}^{3} and q_{l}^{2}, q_{l}^{4} are antipodes on S we conclude that $q_{p}^{1} q_{l}^{2} q_{p}^{3} q_{l}^{4}$ is a square of diagonal 2. Therefore the number of such squares in $\bigcup_{i=1}^{4} Q_{i}$ is at least $c n^{4 / 3}$.

Now, to prove property (ii) we show that for all $p \in P, l \in L$, and $i=1,3$

$$
\lim _{m \rightarrow \infty}\left\|q_{p}^{i}-e_{i}\right\|=\lim _{m \rightarrow \infty}\left\|q_{l}^{i+1}-e_{i+1}\right\|=0
$$

By symmetry we only prove this equality for $i=1$. If $p \in P$ then $x_{p} \in(m, m+1)$ and $y_{p}<1$, thus

$$
\left\|q_{p}^{1}-e_{1}\right\|^{2}=2-\frac{2 x_{p}}{\|p\|}<2-\frac{2 m}{\sqrt{2+(m+1)^{2}}} \longrightarrow 0 \text { when } m \rightarrow \infty .
$$

If $l \in L$ then, in the plane $z=-1, l$ has slope $-A_{l} / B_{l}<-1$ and it intersects the solid square $(m, m+1) \times(0,1)$. Thus $0<C_{l} / B_{l}$ and $m<C_{l} / A_{l}$, but since $C_{l}>0$ we get $0<B_{l}<A_{l}$ and $A_{l}<C_{l} / m$. Hence

$$
1=A_{l}^{2}+B_{l}^{2}+C_{l}^{2}<2 A_{l}^{2}+C_{l}^{2}<C_{l}^{2}\left(\frac{2+m^{2}}{m^{2}}\right)
$$

therefore

$$
\left\|q_{l}^{2}-e_{2}\right\|^{2}=2-2 C_{l}<2-\frac{2 m}{\sqrt{2+m^{2}}} \longrightarrow 0 \text { when } m \rightarrow \infty
$$

Proof of Theorem. By Lemma 1 there is $0<\alpha<\pi / 2$ so that $\bigcup_{i=1}^{4} \operatorname{Arc}_{i}(\alpha) \subseteq$ $\partial\left(C H\left(\bigcup_{i=1}^{4} A r c_{i}(\alpha)\right)\right)$. Let $\varepsilon=\alpha$ and apply Lemma 2. For $1 \leq i \leq 4$ define $P_{i}=$ $\left\{d_{i} q_{i}: q_{i} \in Q_{i}\right\}$. We claim that $P^{*}:=\bigcup_{i=1}^{4} P_{i}$ gives the desired bound.

Let $K=C H\left(\bigcup_{i=1}^{4} \operatorname{Arc}_{i}(\alpha)\right)$. Construct K^{\prime} and $K^{\prime \prime}$ as the solids of revolution obtained from K by revolving around the x-axis and the z-axis respectively. Let $K^{*}=K^{\prime} \cap K^{\prime \prime}$, clearly K^{*} is a convex set, and for $1 \leq i \leq 4$ the sets $\operatorname{Cap}_{i}(\alpha)=\left\{v \in \mathbb{R}^{3}:\|v\|=d_{i},\left|\measuredangle v o u_{i}\right|<\alpha\right\}$ are caps of sphere which satisfy that

$$
\operatorname{Cap}_{i}(\alpha) \subseteq K^{\prime} \cap K^{\prime \prime} \cap\left(\partial K^{\prime} \cup \partial K^{\prime \prime}\right)=\partial\left(K^{\prime} \cap K^{\prime \prime}\right)=\partial K^{*} .
$$

Now, by property (ii) $\measuredangle p_{i} o u_{i}<\alpha$ for every $p_{i} \in P_{i}$, thus $P_{i} \subseteq C a p_{i}(\alpha)$ and $P^{*} \subseteq \partial K^{*}$. Finally, since any supporting plane of K^{*} intersects $\bigcup_{i=1}^{4} \operatorname{Cap} p_{i}(\alpha)$ in at most one point, we conclude that P^{*} is in convex position; and clearly $d_{1} q_{1}, d_{2} q_{2}, d_{3} q_{3}, d_{4} q_{4}$ is congruent to U whenever $q_{1} q_{2} q_{3} q_{4}$ is a square of diameter 2 . Hence $F(U ; 4 n) \geq F\left(U ; P^{*}\right) \geq c n^{4 / 3}$ as we wanted to prove.

References

[1] P. Agarwal and M. Sharir (2001), On the number of congruent simplices in a point set, in Proc. 17th Annual Symposium on Computational Geometry, ACM Press, New York, 1-9.
[2] P. Brass (2000), Exact point pattern matching and the number of congruent triangles in a three-dimensional pointset, in ESA 2000 - European Symposium on Algorithms (M. Paterson, ed.), Lecture Notes in Computer Science 1879, Springer-Verlag, 112-119.
[3] H. Edelsbrunner (1987), Algorithms in Combinatorial Geometry, Springer-Verlag, New York.
[4] P. Erdős, D. Hickerson, and J. Pach (1989), A problem of Leo Moser about repeated distances on the sphere, American Mathematical Monthly 96, 569-575.

