Second exam for Math 463

Prof. Bernardo Abrego May 1st, 2014.

Time limit: 75 minutes. Problems 1-5 are worth 20 points each, Problem 6 is worth 10 extra points. All
your answers must be justified. Good luck!
In the following problems all variables are integers

1. Solve the following equations:

(a)

353z = 254 (mod 400).
Because 400 = 16 - 25, the equation is equivalent to solving the system

353z =254 (mod 16) and 353z =254 (mod 25),
which after reducing is equivalent to
x=14 (mod 16) and 3x=4 (mod 25).

Multiplying the second equation by 8 yields —x = 242 = 32 = —18 (mod 25). Thus z = 18 + 25¢
for some integer ¢. Plugging in the 1st equation yields 25¢ = —4 (mod 16), which is equivalent
to 9t = —4 (mod 16). Multiplying by —7 gives t = —63t = 28 = 12 (mod 16). Thus z =
18 + 25 - (16k 4 12) = 318 + 400k for some integer k. Thus the solution is = 318 (mod 400).
2% + 2+ 57 =0 (mod 53)

Let f(x) = 23 + o + 57. First we solve the equation modulo 5. Note that f(0) = 57 = 2
(mod 5), f(1) = 59 = 4 (mod 5), f(2) = 67 = 2 (mod 5), f(—2) = 47 = 2 (mod 5), and
f(=1) =55 =0 (mod 5). Thus the only solution modulo 5 is z = 4 (mod 5). Let a = 4. Note
that f'(a) = f'(4) =3-42+1 =4 (mod 5). Thus by Hensel’s Lemma this solution will lift to a
unique solution modulo 25, and then to a unique solution modulo 125. Note that f/(4) = 4, and
thus

ap = a—f(a)f'(4)=4-125-4=4 (mod 25), and

az = a1 — f(a1)f'(4)=4-125-4=4 (mod 125).

So the solution is z = 4 (mod 53)

2. Let m and n be two positive integers and let P be the product of the primes that divide both m and
n. Prove that

P(mn)¢(P) = Pp(m)p(n).

Note that ¢(m) =m]][,,, (1 —1/p) and ¢(n) = n[[,, (1 —1/p). Also, the product [],,, (1 —1/p)-
[1,, (1 =1/p) has a double factor for every prime that divides both m and n, and a single factor
otherwise. Thus
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[Ta-vp-TJa-1/p = |[Ja-1/p)| - T[C-1/p)-T]C—1/p)
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Therefore

Pg(m)p(n) = Pmn]J(1-1/p)-J](1—1/p)
plm

pln
2

= Pmn H(l—l/p) -H(l—l/p)
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= P([[a-1p| mn ] @-1/p)

p|P plmn

= o(P)p(mn).

3. Find all primes ¢ for which 5 is not a quadratic residue.

If ¢ = 2, then 12 = 5 (mod 2), so 5 is a quadratic residue modulo 2. Obviously 5 is also a quadratic
residue modulo 5. If ¢ is odd and relatively prime to 5, then by the quadratic reciprocity law,

(2)- @ @ - (2)
5

Thus (E) = —1 if and only if (). Because the only nonresidues modulo 5 are 2 and 3, it follows that

(%) = —1 if and only if ¢ is a prime congruent to 2 or 3 modulo 5.

4. Suppose that b = a®' (mod 91) and that gcd(a,91) = 1. Find a positive number k such that b* = a
(mod 91).

Note that 91 = 137 and so ¢(91) = ¢(13) - ¢(7) = 12-6 = 72 = 23 .32, We solve the equation 31z = 1
(mod 72). Because 72 = 2-31+10, and 31 = 3-10+1, it follows that 1 = 31—3-(72—2-31) = 7-31—3-72.
Thus k =z =7 (mod 72) is the desired solution. To verify that it works note that

b = (a31)7 =gt = (a72)3 ca=1%-a (mod 91),

because a?®") = a7 =1 (mod 91) for relatively prime a to 91.

5. (Extra) Show that (2% — 2)/(2y? + 3) is never an integer when x and y are integers.

Suppose that (22 —2)/(2y* + 3) = n is an integer. It follows that 22 = 2 (mod n(2y? + 3)) and so
2?2 =2 (mod 2y? + 3). Therefore the Jacobi symbol (WQH’» = 1. (Note that 2y? + 3 is positive and
odd)
However,
2 — (1)@=
2y2 +3 ’
and

(22 +3)* -1 (2" +4)(2*+2) @ +2) 2 +1)

8 8 2

Finally note that if y is even, then (y? + 2)(y*> 4+ 1) =2 (mod 4), and if y is odd, then y?> =1 (mod 4)
and (y2 +2)(y*>+1) =3-2=2 (mod 4). In any case the conclusion is that ((2y% + 3)? — 1)/8 is odd

and so )
— ) =-1,
<2y2+3>

which is a contradiction.



