Second exam for Math 463

Prof. Bernardo Ábrego
May 1st, 2014.
Time limit: 75 minutes. Problems $1-5$ are worth 20 points each, Problem 6 is worth 10 extra points. All your answers must be justified. Good luck!
In the following problems all variables are integers

1. Solve the following equations:
(a) $353 x \equiv 254(\bmod 400)$.

Because $400=16 \cdot 25$, the equation is equivalent to solving the system

$$
353 x \equiv 254 \quad(\bmod 16) \quad \text { and } \quad 353 x \equiv 254 \quad(\bmod 25),
$$

which after reducing is equivalent to

$$
x \equiv 14 \quad(\bmod 16) \quad \text { and } \quad 3 x \equiv 4 \quad(\bmod 25)
$$

Multiplying the second equation by 8 yields $-x \equiv 24 x \equiv 32 \equiv-18(\bmod 25)$. Thus $x=18+25 t$ for some integer t. Plugging in the 1 st equation yields $25 t \equiv-4(\bmod 16)$, which is equivalent to $9 t \equiv-4(\bmod 16)$. Multiplying by -7 gives $t \equiv-63 t \equiv 28 \equiv 12(\bmod 16)$. Thus $x=$ $18+25 \cdot(16 k+12)=318+400 k$ for some integer k. Thus the solution is $x \equiv 318(\bmod 400)$.
(b) $x^{3}+x+57 \equiv 0\left(\bmod 5^{3}\right)$

Let $f(x)=x^{3}+x+57$. First we solve the equation modulo 5 . Note that $f(0)=57 \equiv 2$ $(\bmod 5), f(1)=59 \equiv 4(\bmod 5), f(2)=67 \equiv 2(\bmod 5), f(-2)=47 \equiv 2(\bmod 5)$, and $f(-1)=55 \equiv 0(\bmod 5)$. Thus the only solution modulo 5 is $x \equiv 4(\bmod 5)$. Let $a=4$. Note that $f^{\prime}(a)=f^{\prime}(4)=3 \cdot 4^{2}+1 \equiv 4(\bmod 5)$. Thus by Hensel's Lemma this solution will lift to a unique solution modulo 25 , and then to a unique solution modulo 125 . Note that $\overline{f^{\prime}(4)}=4$, and thus

$$
\begin{aligned}
& a_{1}=a-f(a) \overline{f^{\prime}(4)}=4-125 \cdot 4 \equiv 4 \quad(\bmod 25), \text { and } \\
& a_{2}=a_{1}-f\left(a_{1}\right) \overline{f^{\prime}(4)}=4-125 \cdot 4 \equiv 4 \quad(\bmod 125)
\end{aligned}
$$

So the solution is $x \equiv 4\left(\bmod 5^{3}\right)$
2. Let m and n be two positive integers and let P be the product of the primes that divide both m and n. Prove that

$$
\phi(m n) \phi(P)=P \phi(m) \phi(n)
$$

Note that $\phi(m)=m \prod_{p \mid m}(1-1 / p)$ and $\phi(n)=n \prod_{p \mid n}(1-1 / p)$. Also, the product $\prod_{p \mid m}(1-1 / p)$. $\prod_{p \mid n}(1-1 / p)$ has a double factor for every prime that divides both m and n, and a single factor otherwise. Thus

$$
\begin{aligned}
\prod_{p \mid m}(1-1 / p) \cdot \prod_{p \mid n}(1-1 / p) & =\left[\prod_{p \mid P}(1-1 / p)\right]^{2} \cdot \prod_{\substack{p|n \\
p| p}}(1-1 / p) \cdot \prod_{\substack{p|m \\
p| p}}(1-1 / p) \\
& =\left[\prod_{p \mid P}(1-1 / p)\right]^{2} \cdot \prod_{\substack{p|m n \\
p| p}}(1-1 / p)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P \phi(m) \phi(n) & =P m n \prod_{p \mid m}(1-1 / p) \cdot \prod_{p \mid n}(1-1 / p) \\
& =P m n\left[\prod_{p \mid P}(1-1 / p)\right]^{2} \cdot \prod_{\substack{p|m n \\
p| p}}(1-1 / p) \\
& =P\left[\prod_{p \mid P}(1-1 / p)\right] \cdot m n \prod_{p \mid m n}(1-1 / p) \\
& =\phi(P) \phi(m n)
\end{aligned}
$$

3. Find all primes q for which 5 is not a quadratic residue.

If $q=2$, then $1^{2} \equiv 5(\bmod 2)$, so 5 is a quadratic residue modulo 2 . Obviously 5 is also a quadratic residue modulo 5 . If q is odd and relatively prime to 5 , then by the quadratic reciprocity law,

$$
\left(\frac{5}{q}\right)=\left(\frac{q}{5}\right)(-1)^{(5-1) / 2 \cdot(q-1) / 2}=\left(\frac{q}{5}\right)(-1)^{2 \cdot(q-1) / 2}=\left(\frac{q}{5}\right)
$$

Thus $\left(\frac{5}{q}\right)=-1$ if and only if $\left(\frac{q}{5}\right)$. Because the only nonresidues modulo 5 are 2 and 3 , it follows that $\left(\frac{5}{q}\right)=-1$ if and only if q is a prime congruent to 2 or 3 modulo 5 .
4. Suppose that $b \equiv a^{31}(\bmod 91)$ and that $\operatorname{gcd}(a, 91)=1$. Find a positive number k such that $b^{k} \equiv a$ $(\bmod 91)$.
Note that $91=13 \cdot 7$ and so $\phi(91)=\phi(13) \cdot \phi(7)=12 \cdot 6=72=2^{3} \cdot 3^{2}$. We solve the equation $31 x \equiv 1$ $(\bmod 72)$. Because $72=2 \cdot 31+10$, and $31=3 \cdot 10+1$, it follows that $1=31-3 \cdot(72-2 \cdot 31)=7 \cdot 31-3 \cdot 72$. Thus $k=x \equiv 7(\bmod 72)$ is the desired solution. To verify that it works note that

$$
b^{7} \equiv\left(a^{31}\right)^{7}=a^{3 \cdot 72+1}=\left(a^{72}\right)^{3} \cdot a \equiv 1^{3} \cdot a \quad(\bmod 91)
$$

because $a^{\phi(91)}=a^{72} \equiv 1(\bmod 91)$ for relatively prime a to 91 .
5. (Extra) Show that $\left(x^{2}-2\right) /\left(2 y^{2}+3\right)$ is never an integer when x and y are integers.

Suppose that $\left(x^{2}-2\right) /\left(2 y^{2}+3\right)=n$ is an integer. It follows that $x^{2} \equiv 2\left(\bmod n\left(2 y^{2}+3\right)\right)$ and so $x^{2} \equiv 2\left(\bmod 2 y^{2}+3\right)$. Therefore the Jacobi symbol $\left(\frac{2}{2 y^{2}+3}\right)=1$. (Note that $2 y^{2}+3$ is positive and odd)
However,

$$
\left(\frac{2}{2 y^{2}+3}\right)=(-1)^{\left(\left(2 y^{2}+3\right)^{2}-1\right) / 8}
$$

and

$$
\frac{\left(2 y^{2}+3\right)^{2}-1}{8}=\frac{\left(2 y^{2}+4\right)\left(2 y^{2}+2\right)}{8}=\frac{\left(y^{2}+2\right)\left(y^{2}+1\right)}{2}
$$

Finally note that if y is even, then $\left(y^{2}+2\right)\left(y^{2}+1\right) \equiv 2(\bmod 4)$, and if y is odd, then $y^{2} \equiv 1(\bmod 4)$ and $\left(y^{2}+2\right)\left(y^{2}+1\right) \equiv 3 \cdot 2 \equiv 2(\bmod 4)$. In any case the conclusion is that $\left(\left(2 y^{2}+3\right)^{2}-1\right) / 8$ is odd and so

$$
\left(\frac{2}{2 y^{2}+3}\right)=-1
$$

which is a contradiction.

