1. Solve the following equations:

(a) \(353x \equiv 254 \pmod{400}\).

Because \(400 = 16 \cdot 25\), the equation is equivalent to solving the system

\[353x \equiv 254 \pmod{16}\] and \[353x \equiv 254 \pmod{25}\],

which after reducing is equivalent to

\[x \equiv 14 \pmod{16}\] and \[3x \equiv 4 \pmod{25}\].

Multiplying the second equation by 8 yields

\[-x \equiv 24 \pmod{25}\] which is equivalent to

\[x \equiv 32 \equiv -18 \pmod{25}\]. Thus \(x = 18 + 25t\) for some integer \(t\).

Plugging in the 1st equation yields

\[25t \equiv -4 \pmod{16}\], which is equivalent to

\[9t \equiv -4 \pmod{16}\]. Multiplying by \(-7\) gives

\[t \equiv -63 \equiv 28 \equiv 12 \pmod{16}\]. Thus \(x = 18 + 25 \cdot 16k + 12 = 318 + 400k\) for some integer \(k\). Thus the solution is

\[x \equiv 318 \pmod{400}\].

(b) \(x^3 + x + 57 \equiv 0 \pmod{5^3}\)

Let \(f(x) = x^3 + x + 57\). First we solve the equation modulo 5. Note that

\[f(0) = 57 \equiv 2 \pmod{5}\], \[f(1) = 59 \equiv 4 \pmod{5}\], \[f(2) = 67 \equiv 2 \pmod{5}\], \[f(-1) = 55 \equiv 0 \pmod{5}\]. Thus the only solution modulo 5 is \(x \equiv 4 \pmod{5}\). Let \(a = 4\). Note that \(f'(a) = f'(4) = 3 \cdot 4^2 + 1 \equiv 4 \pmod{5}\). Thus by Hensel's Lemma this solution will lift to a unique solution modulo 25, and then to a unique solution modulo 125. Note that \(f'(4) = 4\), and thus

\[a_1 = a - f(a)f'(4) = 4 - 125 \cdot 4 \equiv 4 \pmod{25}\], and
\[a_2 = a_1 - f(a_1)f'(4) = 4 - 125 \cdot 4 \equiv 4 \pmod{125}\].

So the solution is \(x \equiv 4 \pmod{5^3}\)

2. Let \(m\) and \(n\) be two positive integers and let \(P\) be the product of the primes that divide both \(m\) and \(n\). Prove that

\[\phi(mn)\phi(P) = P\phi(m)\phi(n)\].

Note that \(\phi(m) = m \prod\limits_{p|m} (1 - 1/p)\) and \(\phi(n) = n \prod\limits_{p|n} (1 - 1/p)\). Also, the product \(\prod\limits_{p|m} (1 - 1/p) \cdot \prod\limits_{p|n} (1 - 1/p)\) has a double factor for every prime that divides both \(m\) and \(n\), and a single factor otherwise. Thus

\[
\prod\limits_{p|m} (1 - 1/p) \cdot \prod\limits_{p|n} (1 - 1/p) = \left[\prod\limits_{p|P} (1 - 1/p) \right]^2 \cdot \prod\limits_{p|m} (1 - 1/p) \cdot \prod\limits_{p|n} (1 - 1/p)
= \left[\prod\limits_{p|P} (1 - 1/p) \right]^2 \cdot \prod\limits_{p|mn} (1 - 1/p).
\]
Therefore
\[
P\phi(m)\phi(n) = Pmn \prod_{p|m} (1 - 1/p) \cdot \prod_{p|n} (1 - 1/p)
\]
\[
= Pmn \left(\prod_{p|n} \prod_{p|m} (1 - 1/p) \right)^2 \cdot \prod_{p|mn} (1 - 1/p)
\]
\[
= P \left[\prod_{p|n} (1 - 1/p) \right] \cdot mn \prod_{p|mn} (1 - 1/p)
\]
\[
= \phi(P)\phi(mn).
\]

3. Find all primes \(q \) for which 5 is not a quadratic residue.

If \(q = 2 \), then \(1^2 \equiv 5 \pmod{2} \), so 5 is a quadratic residue modulo 2. Obviously 5 is also a quadratic residue modulo 5. If \(q \) is odd and relatively prime to 5, then by the quadratic reciprocity law,
\[
\left(\frac{5}{q} \right) = \left(\frac{q}{5} \right) (-1)^{(5-1)/2} = \left(\frac{q}{5} \right) = \left(\frac{2}{5} \right) = 1.
\]

Thus \(\left(\frac{2}{5} \right) = -1 \) if and only if \(\left(\frac{2}{q} \right) \). Because the only nonresidues modulo 5 are 2 and 3, it follows that \(\left(\frac{2}{q} \right) = -1 \) if and only if \(q \) is a prime congruent to 2 or 3 modulo 5.

4. Suppose that \(b \equiv a^{31} \pmod{91} \) and that \(\gcd(a,91) = 1 \). Find a positive number \(k \) such that \(b^k \equiv a \pmod{91} \).

Note that 91 = 13 · 7 and so \(\phi(91) = \phi(13) \cdot \phi(7) = 12 \cdot 6 = 72 = 2^3 \cdot 3^2 \). We solve the equation \(31x \equiv 1 \pmod{72} \). Because 72 = 2 · 31 + 10, and 31 = 3 · 10 + 1, it follows that \(1 = 31 - 3 \cdot (72 - 2 \cdot 31) = 7 \cdot 31 - 3 \cdot 72 \).

Thus \(k = x \equiv 7 \pmod{72} \) is the desired solution. To verify that it works note that
\[
b^7 \equiv (a^{31})^7 = a^{3 \cdot 72 + 1} = (a^{72})^3 \cdot a \equiv 1^3 \cdot a \pmod{91},
\]

because \(a^{\phi(91)} = a^{72} \equiv 1 \pmod{91} \) for relatively prime \(a \) to 91.

5. (Extra) Show that \((x^2 - 2)/(2y^2 + 3) \) is never an integer when \(x \) and \(y \) are integers.

Suppose that \((x^2 - 2)/(2y^2 + 3) = n \) is an integer. It follows that \(x^2 \equiv 2 \pmod{n(2y^2 + 3)} \) and so \(x^2 \equiv 2 \pmod{2y^2 + 3} \). Therefore the Jacobi symbol \(\left(\frac{2}{2y^2+3} \right) = 1 \). (Note that \(2y^2 + 3 \) is positive and odd)

However,
\[
\left(\frac{2}{2y^2+3} \right) = (-1)^{(2y^2+3)^2-1}/8,
\]

and
\[
(2y^2 + 3)^2 - 1 = (2y^2 + 4)(2y^2 + 2) = (y^2 + 2)(y^2 + 1).
\]

Finally note that if \(y \) is even, then \((y^2 + 2)(y^2 + 1) = 2 \pmod{4} \), and if \(y \) is odd, then \(y^2 \equiv 1 \pmod{4} \) and \((y^2 + 2)(y^2 + 1) \equiv 3 \cdot 2 \equiv 2 \pmod{4} \). In any case the conclusion is that \((2y^2 + 3)^2 - 1)/8\) is odd and so
\[
\left(\frac{2}{2y^2+3} \right) = -1,
\]

which is a contradiction.