First exam for Math 463

Prof. Bernardo Ábrego
February 13, 2014.
Time limit: 75 minutes. Problems $1-5$ are worth 20 points each, Problem 6 is worth 10 extra points. All your answers must be justified. Good luck!
In the following problems all variables are integers

1. Prove that $n^{3}-n$ is divisible by 6 for every integer n.

Solution 1. First note that $(-n)^{3}-(-n)=-n^{3}+n=-\left(n^{3}-n\right)$. This we may assume that $n \geq 0$. Second, $n^{3}-n=(n+1) \cdot n \cdot(n-1)=6 \cdot \frac{1}{6}(n+1) \cdot n \cdot(n-1)=6\binom{n}{3}$.
Solution 2. If $3 \mid n$, then $3 \mid n\left(n^{2}-1\right)=n^{3}-n$. If $3 \nmid n$, then $n=3 N \pm 1$ for some integer N. Thus $n^{2}-1=(n-1)(n+1)=3 N(3 N \mp 2)$, and it follows that $3 \mid n\left(n^{2}-1\right)=n^{3}-n$. Similarly, if $2 \mid n$, then $2 \mid n\left(n^{2}-1\right)=n^{3}-n$. If $2 \nmid n$, then $n=2 K+1$ for some integer K. Thus $n-1=2 K$ and it follows that $2 \mid(n-1)(n+1) \cdot n=n^{3}-n$. In all cases $2 \mid n$ and $3 \mid n$, so $6 \mid n$.
2. Prove that $(a, a+2)=1$ or 2 for every integer a.

Note that $2=1 \cdot(a+2)+(-1) \cdot a$. Because $\operatorname{gcd}(a, a+2)$ divides every linear combination of a and $a+2$, it follows that $\operatorname{gcd}(a, a+2) \mid 2$. The only positive divisors of 2 are 1 and 2 , so $\operatorname{gcd}(a, a+2)=1$ or 2 .
3. Prove that $a \mid b c$ if and only if $\left.\frac{a}{(a, b)} \right\rvert\, c$.

Let $g=\operatorname{gcd}(a, b)$. Obviously $g \mid a$ and $g \mid b$, but also $\operatorname{gcd}\left(\frac{a}{g}, \frac{b}{g}\right)=1$. Suppose $a \mid b c$, then $\frac{a}{g} \left\lvert\,\left(\frac{b}{g}\right) c\right.$. Because $\frac{a}{g}$ and $\frac{b}{g}$ are relatively prime, it follows that $\frac{a}{g}$ divides c. Conversely, suppose that $\frac{a}{g}$ divides c. Then $b \cdot \frac{a}{g}$ divides $b c$, however $\frac{b}{g}$ is an integer, so clearly a divides $a \cdot \frac{b}{g}=b \cdot \frac{a}{g}$, that in turn divides c. Therefore a divides $b c$.
4. Evaluate with proof $\left(a b, p^{4}\right)$ and $\left(a+b, p^{4}\right)$ given that $\left(a, p^{2}\right)=p$ and $\left(b, p^{3}\right)=p^{2}$ where p is a prime. Let p^{α} and p^{β} be the largest powers of p that divide a and b, respectively. Because $\operatorname{gcd}\left(a, p^{2}\right)=p$ and $\operatorname{gcd}\left(b, p^{3}\right)=p^{2}$, it follows that $\min (\alpha, 2)=1$ and $\min (\beta, 3)=2$. Thus $\alpha=1$ and $\beta=2$. Therefore the largest power of p that divides $a b$ is $\alpha+\beta=3$, and $\operatorname{gcd}\left(a b, p^{4}\right)=p^{\min (3,4)}=p^{3}$. Similarly, the largest power of p that divides $a+b$ is p, because if p^{2} were to divide $a+b$, then p^{2} would divide $a+b+(-b)=a$, and the largest power that divides a is p. Therefore $\operatorname{gcd}\left(a+b, p^{4}\right)=p^{\min (1,4)}=p$.
5. Show that there exist non-negative integers x and y such that $x^{2}-y^{2}=n$ if and only if n is odd or is a multiple of 4 . Show that there is exactly one such representation of n if and only if $n=1,4$, and odd prime, or four times a prime.
Suppose that n is odd, then $x=\frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ are integers and

$$
x^{2}-y^{2}=(x+y)(x-y)=\left(\frac{1}{2}(n+1+n-1)\right)\left(\frac{1}{2}(n+1-n+1)=n .\right.
$$

If n is a multiple of 4 , say $n=4 N$ for some integer N, then let $x=N+1$ and $y=N-1$. Note that

$$
x^{2}-y^{2}=(x+y)(x-y)=(N+1+N-1)(N+1-N+1)=2 N \cdot 2=n
$$

Now suppose that $x^{2}-y^{2}=(x+y)(x-y)=n$ is even but not a multiple of 4 . It follows that one of the factors $x+y$ or $x-y$ is even, and the other one is odd. But this is impossible, because their sum is equal to $x+y+x-y=2 x$, which is even.
Suppose that n is odd but not equal to 1 or prime. Then $n=a b$ for some odd integers a and b with $1<a \leq b<n$. Let $x=\frac{1}{2}(a+b)$ and $y=\frac{1}{2}(b-a)$. Note that both x and y are integers and

$$
x^{2}-y^{2}=(x+y)(x-y)=\left(\frac{1}{2}(a+b+b-a)\right)\left(\frac{1}{2}(a+b-b+a)\right)=a b=n .
$$

Moreover this pair (x, y) is different from the solution pair $\left(\frac{1}{2}(n+1), \frac{1}{2}(n-1)\right)$ shown before.
Suppose that n is a multiple of $4, n=4 N$ for some integer N, but N is not equal to 1 or prime. Then $N=a b$ for some integers a and b with $1<a \leq b<N$. Let $x=a+b$ and $y=b-a$. Note that

$$
x^{2}-y^{2}=(x+y)(x-y)=(a+b+b-a)(a+b-b+a)=(2 b) \cdot(2 a)=4 a b=n
$$

Moreover this pair (x, y) is different from the solution pair $(N+1, N-1)$ shown before.
Finally, if n is equal to 1 or a prime, then n can only be written as a product of two positive integers as $1 \cdot n$. Thus we must have $x-y=1$ and $x+y=n$, which yields the solution obtained before, and thus there is only one solution. Similarly, if $n=4 N$, where N is 1 or prime, then N can only be written as a product of two positive integers as $1 \cdot N$. If $n=(x+y)(x-y)$ is a multiple of 4 , then given that $x+y+(x-y)=2 x$ is even, it follows that both factors must be even. The only way to write $n=4 N$ as a product of two even numbers is $2 \cdot 2 N$, thus $x-y=2$ and $x+y=2 N$ yields the only possible solution which was obtained before.
6. (Extra) Let a and b be positive integers such that $2<b \leq a$. Prove that $2^{b}-1$ does not divide $2^{a}+1$. Suppose $2<b \leq a$. Suppose that $a=b q+r$ where q and r are nonnegative integers such that $q \geq 1$ and $0 \leq r<b$. Performing long division yields

$$
2^{a}+1=\left(2^{b}-1\right)\left(2^{b(q-1)+r}+2^{b(q-2)+r}+2^{b(q-3)}+\cdots+2^{b+r}+2^{r}\right)+\left(2^{r}+1\right)
$$

If $2^{b}-1$ divides $2^{a}+1$, then it follows that $2^{b}-1$ divides $2^{r}+1$. Thus $2^{b}-1 \leq 2^{r}+1$, but since $r<b$, it follows that $r \leq b-1$ and then

$$
2^{b}-1 \leq 2^{r}+1 \leq 2^{b-1}+1
$$

Thus $2^{b-1}-1 \leq 2^{b-2}$. But $2^{b-1}-1=1+2+2^{2}+2^{3}+\cdots+2^{b-2}>2^{b-2}$ for $b>2$, which is a contradiction. Thus $2^{b}-1$ does not divide $2^{a}+1$.

