First exam for Math 463

Prof. Bernardo Ábrego

February 13, 2014.

Time limit: 75 minutes. Problems 1–5 are worth 20 points each, Problem 6 is worth 10 extra points. All your answers must be justified. Good luck!

In the following problems all variables are integers

1. Prove that $n^3 - n$ is divisible by 6 for every integer n.

Solution 1. First note that $(-n)^3 - (-n) = -n^3 + n = -(n^3 - n)$. This we may assume that $n \ge 0$. Second, $n^3 - n = (n+1) \cdot n \cdot (n-1) = 6 \cdot \frac{1}{6}(n+1) \cdot n \cdot (n-1) = 6\binom{n}{3}$.

Solution 2. If 3|n, then $3|n(n^2-1) = n^3 - n$. If $3 \nmid n$, then $n = 3N \pm 1$ for some integer N. Thus $n^2 - 1 = (n-1)(n+1) = 3N(3N \mp 2)$, and it follows that $3|n(n^2-1) = n^3 - n$. Similarly, if 2|n, then $2|n(n^2-1) = n^3 - n$. If $2 \nmid n$, then n = 2K + 1 for some integer K. Thus n - 1 = 2K and it follows that $2|(n-1)(n+1) \cdot n = n^3 - n$. In all cases 2|n and 3|n, so 6|n.

2. Prove that (a, a + 2) = 1 or 2 for every integer a.

Note that $2 = 1 \cdot (a+2) + (-1) \cdot a$. Because gcd(a, a+2) divides every linear combination of a and a+2, it follows that gcd(a, a+2)|2. The only positive divisors of 2 are 1 and 2, so gcd(a, a+2) = 1 or 2.

3. Prove that a|bc if and only if $\frac{a}{(a,b)}|c$.

Let $g = \gcd(a, b)$. Obviously g|a and g|b, but also $\gcd(\frac{a}{g}, \frac{b}{g}) = 1$. Suppose a|bc, then $\frac{a}{g}|\left(\frac{b}{g}\right)c$. Because $\frac{a}{g}$ and $\frac{b}{g}$ are relatively prime, it follows that $\frac{a}{g}$ divides c. Conversely, suppose that $\frac{a}{g}$ divides c. Then $b \cdot \frac{a}{g}$ divides bc, however $\frac{b}{g}$ is an integer, so clearly a divides $a \cdot \frac{b}{g} = b \cdot \frac{a}{g}$, that in turn divides c. Therefore a divides bc.

- 4. Evaluate with proof (ab, p^4) and $(a + b, p^4)$ given that $(a, p^2) = p$ and $(b, p^3) = p^2$ where p is a prime. Let p^{α} and p^{β} be the largest powers of p that divide a and b, respectively. Because $gcd(a, p^2) = p$ and $gcd(b, p^3) = p^2$, it follows that $min(\alpha, 2) = 1$ and $min(\beta, 3) = 2$. Thus $\alpha = 1$ and $\beta = 2$. Therefore the largest power of p that divides ab is $\alpha + \beta = 3$, and $gcd(ab, p^4) = p^{min(3,4)} = p^3$. Similarly, the largest power of p that divides a + b is p, because if p^2 were to divide a + b, then p^2 would divide a + b + (-b) = a, and the largest power that divides a is p. Therefore $gcd(a + b, p^4) = p^{min(1,4)} = p$.
- 5. Show that there exist non-negative integers x and y such that $x^2 y^2 = n$ if and only if n is odd or is a multiple of 4. Show that there is exactly one such representation of n if and only if n = 1, 4, and odd prime, or four times a prime.

Suppose that n is odd, then $x = \frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ are integers and

$$x^{2} - y^{2} = (x + y)(x - y) = \left(\frac{1}{2}(n + 1 + n - 1)\right)\left(\frac{1}{2}(n + 1 - n + 1)\right) = n.$$

If n is a multiple of 4, say n = 4N for some integer N, then let x = N + 1 and y = N - 1. Note that

$$x^{2} - y^{2} = (x + y)(x - y) = (N + 1 + N - 1)(N + 1 - N + 1) = 2N \cdot 2 = n.$$

Now suppose that $x^2 - y^2 = (x + y)(x - y) = n$ is even but not a multiple of 4. It follows that one of the factors x + y or x - y is even, and the other one is odd. But this is impossible, because their sum is equal to x + y + x - y = 2x, which is even.

Suppose that n is odd but not equal to 1 or prime. Then n = ab for some odd integers a and b with $1 < a \le b < n$. Let $x = \frac{1}{2}(a+b)$ and $y = \frac{1}{2}(b-a)$. Note that both x and y are integers and

$$x^{2} - y^{2} = (x + y)(x - y) = \left(\frac{1}{2}(a + b + b - a)\right)\left(\frac{1}{2}(a + b - b + a)\right) = ab = n.$$

Moreover this pair (x, y) is different from the solution pair $(\frac{1}{2}(n+1), \frac{1}{2}(n-1))$ shown before.

Suppose that n is a multiple of 4, n = 4N for some integer N, but N is not equal to 1 or prime. Then N = ab for some integers a and b with $1 < a \le b < N$. Let x = a + b and y = b - a. Note that

 $x^{2} - y^{2} = (x + y)(x - y) = (a + b + b - a)(a + b - b + a) = (2b) \cdot (2a) = 4ab = n.$

Moreover this pair (x, y) is different from the solution pair (N + 1, N - 1) shown before.

Finally, if n is equal to 1 or a prime, then n can only be written as a product of two positive integers as $1 \cdot n$. Thus we must have x - y = 1 and x + y = n, which yields the solution obtained before, and thus there is only one solution. Similarly, if n = 4N, where N is 1 or prime, then N can only be written as a product of two positive integers as $1 \cdot N$. If n = (x + y)(x - y) is a multiple of 4, then given that x + y + (x - y) = 2x is even, it follows that both factors must be even. The only way to write n = 4N as a product of two even numbers is $2 \cdot 2N$, thus x - y = 2 and x + y = 2N yields the only possible solution which was obtained before.

6. (Extra) Let a and b be positive integers such that $2 < b \le a$. Prove that $2^b - 1$ does not divide $2^a + 1$. Suppose $2 < b \le a$. Suppose that a = bq + r where q and r are nonnegative integers such that $q \ge 1$ and $0 \le r < b$. Performing long division yields

$$2^{a} + 1 = (2^{b} - 1) \left(2^{b(q-1)+r} + 2^{b(q-2)+r} + 2^{b(q-3)} + \dots + 2^{b+r} + 2^{r} \right) + (2^{r} + 1).$$

If $2^b - 1$ divides $2^a + 1$, then it follows that $2^b - 1$ divides $2^r + 1$. Thus $2^b - 1 \le 2^r + 1$, but since r < b, it follows that $r \le b - 1$ and then

$$2^b - 1 \le 2^r + 1 \le 2^{b-1} + 1.$$

Thus $2^{b-1} - 1 \leq 2^{b-2}$. But $2^{b-1} - 1 = 1 + 2 + 2^2 + 2^3 + \dots + 2^{b-2} > 2^{b-2}$ for b > 2, which is a contradiction. Thus $2^b - 1$ does not divide $2^a + 1$.