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In our text we had the following Theorem as Proposition 1.4.18, here we have a proof of
it. Recall that a set K is compact if every open cover of K contains a finite subcover of K.
Also we use the notation D(z,e) = {w € C: |w — z| < ¢}, i.e. the open disk centered at z
with radius e.

Theorem 1 The following conditions are equivalent for a subset K of C (or of R):

(i) K is closed and bounded.
(i) Every sequence of points in K has subsequence which converges to some point in K.
(iit) K is compact.

Proof. We first prove (i)=-(ii). Suppose K is closed and bounded, consider a sequence
{zj}jil in K, it is enough to show that this sequence contains a convergent subsequence,
because since K is closed we already know (see proposition 1.4.8) that the limit of such
sequence would be some point in K.

Since K is bounded then there is a disk centered at the origin containing K, by possibly
shrinking and translating K, we can assume that K is contained in the square S; with
vertices 0,1,1 + ¢, and . Notice that the shrinking and translating do not change the
convergence behavior of the sequence. Now, consider the following recursive procedure:
Using a vertical segment and a horizontal segment divide Sp into four squares of the same
size S (Wlth Vertlces 0,141 1) Sio (with vertices % 5. L1+ ;, % + ) S13 (with vertices

) Y
T4+ 1+41+4,24 Z)2 afnd Sia (with vertices £,2 + £ 1 +4,4), see figure 1. Since the
sequence {zi};, is infinite, there must be one of these squares with an infinite number of
points. If Sj; is such square, pick an arbitrary point in it, call it w;, and now only consider
those points in the sequence {z; };’11 with indices j larger than the index of w;. Now, repeat
the same procedure using S;; instead of 7 and proceed recursively. In this way we construct
a sequence {w;};Z; where the indices of the w;’s in the sequence {z;}, are in order, and
moreover each w; is contained in a square of side 1/27 and every subsequent wy, (with k& > j)

is also contained in the same square. Therefore

1 .
lw; —wy| < > for every j > k
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Figure 1: proof of (i) =(ii)

which means that the sequence {w; };’il is a Cauchy sequence and therefore it is convergent.
Now we prove (ii)=-(iii). Suppose that every sequence in K contains a convergent sub-

sequence with limit in K. Consider an open cover C = {U,},.4 of K. We first prove the
following.

Claim 2 There is € > 0 such that every z € K satisfies that there is o = a(z) such that
D(z,e) CU,.

Suppose not, then for every ¢, in particular for 5 == Wlth n € N, there is a point z, € K
such that for every a € A we have that D(z,,1) ¢ U Consider the sequence {z,}, by
assumption there is a convergent subsequence {an} — z*. Since C'is a cover we know there
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Figure 2: proof of the claim

is a* € A such that z* € U,«, since U, is open there is 6 > 0 such that D(z*,6) C U,~. But

since {z,, } — z* there is N such that |z* — z,, | < 6/2 whenever n;, > N. Pick n;, > N and
also ny, > 2. Notice that if w € D(zy,, ) then

)
|z*—w|:|z*—znk+znk—w|§|z—znk|+|znk—w|<§+§:5,



thus D(zp,, n—lk) C D(2n,, %) C D(2*,6) C U, which contradicts the fact that D(z,, 1) ¢ U,
for every o € A. This completes the proof of the claim.

Now, for every z € K let D, = D(z,¢) the disk given by the claim. Observe that {D.}, .
is an open cover of K. Suppose we know how to extract a finite subcover {D,,, D,,, ..., D,,, }
of K, then since each D, is contained in some U,, we can deduce that {Uays Ungy -y Uay, }
is also a finite subcover. So it is enough to show that {D.},_, has a finite subcover. Let
2z € K, if D,, covers K we are done, else there is zo € K\D,,. If {D,,,D,,} covers K we
are done, else there is z3 € K\ (D,, U D,,). If we continue this process we either obtain a
finite cover or a sequence {z;}. Observe that |z; — z;| > € for every j and k since zj is not
in D, and biceversa. Thus the sequence {z;} cannot have a convergent subsequence which
is a contradiction to our main assumption. Therefore the process must end at some point
and we should have a finite subcover of K.

Finally we prove (iii)=-(i). Suppose K is compact. Consider the collection C = {D(0;n) :
n € N}, clearly C is an open cover of K (in fact of all C), thus, since K is compact,
there is a finite subcover Cr = {D(0,n1), D(0,ns),...,D(0,n3)} of K. If we assume that
ny < mng < --- < mny then clearly K C D(0,mny), i.e., K is bounded.
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Figure 3: proof of (iii)=-(i)

Now, to prove that K is closed we prove instead that C\K is open. Let z € C\K,
for every w € K consider the disk D,, = D(w,%|w —z|) and let C = {D,,: w € K}.
Clearly C is an open cover of K since every point w in K has a disk centered at it in
C. Since K is compact, there is a finite subcover Cr = {Dy,, Duy, - - -y Dy, }- Now, let
e =min {3 |w; — 2| : 1 < j < M}. Observe that since § |z — w;| > € then z is farther apart
than e from every point in D,,,. Indeed, if w € D, (i.e., |w — w;| < § |w; — 2|) then

1 1
[z —wl = (2 —wjy) + (wj —w)| 2 [e —wj|~fw; —w| > |z —wjl=5 |z —wj| = 5 [z —wy| > e.

Thus D(z,e) N D, = () and then

D(z,¢) CC\| JDu, CC\K

=1

which proves that C\ K is open, i.e. K is closed. m



