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In our text we had the following Theorem as Proposition 1.4.18, here we have a proof of
it. Recall that a set K is compact if every open cover of K contains a finite subcover of K.
Also we use the notation D(z, ε) = {w ∈ C : |w − z| < ε}, i.e. the open disk centered at z
with radius ε.

Theorem 1 The following conditions are equivalent for a subset K of C (or of R):

(i) K is closed and bounded.

(ii) Every sequence of points in K has subsequence which converges to some point in K.

(iii) K is compact.

Proof. We first prove (i)⇒(ii). Suppose K is closed and bounded, consider a sequence
{zj}∞j=1 in K, it is enough to show that this sequence contains a convergent subsequence,
because since K is closed we already know (see proposition 1.4.8) that the limit of such
sequence would be some point in K.
Since K is bounded then there is a disk centered at the origin containing K, by possibly

shrinking and translating K, we can assume that K is contained in the square S1 with
vertices 0, 1, 1 + i, and i. Notice that the shrinking and translating do not change the
convergence behavior of the sequence. Now, consider the following recursive procedure:
Using a vertical segment and a horizontal segment divide S1 into four squares of the same
size S11 (with vertices 0, 12 ,
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), S12 (with vertices 12 , 1, 1 +

i
2
, 1
2
+ i

2
), S13 (with vertices
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2
+ i), and S14 (with vertices i

2
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2
+ i, i), see figure 1. Since the

sequence {zi}∞i=1 is infinite, there must be one of these squares with an infinite number of
points. If S1j is such square, pick an arbitrary point in it, call it w1, and now only consider
those points in the sequence {zj}∞j=1 with indices j larger than the index of w1. Now, repeat
the same procedure using S1j instead of S1 and proceed recursively. In this way we construct
a sequence {wi}∞i=1 where the indices of the wj’s in the sequence {zj}∞j=1 are in order, and
moreover each wj is contained in a square of side 1/2j and every subsequent wk (with k ≥ j)
is also contained in the same square. Therefore

|wj − wk| < 1

2j
for every j ≥ k

1



Figure 1: proof of (i) ⇒(ii)

which means that the sequence {wj}∞j=1 is a Cauchy sequence and therefore it is convergent.
Now we prove (ii)⇒(iii). Suppose that every sequence in K contains a convergent sub-

sequence with limit in K. Consider an open cover C = {Uα}α∈A of K. We first prove the
following.

Claim 2 There is ε > 0 such that every z ∈ K satisfies that there is α = α(z) such that
D(z, ε) ⊆ Uα.

Suppose not, then for every ε, in particular for ε = 1
n
with n ∈ N, there is a point zn ∈ K

such that for every α ∈ A we have that D(zn, 1n) * Uα. Consider the sequence {zn}, by
assumption there is a convergent subsequence {znk}→ z∗. Since C is a cover we know there

Figure 2: proof of the claim

is α∗ ∈ A such that z∗ ∈ Uα∗, since Uα∗ is open there is δ > 0 such that D(z∗, δ) ⊆ Uα∗ . But
since {znk}→ z∗ there is N such that |z∗ − znk | < δ/2 whenever nk ≥ N . Pick nk ≥ N and
also nk > 2

δ
. Notice that if w ∈ D(znk , δ2) then

|z∗ − w| = |z∗ − znk + znk − w| ≤ |z − znk |+ |znk − w| <
δ

2
+

δ

2
= δ,
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thus D(znk ,
1
nk
) ⊆ D(znk , δ2) ⊆ D(z∗, δ) ⊆ Uα∗ which contradicts the fact that D(zn, 1n) * Uα

for every α ∈ A. This completes the proof of the claim.
Now, for every z ∈ K letDz = D(z, ε) the disk given by the claim. Observe that {Dz}z∈K

is an open cover ofK. Suppose we know how to extract a finite subcover {Dz1, Dz2 , . . . , DzM}
of K, then since each Dzj is contained in some Uαj we can deduce that {Uα1, Uα2, . . . , UαM}
is also a finite subcover. So it is enough to show that {Dz}z∈K has a finite subcover. Let
z1 ∈ K, if Dz1 covers K we are done, else there is z2 ∈ K\Dz1. If {Dz1, Dz2} covers K we
are done, else there is z3 ∈ K\ (Dz1 ∪Dz2). If we continue this process we either obtain a
finite cover or a sequence {zj}. Observe that |zj − zk| > ε for every j and k since zk is not
in Dzj and biceversa. Thus the sequence {zj} cannot have a convergent subsequence which
is a contradiction to our main assumption. Therefore the process must end at some point
and we should have a finite subcover of K.
Finally we prove (iii)⇒(i). Suppose K is compact. Consider the collection C = {D(0;n) :

n ∈ N}, clearly C is an open cover of K (in fact of all C), thus, since K is compact,
there is a finite subcover CF = {D(0, n1),D(0, n2), . . . , D(0, nM)} of K. If we assume that
n1 < n2 < · · · < nM then clearly K ⊆ D(0, nM), i.e., K is bounded.

Figure 3: proof of (iii)⇒(i)
Now, to prove that K is closed we prove instead that C\K is open. Let z ∈ C\K,

for every w ∈ K consider the disk Dw = D(w, 1
2
|w − z|) and let C = {Dw : w ∈ K}.

Clearly C is an open cover of K since every point w in K has a disk centered at it in
C. Since K is compact, there is a finite subcover CF = {Dw1, Dw2 , . . . , DwM}. Now, let
ε = min

©
1
2
|wj − z| : 1 ≤ j ≤M

ª
. Observe that since 1

2
|z − wj| > ε then z is farther apart

than ε from every point in Dwj . Indeed, if w ∈ Dwj (i.e., |w − wj| < 1
2
|wj − z|) then

|z − w| = |(z − wj) + (wj − w)| ≥ |z − wj|−|wj − w| > |z − wj|−1
2
|z − wj| = 1

2
|z − wj| > ε.

Thus D(z, ε) ∩Dwj = ∅ and then

D(z, ε) ⊆ C\
M[
j=1

Dwj ⊆ C\K

which proves that C\K is open, i.e. K is closed.
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