1. The statement below is not always true for \(x, y \in \mathbb{R}\). Give an example where it is false, and add a hypothesis on \(y\) that makes it a true statement.

“If \(x\) and \(y\) are nonzero real numbers and \(x > y\), then \((-1/x) > (-1/y)\).”

Let \(x = 1\) and \(y = -1\), they are both nonzero and \(x > y\), however

\[(-1/x) = -1 < 1 = (-1/(-1)) = (-1/y).\]

If we add the hypothesis \(y > 0\) then the statement is true: start with \(x > y\), because \(y > 0\), it follows that \(x > y > 0\). Thus \(xy > 0\) and we can divide both sides of the inequality \(x > y\) by \(xy\), to get \(1/y > 1/x\). Finally, multiplying by \((-1)\) the inequality is reversed and we get \((-1/x) > (-1/y)\).

2. Let \(f\) be a function from \(\mathbb{R}\) to \(\mathbb{R}\). Without using words of negation, write a sentence that expresses the negation of the following statement:

“For all \(b \in \mathbb{R}\), there is an \(x \in \mathbb{R}\) such that \(f(x) = b\).”

There is a \(b \in \mathbb{R}\), such that for all \(x \in \mathbb{R}\), \(f(x) \neq b\).

3. Let \(f : A \to B\) and \(g : B \to C\) be injective functions on their respective domains. Prove that \(g \circ f : A \to C\) is an injection.

Let \(h = g \circ f\) and suppose that \(h(c_1) = h(c_2)\). Thus \(g(f(c_1)) = g(f(c_2))\) and because \(g\) is injective, it follows that \(f(c_1) = f(c_2)\), but \(f\) is injective too, so it follows that \(c_1 = c_2\). Therefore \(h\) is injective.

4. Let \(P(x)\) be the assertion “\(x\) is odd”, and let \(Q(x)\) be the assertion “\(x^2 - 1\) is even”. Consider the following statements:

(a) \((\forall x \in \mathbb{Z})[P(x) \Rightarrow Q(x)]\).
(b) \((\forall x \in \mathbb{Z})[Q(x) \Rightarrow P(x)]\).

Prove that both (a) and (b) are true. Hint for part (b): Use the contrapositive.

(a). Let \(x\) be an odd number, then there is \(k \in \mathbb{Z}\), such that \(x = 2k + 1\). It follows that \(x^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k = 2(2k^2 + 2k)\). Therefore \(x^2 - 1\) is even.

(b). We prove the contrapositive. Suppose \(\neg P(x)\) is true, that is \(x\) is not an odd integer. Then \(x\) is even and there is \(k \in \mathbb{Z}\) such that \(x = 2k\). It follows that \(x^2 - 1 = 4k^2 - 1 = 2(2k^2) - 1\) is odd, so \(\neg Q(x)\) is true.
5. Determine the set of natural numbers \(n \) for which the inequality \(3^n > 2n^3 \) holds.

The answer is \(\{1\} \cup \{n \in \mathbb{N} : n \geq 6\} \), or \(\mathbb{N} - \{2, 3, 4, 5\} \). If \(n = 1 \), then \(3^n = 3 > 2 = 2n^3 \). If \(n = 2 \), then \(3^n = 9 < 16 = 2n^3 \). If \(n = 3 \), then \(3^n = 3^3 = 27 < 54 = 2n^3 \). If \(n = 4 \), then \(3^n = 81 < 128 = 2n^3 \). If \(n = 5 \), then \(3^n = 3^5 = 243 < 250 = 2n^3 \). Finally, if \(n \geq 6 \) the statement is always true and we prove it by induction on \(n \). If \(n = 6 \), then \(3^n = 729 > 532 = 2n^3 \). Suppose by induction hypothesis that \(3^n > 2n^3 \) for some \(n \geq 6 \). Multiplying both sides by 3 we get

\[
3^{n+1} = 3 \cdot 3^n > 6n^3 = 2n^3+4n^3.
\]

because \(n \geq 6 \), then \(4n^3 = (4n^2) \geq 6 \cdot 4n^2 = 24n^2 \). Thus

\[
3^{n+1} = 3 \cdot 3^n > 6n^3 = 2n^3+4n^3 \\
\geq 2n^3+24n^2 = 2(n^3+12n^2) = 2(n^3+3n^2+3n^2+n^2+5n^2) \\
> 2(n^3+3n^2+3n+1) = 2(n+1)^3,
\]

which proves the statement by induction. Note that \(n^2 \geq n \geq 1 \) for every positive integer \(n \).

6. Let \(\langle a \rangle \) be a recursive sequence defined by \(a_1 = 0 \), \(a_2 = 2 \), and \(a_n = 4a_{n-1} - 3a_{n-2} \) for any integer \(n \geq 3 \). Prove that \(a_n = 3^{n-1} - 1 \) for all natural numbers. Hint: Use strong induction.

If \(n = 1 \), then \(a_1 = 0 = 3^0 - 1 \). If \(n = 2 \), then \(a_2 = 2 = 3^1 - 1 \). Assume by induction hypothesis that \(n \geq 2 \) and for every \(k < n \) we have that \(a_k = 3^{k-1} - 1 \). Then by definition,

\[
a_n = 4a_{n-1} - 3a_{n-2}.
\]

Noting that \(n-1 \) and \(n-2 \) are both less than \(n \) and at least 0, we apply the induction hypothesis to \(a_{n-1} \) and \(a_{n-2} \), that is \(a_{n-1} = 3^{n-2} - 1 \) and \(a_{n-2} = 3^{n-3} - 1 \). It follows that

\[
a_n = 4(3^{n-2} - 1) - 3(3^{n-3} - 1) \\
= 4 \cdot 3^{n-2} - 4 - 3 \cdot 3^{n-3} + 3 \\
= 4 \cdot 3 \cdot 3^{n-3} - 3 \cdot 3^{n-3} - 1 \\
= 3^{n-3}(12 - 3) - 1 = 3^{n-3} \cdot 9 - 1 = 3^{n-3} \cdot 3^2 - 1 = 3^{n-1} - 1.
\]

Thus the result is true by induction.

7. A clerk returns 10 hats to 10 people who have checked them, but not necessarily in the right order. For which \(k \) is it possible that exactly \(k \) people get a wrong hat? Prove your answer.

The answer is for any \(k \), \(2 \leq k \leq 10 \) or \(k = 0 \). First we argue that \(k = 1 \) is impossible. Indeed, if everyone except perhaps person \(p \) has the right hat, then there are 9 people
which have the right hat. This leaves only one remaining hat which has to be the hat of person \(p \), which means that \(p \) actually has the correct hat. Let \(p_1, \ldots, p_{10} \) denote the 10 people and \(h_1, \ldots, h_{10} \) their corresponding hats. To see that the other values are possible consider the following assignments for every \(k \geq 2 \): first \(p_1 \) gets \(h_k \), second, if \(2 \leq i \leq k \), then \(p_i \) gets \(h_{i-1} \), and last, if \(k + 1 \leq i \leq 10 \), then \(p_i \) gets \(h_i \). In this assignment exactly the persons \(p_1, \ldots, p_k \) get the wrong hats. Finally, it is possible that every person receives his/her own hat and \(k = 0 \).

8. Let \(f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) be defined as \(f(a, b) = \frac{ab(a+b)}{2} \). Prove that \(f \) is not a surjection. Hint: look for a small natural number which is not in the image set.

Suppose \(f(a, b) = 2 \). It follows that

\[
\frac{ab(a+b)}{2} = 2
\]

for some \(a, b \in \mathbb{N} \). Thus \(ab(a+b) = 4 \). But, if \(a \) and \(b \) are at least 2, then \(a \geq 2 \), \(b \geq 2 \), and \(a + b \geq 4 \). It follows that \(ab(a+b) \geq 16 \). If \(a = 1 \) and \(b \geq 2 \), then \(a + b \geq 3 \) and thus \(ab(a+b) \geq 6 \). The only remaining pair is \((a, b) = (1, 1)\), and in that case \(ab(a+b) = 2 \). Thus there are no pairs \((a, b)\) of natural numbers such that \(f(a, b) = 2 \). Therefore \(f \) is not a surjective function.